CN114433067A - 一种具有高内建电场的光催化剂及其制备方法 - Google Patents

一种具有高内建电场的光催化剂及其制备方法 Download PDF

Info

Publication number
CN114433067A
CN114433067A CN202210025813.0A CN202210025813A CN114433067A CN 114433067 A CN114433067 A CN 114433067A CN 202210025813 A CN202210025813 A CN 202210025813A CN 114433067 A CN114433067 A CN 114433067A
Authority
CN
China
Prior art keywords
powder
photocatalyst
tio
electric field
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210025813.0A
Other languages
English (en)
Other versions
CN114433067B (zh
Inventor
蒲永平
吉佳敏
欧阳涛
周世昱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210025813.0A priority Critical patent/CN114433067B/zh
Publication of CN114433067A publication Critical patent/CN114433067A/zh
Application granted granted Critical
Publication of CN114433067B publication Critical patent/CN114433067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/11Electrochemical processes, e.g. electrodialysis
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种具有高内建电场的光催化剂及其制备方法,首先制备具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂,然后将其置于自制极化装置中,通过改变外加电场的大小实现光催化剂中内电场的调控,得到具有高光催化效率的(Na0.5Bi0.5)0.3Ba0.7TiO3粉体材料;可实现低极化电场作用下,光催化剂效率的大幅度提高,且制备工艺简单,材料成本低,绿色环保,可实现具有高内建电场的铁电光催化材料的大量生产;本发明制得的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂,拥有较大自发极化强度的同时,具有较低的矫顽场,在外场作用下易于极化,进而拥有较强的内建电场。

Description

一种具有高内建电场的光催化剂及其制备方法
技术领域
本发明属于光催化技术领域,涉及外电场极化条件下铁电纳米材料的光催化技术,具体涉及一种具有高内建电场的光催化剂及其制备方法。
背景技术
环境污染与化石燃料的过度消耗所导致的生态失衡和能源短缺问题严重威胁着社会的可持续发展。半导体光催化技术作为一种低成本、环保的可再生能源生产和环境修复技术,受到了广泛的研究。
光催化主要涉及以下三个过程:(1)半导体受到能量大于其禁带宽度的光激发后在飞秒(10-15秒)内产生光生电子和空穴对;(2)光生电子和空穴有效分离,并有效迁移至表面,这一过程在几百皮秒(10-12秒)内完成;(3)电子空穴在表面的氧化还原反应需几纳秒-微秒。而电子和空穴在半导体内的复合仅需几皮秒,远快于其迁移到表面参与反应的时间。这意味着在到达光催化剂表面之前,大多数光生电子和空穴倾向于在光催化剂体内彼此重新结合。因此,只有少数电子和空穴转移到表面参与表面催化反应。低的体内电荷分离效率导致许多光催化剂性能不佳。因此,促进体内电荷分离效率在半导体光催化领域起着至关重要的作用。
发明内容
本发明的目的在于是提供一种具有高内建电场的光催化剂及其制备方法,制备工艺简单、环境友好,制备的光催化剂具有高效的光催化降解效果,性能稳定。
为解决上述技术问题,本发明提供的技术方案是:
一种具有高内建电场的光催化剂,其化学计量式为(Na0.5Bi0.5)0.3Ba0.7TiO3
一种具有高内建电场的光催化剂的制备方法,包括如下步骤:
步骤一:按照化学计量式中各元素配比将Bi2O3、Na2CO3、BaCO3和TiO2混合均匀,进行球磨、烘干、高温合成;
步骤二:将合成的粉体用60-80℃蒸馏水洗涤数次;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置极化,即得到具有高内建电场的光催化剂。
进一步,所述步骤一具体为:
首先、按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后、向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于8008850℃煅烧385小时。
进一步,所述步骤二中合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂粉体。
进一步,所述步骤三中的极化电压为1-9kV,极化时间为10-30分钟。
进一步,所述步骤三中粉体极化装置由填装粉体的尼龙模具及两个与直流高压电源相连的铜片组成。
进一步,所述步骤三中粉体极化装置中模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm。
进一步,所述粉体极化装置中铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm。
与现有技术相比,本发明具有以下优异的技术效果:
本发明将Bi2O3、Na2CO3、BaCO3和TiO2混合均匀,进行球磨、烘干、高温合成即可得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体,将得到粉体通过改变外加电场的大小实现光催化剂中内电场的调控,即制得具有高光催化效率的(Na0.5Bi0.5)0.3Ba0.7TiO3粉体材料;可实现低极化电场作用下光催化剂效率的大幅度提高,且制备工艺简单,材料成本低,绿色环保,可实现具有高内建电场的铁电光催化材料的大量生产。
对于体内电荷的分离,多铁电材料Na0.5Bi0.5TiO3具有较高的自发极化强度,约为43μC/cm2,且在室温下为三方相,晶格畸变程度较大,这一特性使其拥有较强的内电场,本发明以多铁电材料Na0.5Bi0.5TiO3为基础,对其分子结构进行改进,制备得到具有高内电场的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂,拥有较大自发极化强度的同时,具有较低的矫顽场,在外场作用下易于极化,进而拥有较强的内建电场,充分发挥了(Na0.5Bi0.5)0.3Ba0.7TiO3作为一种铁电材料的优异的极化电场的特点。
附图说明
图1是极化装置示意图;
图2是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂极化前后的XRD图谱;
图3(a)是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂极化前的SEM图;
图3(b)是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂极化后的SEM图;
图4是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂在不同极化电场下的光催化降解速率常数图;
具体实施方式
下面结合附图及实施例对本发明进行详细说明,但是本发明不局限于以下实施例。
步骤一:按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于8008850℃煅烧385小时;
步骤二:合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置中,粉体的质量为0.1-0.5g。其中,粉体极化装置由填装粉体的尼龙模具及两个铜片组成,模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm,铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm;
步骤四:开启高压直流电源,极化电压为1-9kV,极化时间为10-30分钟;
步骤五:关闭高压直流电源,将粉体从装置中取出进行光催化实验。
下面结合实施例对本发明做进一步详细描述,但是应该明白,以下具体实施方式仅是对于本发明的进一步的阐述,而不是对本发明的进一步的限制:
实施例1
步骤一:按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于800℃煅烧5小时;
步骤二:合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置中,粉体的质量为0.1-0.5g。其中,粉体极化装置由填装粉体的尼龙模具及两个铜片组成,模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm,铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm;
步骤四:开启高压直流电源,极化电压为1kV,极化时间为30分钟;
步骤五:关闭高压直流电源,将粉体从装置中取出进行光催化实验。
实施例2
步骤一:按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于850℃煅烧3小时;
步骤二:合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置中,粉体的质量为0.1-0.5g。其中,粉体极化装置由填装粉体的尼龙模具及两个铜片组成,模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm,铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm;
步骤四:开启高压直流电源,极化电压为3kV,极化时间为30分钟;
步骤五:关闭高压直流电源,将粉体从装置中取出进行光催化实验。
实施例3
步骤一:按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于830℃煅烧4小时;
步骤二:合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置中,粉体的质量为0.1-0.5g。其中,粉体极化装置由填装粉体的尼龙模具及两个铜片组成,模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm,铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm;
步骤四:开启高压直流电源,极化电压为5kV,极化时间为30分钟;
步骤五:关闭高压直流电源,将粉体从装置中取出进行光催化实验。
实施例4
步骤一:按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于800℃煅烧4小时;
步骤二:合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置中,粉体的质量为0.1-0.5g。其中,粉体极化装置由填装粉体的尼龙模具及两个铜片组成,模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm,铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm;
步骤四:开启高压直流电源,极化电压为7kV,极化时间为30分钟;
步骤五:关闭高压直流电源,将粉体从装置中取出进行光催化实验。
实施例5
步骤一:按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于850℃煅烧5小时;
步骤二:合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置中,粉体的质量为0.1-0.5g。其中,粉体极化装置由填装粉体的尼龙模具及两个铜片组成,模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm,铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm;
步骤四:开启高压直流电源,极化电压为9kV,极化时间为10分钟;
步骤五:关闭高压直流电源,将粉体从装置中取出进行光催化实验。
实施例6
实施6与实施3相比,区别仅在于实施6制备的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂未做极化处理。
对实施例3和6制备的样品进行XRD测试,得到图2结果,图2是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂极化前后的XRD图谱,从图中可以看出,极化前后,所制备的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂的物相没有发生改变。图3是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂极化前后的SEM图,从图3可以看出,外电场极化没有改变(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂的形貌,其均为200-300nm的纳米块。图4是(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂在不同极化电场下的光催化降解速率常数图,从图中可以看出,在外加电场为5kV/cm时,(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂的降解效果达到最佳,其速率常数约为不做极化处理的5倍。由此可见,本发明所提出的极化装置很大程度提升了(Na0.5Bi0.5)0.3Ba0.7TiO3铁电光催化剂的光催化速率,提供了一种具有高内建电场的铁电光催化剂的制备方法及应用。
以上实施例仅为优选的实施方式,本发明不限于上述实施条例,凡在与本发明原理一致前提下所做的任何修改、替换和改进等均应包含在本发明保护范围内。

Claims (8)

1.一种具有高内建电场的光催化剂,其特征在于:其化学计量式为(Na0.5Bi0.5)0.3Ba0.7TiO3
2.一种权利要求1所述的具有高内建电场的光催化剂的制备方法,其特征在于包括如下步骤:
步骤一:按照化学计量式中各元素配比将Bi2O3、Na2CO3、BaCO3和TiO2混合均匀,进行球磨、烘干、高温合成;
步骤二:将合成的粉体用60-80℃蒸馏水洗涤数次;
步骤三:将得到(Na0.5Bi0.5)0.3Ba0.7TiO3粉体置于粉体极化装置极化,即得到具有高内建电场的光催化剂。
3.根据权利要求2所述的具有高内建电场的光催化剂的制备方法,其特征在于所述步骤一具体为:
首先、按照摩尔比3:3:28:40称取Na2CO3、Bi2O3、BaCO3和TiO2混合形成混合物A;然后、向混合物A中加入等质量的NaCl形成混合物B,最后将混合物B与锆球石及无水乙醇按照质量比为1:3:2混合后依次进行球磨、烘干、于8008850℃煅烧385小时。
4.根据权利要求2所述的具有高内建电场的光催化剂的制备方法,其特征在于:所述步骤二中合成的粉体用60-80℃蒸馏水洗涤4-5次,之后用酒精离心4-5次,得到具有高表面活性的(Na0.5Bi0.5)0.3Ba0.7TiO3光催化剂粉体。
5.根据权利要求2所述的具有高内建电场的光催化剂的制备方法,其特征在于:所述步骤三中的极化电压为1-9kV,极化时间为10-30分钟。
6.根据权利要求2所述的具有高内建电场的光催化剂的制备方法,其特征在于:所述步骤三中粉体极化装置由填装粉体的尼龙模具及两个与直流高压电源相连的铜片组成。
7.根据权利要求6所述的具有高内建电场的光催化剂的制备方法,其特征在于:所述步骤三中粉体极化装置中模具为空心圆柱体,内径为8-14mm,外径为16-22mm,高度为1-3mm。
8.根据权利要求6所述的具有高内建电场的光催化剂的制备方法,其特征在于:所述粉体极化装置中铜片为圆形,厚度为0.1-0.5mm,直径为10-16mm。
CN202210025813.0A 2022-01-11 2022-01-11 一种具有高内建电场的光催化剂及其制备方法 Active CN114433067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210025813.0A CN114433067B (zh) 2022-01-11 2022-01-11 一种具有高内建电场的光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210025813.0A CN114433067B (zh) 2022-01-11 2022-01-11 一种具有高内建电场的光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN114433067A true CN114433067A (zh) 2022-05-06
CN114433067B CN114433067B (zh) 2023-07-25

Family

ID=81367475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210025813.0A Active CN114433067B (zh) 2022-01-11 2022-01-11 一种具有高内建电场的光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114433067B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
CN108069713A (zh) * 2017-12-14 2018-05-25 陕西科技大学 一种高储能密度st-nbt-bt陶瓷材料及其制备方法
CN112320858A (zh) * 2020-11-13 2021-02-05 上海交通大学 一种钛酸铋钠-镍钛酸钡铁电纳米粉体及其制备方法和用途
CN112390645A (zh) * 2020-11-23 2021-02-23 西南大学 一种在高电场下具有高储能密度和高功率密度的钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN113070057A (zh) * 2021-03-31 2021-07-06 中南大学 一种光电-压电复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
CN108069713A (zh) * 2017-12-14 2018-05-25 陕西科技大学 一种高储能密度st-nbt-bt陶瓷材料及其制备方法
CN112320858A (zh) * 2020-11-13 2021-02-05 上海交通大学 一种钛酸铋钠-镍钛酸钡铁电纳米粉体及其制备方法和用途
CN112390645A (zh) * 2020-11-23 2021-02-23 西南大学 一种在高电场下具有高储能密度和高功率密度的钛酸钡基弛豫铁电陶瓷材料及其制备方法
CN113070057A (zh) * 2021-03-31 2021-07-06 中南大学 一种光电-压电复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
B. PARIJA等: ""Ferroelectric and piezoelectric properties of (1 2 x) (Bi0.5Na0.5)TiO3–xBaTiO3 ceramics"", 《J MATER SCI: MATER ELECTRON》, vol. 24, pages 402 *
SREENU KURRA等: ""Enhancement of Photocatalytic Activity of Sodium Bismuth Titanate by Doping with Copper, Silver, and Tin Ions"", 《Z. ANORG. ALLG. CHEM.》, vol. 645, pages 529 *
张玲;苏扬;王文中;: "内电场与光催化性能调控", 化学进展, no. 04, pages 415 - 427 *
王月芳等: ""Na0.5Bi0.5TiO3掺杂BaTiO3陶瓷的制备与压电性能研究"", 《三门峡职业技术学院学报》, vol. 16, no. 2, pages 124 - 127 *

Also Published As

Publication number Publication date
CN114433067B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN102774883B (zh) 一种金红石型二氧化钛纳米线薄膜及其制备方法和用途
CN103456934B (zh) 一种锂离子电池负极用纳米TiO2(B)/碳复合纤维的制备方法和应用
CN100532272C (zh) 一种钛酸锶多孔球的制备方法
CN110838411B (zh) 一种碳布负载层状六方相三氧化钨超级电容器电极材料及其制备方法
CN110783115B (zh) 一种二氧化锰/碳/泡沫金属复合材料的制备方法和应用
CN105513836B (zh) 一种超级电容器电极材料镍、钴复合纳米氧化物的制备方法
CN111180214A (zh) 一种超级电容器用竹基多孔碳/二氧化锰纳米复合电极材料及其制备方法
CN113086955A (zh) 光催化固氮的碳缺陷型氮化碳材料的制备方法
CN112017868B (zh) 一种介孔中空碳微米笼材料及其制备方法和应用
CN112275306A (zh) 一种简单煅烧法制备BaTiO3/g-C3N4复合光催化剂的方法
CN110813298A (zh) 一种钛酸钴@氧化镍核壳光催化材料及其制备方法和应用
CN110444407B (zh) 一种基于金属有机框架核壳多孔硫化镍电极材料的制备方法及其应用
CN114433067B (zh) 一种具有高内建电场的光催化剂及其制备方法
CN103337368B (zh) 一种染料敏化太阳能电池掺杂石墨烯复合电极的制备方法
CN110942922B (zh) 一步法合成多孔MnO/C微球用于超级电容器电极材料
CN106745525B (zh) 金属复合材料、其制备方法及应用
CN111569934A (zh) 一种铁铌酸铋/石墨相氮化碳复合光催化剂的制备方法
CN112687478A (zh) 一种基于多级孔氮氟掺杂碳材料工作电极的超级电容器的制备方法
CN113921296B (zh) 双壳层镍-钴-锰-铈四元氧化物复合电极材料
CN114369942B (zh) 一种碳纤维/二氧化钛光电型复合材料及其制备方法与应用
CN110085841B (zh) 一种二氧化钛碳纤维制备Na4Ti5O12-C纳米纤维负极材料的方法
CN112279313A (zh) 一种锰掺杂氢氧化镍复合材料的制备方法及其应用
WO2020186766A1 (zh) 一种宏量制备NaxMnO 2电极材料的方法
CN109961966B (zh) 花生壳多孔碳/四氧化三铁复合电极材料的制备方法
CN110648858A (zh) 一种Fe3O4-C复合纳米棒薄膜材料的制备及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant