CN114380952B - 一种近红外光致快速自愈合导电水凝胶及其制备方法和用途 - Google Patents

一种近红外光致快速自愈合导电水凝胶及其制备方法和用途 Download PDF

Info

Publication number
CN114380952B
CN114380952B CN202111624896.7A CN202111624896A CN114380952B CN 114380952 B CN114380952 B CN 114380952B CN 202111624896 A CN202111624896 A CN 202111624896A CN 114380952 B CN114380952 B CN 114380952B
Authority
CN
China
Prior art keywords
healing
conductive polymer
hydrogel
self
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111624896.7A
Other languages
English (en)
Other versions
CN114380952A (zh
Inventor
许建雄
罗跃聪
陈殷
许利剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN202111624896.7A priority Critical patent/CN114380952B/zh
Publication of CN114380952A publication Critical patent/CN114380952A/zh
Application granted granted Critical
Publication of CN114380952B publication Critical patent/CN114380952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种近红外光致快速自愈合导电水凝胶及其制备方法和用途,该制备方法步骤包括:(1)以Sb2S3纳米材料和导电聚合物单体作为原料,通过氧化聚合制得Sb2S3包覆导电聚合物纳米复合材料;(2)以Sb2S3包覆导电聚合物纳米复合材料作为原料,以多巴胺为改性剂,制备Sb2S3包覆导电聚合物‑DA纳米材料;(3)通过Sb2S3包覆导电聚合物‑DA纳米材料与水凝胶基质复合制备得到近红外光致快速自愈合导电水凝胶。本发明的水凝胶具有高力学强度、高韧性、优异的抗冻性、粘附性、导电性及快速自愈合特性。该自愈合导电水凝胶在柔性可穿戴设备、智能人工皮肤等方面有着广阔的应用前景。

Description

一种近红外光致快速自愈合导电水凝胶及其制备方法和用途
技术领域
本发明涉及高分子材料和柔性可穿戴电子技术领域,更具体的涉及一种近红外光致快速自愈合导电水凝胶及其制备方法和用途。
背景技术
水凝胶作为一种三维网状软材料,由于其优异的灵活性、可调节的力学性能、突出的导电性和生物相容性,使其在电子皮肤,人体健康检测,可穿戴设备,人机交互系统等方面具有良好的应用前景。
在生物电子学的相关应用中,电子传感器不仅需要具有良好的生物相容性,以便它们能够长期地与人体(如皮肤、肌肉或心脏)一起使用。更重要的是,它们也需要同时具备高导电性和良好自愈性能。这些特性可以保证在承受巨大的机械载荷及大应变下仍保持较高的导电性用以信号传输,同时可以大大提高水凝胶材料的使用寿命和功能的可靠性。然而,电子设备的现场修复是相当具有挑战性的。中国发明专利申请CN 113185715 A公开了一种将2-甲基-2-丙烯酰胺丙磺酸钠共聚N,N-二甲基丙烯酰胺网络引入聚乙烯醇/硼砂网络中,利用硼砂和聚乙烯醇形成的动态交联以及2-甲基-2-丙烯酰胺丙磺酸钠和N,N-二甲基丙烯酰胺聚合物链之间大量的氢键提升水凝胶的机械性能,并保留了快速自愈的能力。但其制备时间较长,且常温自愈需要的时间较长,一般为12 h,愈合后的力学性能有所降低。相比之下,外界刺激下的愈合过程愈合时间短,愈合效率高。Han等人(ACS Appl.Polym. Mater., 2020, 2, 996-1005)制备了基于碳纳米管薄膜和卡拉胶与PAAm交联的导电双网络水凝胶,由于卡拉胶的热可逆性通过直接加热的方式使达到快速愈合的能力,但直接加热的方式会对电子器件的未受损区域造成不利影响而限制其应用。
因此,寻求一种合适的方法复合导电填料和水凝胶基质,赋予复合水凝胶高导电性及按需愈合的快速自愈方式的适应性至关重要。
发明内容
为了克服现有技术缺陷,本发明提供了一种近红外光致快速自愈合导电水凝胶的其制备方法,通过该方法制得的近红外光致快速自愈合导电水凝胶,具有高力学强度和韧性、粘附性、按需愈合的快速自愈性能。
为实现上述目的,一方面,本发明提供一种近红外光致快速自愈合导电水凝胶的其制备方法,步骤包括:
(1)以Sb2S3纳米材料和导电聚合物单体作为原料,通过氧化聚合制得Sb2S3包覆导电聚合物纳米复合材料;
(2)以Sb2S3包覆导电聚合物纳米复合材料作为原料,以多巴胺DA为改性剂,制备Sb2S3包覆导电聚合物-DA纳米材料;
(3)通过Sb2S3包覆导电聚合物-DA纳米材料与水凝胶基质复合制备得到近红外光致快速自愈合导电水凝胶。
与现有技术相比,本发明的近红外光致快速自愈合导电水凝胶的其制备方法,先制得Sb2S3包覆导电聚合物纳米复合材料(也称为Sb2S3@导电聚合物纳米复合材料),通过对Sb2S3纳米材料进行导电聚合物包覆,增强其导电性。再进一步对其表面以多巴胺进行功能化修饰得到水分散性较好的Sb2S3包覆导电聚合物-DA纳米材料,再通过Sb2S3包覆导电聚合物-DA纳米材料与水凝胶基质复合制备得到近红外光致快速自愈合导电水凝胶。其不仅具有高力学强度、高韧性及自愈性能,而且具有优异的抗冻性、粘附性和导电性和快速自愈合特性。
较佳地,导电聚合物单体选自苯胺、噻吩、吡咯中的任意一种。
较佳地,Sb2S3包覆导电聚合物纳米复合材料的制备步骤如下:
将Sb2S3纳米材料和十二烷基硫酸钠溶于去离子水中超声搅拌均匀,之后加入导电聚合物单体搅拌均匀,再加入过硫酸铵,最后通过离心和洗涤,制得Sb2S3-导电聚合物纳米复合材料。
较佳地,以SbCl3、L-半胱氨酸、九水硫化钠为原料,通过热分解法合成Sb2S3纳米材料。进一步地,将一定量的SbCl3、L-半胱氨酸、九水硫化钠溶于去离子水中搅拌均匀,通过反应釜反应后冷却至室温,洗涤干燥获得Sb2S3纳米材料。
较佳地,Sb2S3包覆导电聚合物-DA纳米材料的制备步骤如下:将Sb2S3包覆导电聚合物纳米复合材料和DA,在氮气条件下搅拌均匀,透析之后洗涤干燥得到Sb2S3包覆导电聚合物-DA纳米材料。
较佳地,步骤(3)中,以Sb2S3包覆导电聚合物-DA纳米材料作为填料,加入PVA、单体、引发剂、硼酸、有机溶剂和水,在紫外光照下引发聚合,得到近红外光致快速自愈合导电水凝胶。制备过程中,利用硼酸交联的PVA形成第一网络,利用单体共聚形成第二网络,且利用Sb2S3纳米材料在近红外光下能将光能转化为热能,热刺激增强PVA与硼酸之间的动态硼酸酯键以及单体聚合物链间的氢键的重新组合,从而能以按需愈合的方式使受损后的水凝胶快速达到愈合。
较佳地,有机溶剂选自甘油、二甲基亚砜、乙二醇中的任意一种。
较佳地,步骤(3)中,单体为丙烯酰胺类或丙烯酸酯类单体中的任意一种。丙烯酸酯类单体比如但不限于丙烯酸甲酯、丙烯酸乙酯、2-甲基丙烯酸甲酯和2-甲基丙烯酸乙酯。丙烯酰胺类可为但不限于N-羟乙基丙烯酰胺、丙烯酰胺。
较佳地,所述引发剂为2-羟基-4’-(2-羟乙基)-2-甲基丙酮、2-羟基-2-甲基-1-苯基甲酮、1-羟基-环己基-苯基甲酮中的任意一种。
较佳地,步骤(3)中,按重量百分数计,PVA的质量分数为5%~15%、单体的质量分数为30% ~ 60%、引发剂的质量分数为0.08%、Sb2S3-导电聚合物-DA纳米材料的质量分数为0.1% ~ 1.2%。
相应地,另一方面,本发明还提供一种近红外光致快速自愈合导电水凝胶,采用上述制备方法制得。
此外,本发明还提供一种近红外光致快速自愈合导电水凝胶在监测人体运动或生理信号上的应用。
本发明的有益效果有:
(1)本发明的近红外光致快速自愈合导电水凝胶的制备方法中,利用水分散性较好的Sb2S3包覆导电聚合物-DA纳米材料与水凝胶基质复合制备近红外光致快速自愈合导电水凝胶,其不仅具有高力学强度、高韧性及自愈性能,而且具有优异的抗冻性、粘附性和导电性自愈合。
(2)利用Sb2S3纳米材料在近红外光下将光能转化为热能,热刺激增强PVA与硼酸之间的动态硼酸酯键以及单体聚合物链间的氢键的重新组合,从而能以按需愈合的方式使受损后的水凝胶快速达到愈合。
(3)本发明的自愈合导电水凝胶拥有良好的粘附性能和抗冻保湿性能,PVA富含大量的羟基,能与不同材质基体之间产生较强的氢键作用。有机溶剂的加入可使水凝胶在恶劣条件下(如低温、干燥)正常工作,这大大扩展了水凝胶的工作范围。
(4)本发明的自愈合导电水凝胶的电化学信号可随着外部应力的变化产生规律性的信号变化,其对人体运动、心率变化可以进行实时监测,并且在柔性可穿戴设备、智能人工皮肤等方面有着广阔的应用前景。
附图说明
图1为Sb2S3包覆导电聚合物-DA纳米材料的扫描电子显微镜图。
图2为自愈合导电水凝胶在拉伸下的应力应变曲线(图2(a))和相应弹性模量与韧性曲线(图2(b))。
图3为自愈合导电水凝胶分别在水和NIR触发不同时间自愈后的应力应变曲线。
图4为自愈合导电水凝胶与LED指示器串联的自愈合特性试验过程照片图。
图5为水凝胶传感器贴在手腕上时手腕运动所产生的电阻变化图以及贴在腿上时关节运动所产生的电阻变化图。
具体实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
下面结合附图和实施例,对本发明进行详细描述。
实施例1
本实施例提供一种近红外光致快速自愈合导电水凝胶的制备方法,步骤包括:
(1)制备Sb2S3纳米材料:
称取4 mmol SbCl3(99%北京伊诺凯科技有限公司),8 mmol L-半胱氨酸(99%北京伊诺凯科技有限公司),8 mmol九水硫化钠(北京伊诺凯科技有限公司)溶于80 ml的去离子水中,磁力搅拌3 h,之后放入反应釜180 ℃反应12 h,冷却至室温后通过去离子水和乙醇洗涤,真空干燥获得样品灰黑色粉末,即为Sb2S3纳米材料。
(2)制备Sb2S3包覆导电聚合物纳米复合材料:
称取4 mg十二烷基硫酸钠(上海阿拉丁生化科技股份有限公司),80 mg Sb2S3纳米材料溶于40 mL的去离子水中,超声分散0.5 h,再轻轻搅拌1 h,之后加入42 ul的吡咯,磁力搅拌1 h,再缓慢滴加8 ml 0.1mol/L过硫酸铵,搅拌4 h,最后通过离心和洗涤收集产品,真空干燥获得黑色粉末;
(3)制备Sb2S3包覆导电聚合物-DA纳米材料
称取0.1 g的Sb2S3包覆导电聚合物纳米复合材料溶入10 ml水,加入40 mg DA(北京伊诺凯科技有限公司),在氮气条件下室温搅拌24 h,透析以除去未反应完全的DA,制得Sb2S3包覆导电聚合物-DA纳米材料;
(4)制备近红外光致快速自愈合导电水凝胶:
将0.8 wt%(相对于单体的质量)的Sb2S3包覆导电聚合物-DA纳米材料加入含有4 g15 wt% PVA(醇解度:87.0~89.0(mol/mol) 上海阿拉丁生化科技股份有限公司)、4 g N-羟乙基丙烯酰胺、0.07 g 2-羟基-2-甲基-1-苯基甲酮和1 g乙二醇的水溶液中,60 ℃搅拌15 min,之后加入0.048 g硼酸搅拌立即注入模具中,冷却至室温,在60 ℃下,通过365 nm紫外灯光照1.5 h,即得近红外光致快速自愈合导电水凝胶。
对本实施例1所制备的近红外光致快速自愈合导电水凝胶进行拉伸曲线、自愈水凝胶的拉伸应力~应变曲线、90°剥离实验和导电性能等表征发现,本实施例1提供的近红外光致快速自愈合导电水凝胶具有高力学性能、良好恢复性、导电性、抗冻保湿性能和自愈性能。具体说明如下:
图1是Sb2S3包覆导电聚合物-DA纳米材料的扫描电子显微镜图。从图1可知,制备的Sb2S3包覆导电聚合物-DA纳米材料形貌呈纳米棒状,直径160 nm左右,长度1.6 um左右。
图2是Sb2S3包覆导电聚合物-DA纳米材料(Sb2S3@PPy-DA)含量为0-1.2 wt%的自愈合导电水凝胶的拉伸应力应变曲线。从图2(a)和图2(b)可知,纯双网络水凝胶在540%的断裂应变下,断裂应力为0.89MPa。引入Sb2S3包覆导电聚合物-DA纳米材料后,水凝胶的断裂应力和断裂应变先增加后减小。Sb2S3包覆导电聚合物-DA纳米材料含量为0.4 wt%时,近红外光致快速自愈合导电水凝胶的断裂应力为1.29 MPa,断裂应变从545%增加到625%。根据拉伸应力-应变曲线,计算了不同Sb2S3包覆导电聚合物-DA纳米材料含量的近红外光致快速自愈合导电水凝胶的弹性模量和韧性(耗散能),当Sb2S3包覆导电聚合物-DA纳米材料含量为0.4 wt%时,其弹性模量为0.15 MPa,韧性为2.8 MJ/m3,表明水凝胶具有较好的机械性能,可以反复使用。
图3是实施例1制得的近红外光致快速自愈合导电水凝胶的自愈后的应力应变曲线。将近红外光致快速自愈合导电水凝胶切断成两段,由于Sb2S3包覆导电聚合物-DA纳米材料具有较好的光热转换效果,切断的水凝胶在NIR的触发下90 s内力学性能能恢复到原来100%。
图4是实施例1制得的近红外光致自愈合导电水凝胶的自愈试验照片图,将水凝胶接入串联有LED灯的电路后,LED灯被点亮,说明水凝胶具有良好的导电性,然后将条形水凝胶切断,整个电路发生短路LED灯泡熄灭,之后将切断的两块水凝胶贴合在一起通过NIR照射90 s,水凝胶发生自愈合行为,成为一个整体,重新点亮LED灯泡。
图5将实施例1制得的水凝胶与自制微控制器电路板连接并将其黏附在皮肤上,当身体发生动作时,其微小变化会引起导电水凝胶的形变,从而导致水凝胶内部网络结构发生改变,水凝胶电阻增大,当身体状态恢复平静时,其电阻值又相应恢复至原来数值,通过比较相对电阻变化,可以反复区分不同关节的所有弯曲运动,表明组装的传感器的可靠性。
实施例2
本实施例2提供一种近红外光致快速自愈合导电水凝胶的制备方法,基本与实施例1相同,与实施例1不同之处在于:步骤(4)中,采用4 g丙烯酰胺。
实施例2所制备的近红外光致快速自愈合导电水凝胶的断裂应力为1 MPa,断裂伸长率为650%,具有高力学性能、良好恢复性、抗冻保湿性和自愈性能。
实施例3
本实施例3提供一种近红外光致快速自愈合导电水凝胶的制备方法,基本与实施例1相同,与实施例1不同之处在于:实施例3中单体的用量为3.3 g。
实施例3制备的水凝胶断裂应力为0.7 MPa,断裂伸长率为600%,与实施例1相比,断裂应力有所下降。
实施例4
实施例4提供一种近红外光致快速自愈合导电水凝胶的制备方法,基本与实施例1相同,与实施例1不同之处在于:
实施例4中Sb2S3包覆导电聚合物-DA纳米材料的用量为0.1 wt%(相对于单体的质量)。
实施例4制备的水凝胶受损后,在近红外照射10 min后能恢复到原来的力学性能的70%。
实施例5
实施例5提供一种近红外光致快速自愈合导电水凝胶的制备方法,基本与实施例1相同,与实施例1不同之处在于:步骤(4)中未加入PVA。
实施例5的水凝胶断裂应力为0 .19 MPa,断裂伸长率为1880%,加入PVA能有效提高力学性能。
实施例6
实施例6提供一种近红外光致快速自愈合导电水凝胶的制备方法,基本与实施例1相同,与实施例1不同之处在于:步骤(4)中未加入有机溶剂。
实施例6的水凝胶不具备抗冻保湿的性能,加入有机溶剂能提高抗冻保湿的性能。
以上仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,步骤包括:
(1)以Sb2S3纳米材料和导电聚合物单体作为原料,通过氧化聚合制得Sb2S3包覆导电聚合物纳米复合材料;
(2)以Sb2S3包覆导电聚合物纳米复合材料作为原料,以多巴胺DA为改性剂,制备Sb2S3包覆导电聚合物-DA纳米材料;
(3)通过Sb2S3包覆导电聚合物-DA纳米材料与水凝胶基质复合制备得到近红外光致快速自愈合导电水凝胶。
2.如权利要求1所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,所述Sb2S3包覆导电聚合物纳米复合材料的制备步骤如下:
将Sb2S3纳米材料和十二烷基硫酸钠溶于去离子水中超声搅拌均匀,之后加入导电聚合物单体搅拌均匀,再加入过硫酸铵,最后通过离心和洗涤,制得Sb2S3包覆导电聚合物纳米复合材料。
3.如权利要求1-2任一项所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,所述导电聚合物单体选自苯胺、噻吩、吡咯中的任意一种。
4.如权利要求1所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,所述Sb2S3包覆导电聚合物-DA纳米材料的制备步骤如下:将Sb2S3包覆导电聚合物纳米复合材料和DA,在氮气条件下搅拌均匀,透析之后洗涤干燥得到Sb2S3包覆导电聚合物-DA纳米材料。
5.如权利要求1所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,步骤(3)中,以Sb2S3包覆导电聚合物-DA纳米材料作为填料,加入PVA、单体、引发剂、硼酸、有机溶剂和水,在紫外光照下引发聚合,得到近红外光致快速自愈合导电水凝胶。
6.如权利要求5所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,所述有机溶剂选自甘油、二甲基亚砜、乙二醇中的任意一种。
7.如权利要求5所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,所述单体为丙烯酰胺类或丙烯酸酯类单体中的任意一种。
8.如权利要求5所述的近红外光致快速自愈合导电水凝胶的制备方法,其特征在于,所述引发剂为2-羟基-4’-(2-羟乙基)-2-甲基丙酮、2-羟基-2-甲基-1-苯基甲酮、1-羟基-环己基-苯基甲酮中的任意一种。
9.一种近红外光致快速自愈合导电水凝胶,其特征在于,采用如权利要求1-8任一项所述的制备方法制得。
10.如权利要求9所述的近红外光致快速自愈合导电水凝胶在监测人体运动或生理信号上的应用。
CN202111624896.7A 2021-12-27 2021-12-27 一种近红外光致快速自愈合导电水凝胶及其制备方法和用途 Active CN114380952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111624896.7A CN114380952B (zh) 2021-12-27 2021-12-27 一种近红外光致快速自愈合导电水凝胶及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111624896.7A CN114380952B (zh) 2021-12-27 2021-12-27 一种近红外光致快速自愈合导电水凝胶及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN114380952A CN114380952A (zh) 2022-04-22
CN114380952B true CN114380952B (zh) 2023-04-11

Family

ID=81198240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111624896.7A Active CN114380952B (zh) 2021-12-27 2021-12-27 一种近红外光致快速自愈合导电水凝胶及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN114380952B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112120A1 (en) * 2011-02-17 2012-08-23 Nanyang Technological University Inorganic nanorods and a method of forming the same, and a photoelectrode and a photovoltaic device comprising the inorganic nanorods
CN106008799A (zh) * 2016-05-23 2016-10-12 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
CN107302057A (zh) * 2017-07-13 2017-10-27 福州大学 基于三硫化二锑致密薄膜的平面结构杂化太阳能电池
CN107469135A (zh) * 2017-08-25 2017-12-15 杭州亚慧生物科技有限公司 一种心脏封合凝胶及其制备方法
DE102016222943B3 (de) * 2016-11-21 2017-12-28 Leibniz-Institut Für Polymerforschung Dresden E.V. Metallisierte Oberflächen und Verfahren zu ihrer Herstellung
CN110247014A (zh) * 2019-04-28 2019-09-17 广东工业大学 一种新型高性能的电池负极材料及其制备方法和应用
CN111171342A (zh) * 2020-01-19 2020-05-19 湖南工业大学 一种高强韧自修复荧光双网络水凝胶及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012112120A1 (en) * 2011-02-17 2012-08-23 Nanyang Technological University Inorganic nanorods and a method of forming the same, and a photoelectrode and a photovoltaic device comprising the inorganic nanorods
CN106008799A (zh) * 2016-05-23 2016-10-12 西南交通大学 一种具有高力学性能及自愈合性的水凝胶电极的制备方法
DE102016222943B3 (de) * 2016-11-21 2017-12-28 Leibniz-Institut Für Polymerforschung Dresden E.V. Metallisierte Oberflächen und Verfahren zu ihrer Herstellung
CN107302057A (zh) * 2017-07-13 2017-10-27 福州大学 基于三硫化二锑致密薄膜的平面结构杂化太阳能电池
CN107469135A (zh) * 2017-08-25 2017-12-15 杭州亚慧生物科技有限公司 一种心脏封合凝胶及其制备方法
CN110247014A (zh) * 2019-04-28 2019-09-17 广东工业大学 一种新型高性能的电池负极材料及其制备方法和应用
CN111171342A (zh) * 2020-01-19 2020-05-19 湖南工业大学 一种高强韧自修复荧光双网络水凝胶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Zhezhe Wang,等.Low-cost TiO2/Sb-2(S,Se)(3) heterojunction thin film solar cell fabricated by sol-gel and chemical bath deposition.《Materials Science in Semiconductor Processing》.2017,第68卷第76-79页. *
尹德武,等.溶胶凝胶法制备掺杂锑( Sb) 的透明导电膜.《大连轻工业学院学报》.2002,第21卷(第4期),第238-241页. *

Also Published As

Publication number Publication date
CN114380952A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
Wang et al. Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors
Fan et al. PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor
CN113549175B (zh) 一种多功能导电离子液体凝胶及其制备方法与应用
Li et al. Self-healing liquid metal hydrogel for human–computer interaction and infrared camouflage
CN111253520A (zh) 自修复材料用可聚合低共熔溶剂、导电弹性体及制备方法
CN111040194A (zh) 导电水凝胶及其制备方法和应用
Zhang et al. Highly conductive and tough polyacrylamide/sodium alginate hydrogel with uniformly distributed polypyrrole nanospheres for wearable strain sensors
CN113999476B (zh) 一种双重刺激响应性导电复合水凝胶及其制备方法和应用
KR20150024490A (ko) 열에 의하여 치유 및 재성형이 가능한 전도성 하이드로겔 복합재료
CN109535449A (zh) 一种高强韧耐高低温壳聚糖基水凝胶的制备方法
CN109893681B (zh) 一种用于软骨修复/电子皮肤的导电水凝胶的制备方法
CN110595347A (zh) 一种低杨氏模量水凝胶柔性应变传感器
CN112679753A (zh) 一种超柔软的导电自愈合水凝胶及其制备方法和应用
Yin et al. Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties
Wang et al. Multifunctional acetylated distarch phosphate based conducting hydrogel with high stretchability, ultralow hysteresis and fast response for wearable strain sensors
CN113185715B (zh) 一种自愈合导电聚乙烯醇基水凝胶及其制备方法与应用
CN113861538A (zh) 一种自修复导电环氧化天然橡胶复合材料及其制备方法
Liu et al. Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
Zhang et al. Ultrastretchable and adhesive MXene-based hydrogel for high-performance strain sensing and self-powered application
CN114380952B (zh) 一种近红外光致快速自愈合导电水凝胶及其制备方法和用途
Kang et al. Multi-environmentally stable and underwater adhesive DNA ionogels enabling flexible strain sensor
CN111978611B (zh) 一种高强度导电自愈合的橡胶复合材料及其制备方法
Li et al. Assembled caseins as crosslinkers for tough, adhesive and self-healing hydrogels towards flexible sensors
CN114656657B (zh) 一种高导电性、自愈合纳米复合有机水凝胶的制备方法
CN113773524B (zh) 一种聚吡咯/聚乙烯醇复合凝胶及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant