CN113070057A - 一种光电-压电复合材料及其制备方法 - Google Patents

一种光电-压电复合材料及其制备方法 Download PDF

Info

Publication number
CN113070057A
CN113070057A CN202110351138.6A CN202110351138A CN113070057A CN 113070057 A CN113070057 A CN 113070057A CN 202110351138 A CN202110351138 A CN 202110351138A CN 113070057 A CN113070057 A CN 113070057A
Authority
CN
China
Prior art keywords
composite material
tio
photoelectric
piezoelectric composite
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110351138.6A
Other languages
English (en)
Other versions
CN113070057B (zh
Inventor
刘琼
张斗
罗行
孙奇薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110351138.6A priority Critical patent/CN113070057B/zh
Publication of CN113070057A publication Critical patent/CN113070057A/zh
Application granted granted Critical
Publication of CN113070057B publication Critical patent/CN113070057B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及材料技术领域,具体涉及一种光电‑压电复合材料及其制备方法。具体技术方案为:一种光电‑压电复合材料,所述复合材料为BiVO4‑Bi0.5Na0.5TiO3,以Bi0.5Na0.5TiO3纳米球作为基体,采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4。本发明通过在压电材料表层复合光催化材料,利用压电与光电材料复合形成的异质结,提高电子空穴的分离率,提高电子寿命,从而提升催化性能,进而使得本发明所公开的光电‑压电复合材料自身能够通过吸收自然界中的太阳能产生电子和空穴,从而实现太阳能向电能的转换。

Description

一种光电-压电复合材料及其制备方法
技术领域
本发明涉及材料技术领域,具体涉及一种光电-压电复合材料及其制备方法。
背景技术
目前处理有机污染的相关复合材料的设计主要包括:1.以BiVO4/InVO4异质结光催化剂为液态钒源,VOC2O4通过一步法与Bi(NO3)3·3.5H2O和In(NO3)3·4.5H2O水热形成5μm的球状体;将催化剂与罗丹明B溶液混合,在光照下实现罗丹明B的降解。2.将罗丹明B溶液与BiVO4/Pt复合催化剂混合,得到悬浮液;在超声和曝气条件下,对所述悬浮液进行氙灯光照,实现罗丹明B的催化降解。
第一中方法制备的光催化剂大部分都只是在光催化半导体材料上面复合或者修饰以提高其自身对光的吸收,从而提高材料的催化性能;但是对光的吸收始终有限,尤其有机染料本身具有一定的颜色,对光会有一定的吸收,因此单纯的光催化性能受限。
第二中方法选择在光催化材料上复合一些贵金属电催化剂,如Pt、Au、Ag等,但是成本昂贵,尤其粉体材料在回收方面困难,因此必然使得贵金属的损耗也加大,大大的加重催化的成本。
发明内容
针对现有技术的不足,本发明提供了一种光电-压电复合材料及其制备方法,通过在压电材料表层复合光催化材料,利用压电与光电材料复合形成的异质结,提高电子空穴的分离率,提高电子寿命,从而提升催化性能,进而使得本发明所公开的光电-压电复合材料自身能够通过吸收自然界中的太阳能产生电子和空穴,从而实现太阳能向电能的转换。
为实现以上目的,本发明通过以下技术方案予以实现:
本发明公开了一种光电-压电复合材料,所述复合材料为BiVO4-Bi0.5Na0.5TiO3
优选的,所述复合材料以Bi0.5Na0.5TiO3纳米球为核,BiVO4为壳构成核壳型复合材料。
优选的,所述复合材料的粒径为100nm~5μm,所述Bi0.5Na0.5TiO3纳米球的粒径为200nm~2μm。
相应的,一种光电-压电复合材料的制备方法,以Bi0.5Na0.5TiO3纳米球作为基体,采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4
优选的,具体步骤为:将Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2在去离子水中搅拌后制得前驱体溶液;调节pH=1,然后将Bi0.5Na0.5TiO3纳米球加入到前驱体溶液中,搅拌后,在反应釜中水热合成复合材料。
优选的,所述Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2的摩尔比为1:1:1~2。
优选的,所述反应釜中反应温度为160~200℃,反应时间为6~24h。
优选的,所述Bi0.5Na0.5TiO3纳米球与前驱体溶液的比值为1~5%,w/v。
优选的,所述Bi0.5Na0.5TiO3的制备过程为:以Ti(OC4H9)4、Bi(NO3)3·5H2O及NaOH作为反应前驱体,分散在水溶液中,磁力搅拌至溶液彻底混合均匀后,在反应釜中水热生长Bi0.5Na0.5TiO3纳米球。
相应的,一种光电-压电复合材料在降解罗丹明B中的应用。
本发明具备以下有益效果:
(1)本发明将压电和光电材料结合,在压电材料表层包覆相同的Bi系光电材料,一方面内核的压电材料钛酸铋钠(Bi0.5Na0.5TiO3)除了是一种高效的压电材料外,其自身还具有热释电性能,即通过吸收热量将热能转换成电能,这意味着该材料的能源来源可以扩展到机械能、热能、光能,能够利用自然界中无处不在的声波、机械波、震动波等能量,实现机械能向电能的转换,从而提升对能源的利用;同时,在压电材料表层复合光催化材料,利用压电与光电材料复合形成的异质结,提高电子空穴的分离率,提高电子寿命,从而提升催化性能,进而使得本发明所公开的光电-压电复合材料自身能够通过吸收自然界中的太阳能产生电子和空穴,从而实现太阳能向电能的转换。
(2)本发明所公开的复合材料通过两步水热法合成,对环境要求低,浓度和厚度都可控,生产方便;而且比起采用贵金属作为电催化剂复合,本发明所采用的原料皆为廉价易制备的材料,成本低。
(3)本发明所公开的复合材料的能源利用机理是吸收能量产生电子和空穴,电子和空穴分别可以应用于氧化还原反应,可以降解有机染料罗丹明B,也可以使任何通过氧化还原反应发生沉积或者降解的物质都可以使用本发明公开的复合材料,比如降解重金属、杀菌等。
附图说明
图1为Bi0.5Na0.5TiO3纳米球和不同BVO含量的复合材料的扫描电镜图;
图2为不同BVO含量的复合材料对罗丹明B的降解效果图;
图3为不同BVO含量的复合材料降解罗丹明B的反应平衡常数;
图4为复合材料对罗丹明B降解的紫外测试图谱;
图5为复合材料对罗丹明B的降解效果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
若未特别指明,实施举例中所用的技术手段为本领域技术人员所熟知的常规手段。
1.本发明公开了一种光电-压电复合材料,复合材料为BiVO4-Bi0.5Na0.5TiO3。该复合材料以Bi0.5Na0.5TiO3纳米球为核,BiVO4为壳构成核壳型复合材料。其中,复合材料的粒径为100nm~5μm,Bi0.5Na0.5TiO3纳米球的粒径为200nm~2μm。
2.本发明公开了一种光电-压电复合材料的制备方法,以Bi0.5Na0.5TiO3纳米球作为基体,采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4
具体步骤为:将Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2在去离子水中搅拌后制得前驱体溶液;用HNO3调节pH=1,然后将Bi0.5Na0.5TiO3纳米球加入到前驱体溶液中,搅拌1h后,在反应釜中水热合成复合材料。其中,Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2的摩尔比为1:1:1~2。反应釜中反应温度为160~200℃,反应时间为6~24h。Bi0.5Na0.5TiO3纳米球与前驱体溶液的比值为1~5%,w/v。
Bi0.5Na0.5TiO3纳米球的制备过程为:以Ti(OC4H9)4、Bi(NO3)3·5H2O及NaOH作为反应前驱体,分散在水溶液中,磁力搅拌至溶液彻底混合均匀后,在反应釜中水热生长Bi0.5Na0.5TiO3纳米球。其中,Ti(OC4H9)4与Bi(NO3)3·5H2O按照0.5~2:1的摩尔浓度比作为反应前驱体,NaOH调节溶液的pH至8~18。需要注意的是:Ti(OC4H9)4与Bi(NO3)3·5H2O比值不一样,生长形成的钛酸铋钠(NBT)的晶型不一样,当Ti(OC4H9)4/Bi(NO3)3·5H2O≤2时,水热反应制备的产物为尺寸范围为200nm~2μm的圆球状形貌NBT纳米晶;当Ti(OC4H9)4/Bi(NO3)3·5H2O>2时,则NBT纳米晶产物的形貌为线状。
3.本发明公开了一种光电-压电复合材料在降解罗丹明B中的应用。
具体为:(1)将复合材料BiVO4-Bi0.5Na0.5TiO3 100mg加入到100mL 10mg/L的罗丹明B溶液中,磁力搅拌30min,达到吸附平衡;
(2)将步骤(1)的溶液放置在超声装置中,频率25kHz;以功率为300W的氙气作为光源,从承载溶液的装置顶部照射;每隔15min从装置中取出3mL溶液,离心后进行紫外光谱测试。
计算公式为:
C=C0e-kt
其中,C0为起始浓度;C为反应过程中测得的浓度;K为一级反应速率;t为时间。根据该公式求得K值,即一级反应速率,K值越大,反应速率越快。
下面结合具体的实施方式对本发明进行进一步的阐述。
实施例1复合材料的制备
(1)采用水热法合成钛酸铋钠(Bi0.5Na0.5TiO3)
将5.6mL Ti(OC4H9)4、3.88g Bi(NO3)3·5H2O及14.4g NaOH作为反应前驱体,分散在80mL水溶液中,磁力搅拌2h至溶液彻底混合均匀后转移至聚四氟乙烯反应釜中水热生长Bi0.5Na0.5TiO3纳米球;在反应釜中,160℃反应24h,冷却至室温,分别用去离子水、无水乙醇洗涤3~5次,60℃下烘干24h,即得Bi0.5Na0.5TiO3纳米球,记作BNT,其扫描电镜图见图1(a)所示。
(2)采用水热法在钛酸铋钠表面合成钒酸铋(BiVO4)
以Bi0.5Na0.5TiO3纳米球作为基体,继续采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4(记作BVO)构成核壳型复合材料。具体为:将0.1455g Bi(NO3)3·5H2O、0.0351g NH4(VO3)和0.018g CO(NH2)2作为前驱体溶解在80mL去离子水中充分搅拌1h得到前驱体溶液,再用HNO3调节pH至1;将步骤(1)合成的2.12g Bi0.5Na0.5TiO3纳米球通过多次洗涤烘干后至于前驱体溶液中,搅拌30min~1h后,转移至聚四氟乙烯反应釜中,在180℃下水热反应12h合成BiVO4-Bi0.5Na0.5TiO3复合纳米粉体材料,该材料中BVO的占比为3%。其中,钒酸铋前驱体的配比可以根据实验的需求调整。
实施例2复合材料中不同BVO含量对罗丹明B的降解效果
1.通过控制合成BVO的Bi(NO3)3·5H2O和NH4(VO3)的摩尔数,从而控制BVO在BNT外包覆的含量。本发明中,复合材料中BVO的含量控制在5%以下,而BVO含量的控制根据实施例1的步骤(2)中前驱体溶液中Bi(NO3)3·5H2O和NH4(VO3)决定,具体根据实施例1的步骤(2)中,前驱体溶液中Bi(NO3)3·5H2O和NH4(VO3)的摩尔量与Bi0.5Na0.5TiO3纳米球的摩尔量的比值控制在5%以下。具体控制在1%、3%和5%,制备后的复合材料的扫描电镜图如图1中(b)-(d)所示,然后按照上述方法3将复合材料用于降解罗丹明B,结果如图2所示,不同BVO含量的复合材料降解罗丹明B的反应平衡常数,如图3所示。图2结果显示,在BVO含量为3%时,对罗丹明B的降解效果最好。从图1中(b)-(d)中可以看出,随着BVO含量的增加,BVO的粒径逐渐变大;同时,Bi0.5Na0.5TiO3纳米球也逐渐被完全包覆,而且在BVO含量为5%时,还有一些多余的BVO颗粒继续在表面生长。
2.选用BNT@3%BVO复合材料对罗丹明B进行循环降解实验。
具体为:(1)将复合材料BNT@3%BVO 100mg加入到100mL 10mg/L的罗丹明B溶液中,磁力搅拌30min,达到吸附平衡。
(2)将步骤(1)的溶液放置在超声装置中,频率28kHz;以功率为300W的氙气作为光源,从承载溶液的装置顶部照射;每隔15min从装置中取出3mL溶液,离心后进行紫外光谱测试。
(3)将步骤(2)测试后溶液进行收集、离心、水洗和烘干,然后再次按照上述步骤(1)-(2)分别进行5次测试,其紫外测试图谱如图4所示。图4(a)-(e)为5次循环实验的紫外测试图谱,5次循环实验中,使用的是同一复合材料,对5瓶相同浓度的罗丹明B进行催化降解。
根据图4所公开的5次紫外测试图谱,获得复合材料对罗丹明B的降解率,降解率的计算公式为:降解率=(C0-C)/C0,结果如图5所示,结果显示,BNT@3%BVO复合材料对罗丹明B的降解效果最大能够达到95%。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种光电-压电复合材料,其特征在于:所述复合材料为BiVO4-Bi0.5Na0.5TiO3
2.根据权利要求1所述的一种光电-压电复合材料,其特征在于:所述复合材料以Bi0.5Na0.5TiO3纳米球为核,BiVO4为壳构成核壳型复合材料。
3.根据权利要求1所述的一种光电-压电复合材料,其特征在于:所述复合材料的粒径为100nm~5μm,所述Bi0.5Na0.5TiO3纳米球的粒径为200nm~2μm。
4.一种光电-压电复合材料的制备方法,其特征在于:以Bi0.5Na0.5TiO3纳米球作为基体,采用水热法在Bi0.5Na0.5TiO3纳米球表面生长BiVO4
5.根据权利要求4所述的一种光电-压电复合材料的制备方法,其特征在于:具体步骤为:将Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2在去离子水中搅拌后制得前驱体溶液;调节pH=1,然后将Bi0.5Na0.5TiO3纳米球加入到前驱体溶液中,搅拌后,在反应釜中水热合成复合材料。
6.根据权利要求5所述的一种光电-压电复合材料的制备方法,其特征在于:所述Bi(NO3)3·5H2O、NH4(VO3)和CO(NH2)2的摩尔比为1:1:1~2。
7.根据权利要求5所述的一种光电-压电复合材料的制备方法,其特征在于:所述反应釜中反应温度为160~200℃,反应时间为6~24h。
8.根据权利要求5所述的一种光电-压电复合材料的制备方法,其特征在于:所述Bi0.5Na0.5TiO3纳米球与前驱体溶液的比值为1~5%,w/v。
9.根据权利要求4所述的一种光电-压电复合材料的制备方法,其特征在于:所述Bi0.5Na0.5TiO3的制备过程为:以Ti(OC4H9)4、Bi(NO3)3·5H2O及NaOH作为反应前驱体,分散在水溶液中,磁力搅拌至溶液彻底混合均匀后,在反应釜中水热生长Bi0.5Na0.5TiO3纳米球。
10.一种光电-压电复合材料在降解罗丹明B中的应用。
CN202110351138.6A 2021-03-31 2021-03-31 一种光电-压电复合材料及其制备方法 Active CN113070057B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110351138.6A CN113070057B (zh) 2021-03-31 2021-03-31 一种光电-压电复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110351138.6A CN113070057B (zh) 2021-03-31 2021-03-31 一种光电-压电复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113070057A true CN113070057A (zh) 2021-07-06
CN113070057B CN113070057B (zh) 2022-05-17

Family

ID=76614304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110351138.6A Active CN113070057B (zh) 2021-03-31 2021-03-31 一种光电-压电复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113070057B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433067A (zh) * 2022-01-11 2022-05-06 陕西科技大学 一种具有高内建电场的光催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335432A (zh) * 2017-06-29 2017-11-10 天津城建大学 一种BiVO4/TiO2核壳复合光催化剂的制备方法
CN107715896A (zh) * 2017-11-17 2018-02-23 济南大学 一种BiOI/BiVO4复合光催化剂及其制备方法、应用
CN110368960A (zh) * 2019-07-18 2019-10-25 太原理工大学 一种改性MoS2/CdS基复合光电极材料的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107335432A (zh) * 2017-06-29 2017-11-10 天津城建大学 一种BiVO4/TiO2核壳复合光催化剂的制备方法
CN107715896A (zh) * 2017-11-17 2018-02-23 济南大学 一种BiOI/BiVO4复合光催化剂及其制备方法、应用
CN110368960A (zh) * 2019-07-18 2019-10-25 太原理工大学 一种改性MoS2/CdS基复合光电极材料的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JINGXUE SUN等: ""Bismuth vanadate hollow spheres: Bubble template synthesis and enhanced photocatalytic properties for photodegradation"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
XIANYING WANG等: ""BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
ZHICHENG ZHAO等: ""Exclusive enhancement of catalytic activity in Bi0.5Na0.5TiO3 nanostructures: new insights into the design of efficient piezocatalysts and piezo-photocatalysts"", 《J. MATER. CHEM. A》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433067A (zh) * 2022-01-11 2022-05-06 陕西科技大学 一种具有高内建电场的光催化剂及其制备方法
CN114433067B (zh) * 2022-01-11 2023-07-25 陕西科技大学 一种具有高内建电场的光催化剂及其制备方法

Also Published As

Publication number Publication date
CN113070057B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
Bafaqeer et al. Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels
Li et al. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications
Fajrina et al. Engineering approach in stimulating photocatalytic H2 production in a slurry and monolithic photoreactor systems using Ag-bridged Z-scheme pCN/TiO2 nanocomposite
Zhou et al. The preparation, and applications of gC 3 N 4/TiO 2 heterojunction catalysts—a review
Pan et al. Synthesis and photoelectrocatalytic activity of In 2 O 3 hollow microspheres via a bio-template route using yeast templates
Mao et al. Recent advances in the photocatalytic CO 2 reduction over semiconductors
CN101890344B (zh) 石墨烯/二氧化钛复合光催化剂的制备方法
Jie et al. Preparation of LaMnO3/graphene thin films and their photocatalytic activity
Lin et al. Photocatalytic water splitting for hydrogen production on Au/KTiNbO5
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN107670672B (zh) 一种钛酸钡复合硫化镉纳米复合光催化剂及其制备方法
CN109663611B (zh) 一种单层氮化碳复合铁酸锌z型催化剂的制备方法及其固氮应用
Zhu et al. Facile fabrication of porous Bi 2 O 3 microspheres by thermal treatment of Bi 2 O 2 CO 3 microspheres and its photocatalysis properties
Ong et al. Enhanced photocatalytic performance of TiO2 hierarchical spheres decorated with Ag2S nanoparticles
She et al. Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation
Li et al. Fabrication of porous TiO2 nanosheets assembly for improved photoreactivity towards X3B dye degradation and NO oxidation
CN114733540B (zh) 一种纳米级碳包覆Mo-Mo2C的异质纳米粒子及其制备方法和应用
Liu et al. Microwave-assisted hydrothermal synthesis of cellulose/ZnO composites and its thermal transformation to ZnO/carbon composites
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN113070057B (zh) 一种光电-压电复合材料及其制备方法
Wang et al. A novel 2D nanosheets self-assembly camellia-like ordered mesoporous Bi12ZnO20 catalyst with excellent photocatalytic property
CN108927201B (zh) 一种AgBr/g-C3N4复合粉体的制备方法及应用
CN108855056B (zh) 一种双层核壳结构钯催化剂及其制备方法和应用
CN108525651B (zh) 一种具有高光催化活性的还原二氧化钛制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant