CN114259571A - 一种智能温度响应性纳米马达的超组装制备方法 - Google Patents

一种智能温度响应性纳米马达的超组装制备方法 Download PDF

Info

Publication number
CN114259571A
CN114259571A CN202111623694.0A CN202111623694A CN114259571A CN 114259571 A CN114259571 A CN 114259571A CN 202111623694 A CN202111623694 A CN 202111623694A CN 114259571 A CN114259571 A CN 114259571A
Authority
CN
China
Prior art keywords
flask
shaped carbon
intelligent temperature
nano
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111623694.0A
Other languages
English (en)
Other versions
CN114259571B (zh
Inventor
孔彪
刘天亿
谢磊
曾洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202111623694.0A priority Critical patent/CN114259571B/zh
Publication of CN114259571A publication Critical patent/CN114259571A/zh
Application granted granted Critical
Publication of CN114259571B publication Critical patent/CN114259571B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种智能温度响应性纳米马达的超组装制备方法,包括以下步骤:步骤1,通过油酸钠和聚环氧乙烷‑聚环氧丙烷‑聚环氧乙烷三嵌段共聚物以及核糖处理得到烧瓶状碳纳米颗粒;步骤2,烧瓶状碳纳米颗粒进行煅烧;步骤3,烧瓶状碳纳米颗粒超声分散得到第一分散液;步骤4,四氯合铂酸钾溶解并老化,四氯合铂酸钾溶液中添加封端剂Pluronic F‑127和抗坏血酸水溶液,得到第一混合溶液;步骤5,第一混合溶液中加入第一分散液,处理后得到铂纳米颗粒/烧瓶状碳纳米颗粒;步骤6,脂肪酸与目标货物分子溶解于二甲基亚砜,得到第二混合溶液;步骤7,第二混合溶液中加入铂纳米颗粒/烧瓶状碳纳米颗粒得到第二分散液,处理得到智能温度响应性纳米马达。

Description

一种智能温度响应性纳米马达的超组装制备方法
技术领域
本发明属于纳米复合材料领域,具体涉及一种智能温度响应性纳米马达的超组装制备方法。
背景技术
近年来,瓶状纳米颗粒由于其独特的非对称形貌和空腔的存在在催化、储能、污染物分离、充当纳米反应器,控制释放,药物递送,以及用于封装各种类型的功能材料等领域有着广阔的应用前景。在这些应用中,将治疗剂递送到感兴趣的部位和控制释放是最受关注的应用。纳米瓶的高承载能力使得尽可能减少载体材料,从而降低其在体内的潜在毒性。开口允许轻松装载和释放基本上所有类型的治疗剂,无论其大小和性质。此外,开口可与智能材料相结合,以便根据外界刺激按需释放有效载荷,因此可以增强药物治疗效果同时降低靶外毒性。更重要的是,由于瓶装结构的非对称特性,其具有不对称催化的能力,因此具有催化分解燃料以自主运动的潜力。
最近,相变材料因其作为温度控制释放和相关应用的智能材料的独特能力而受到了广泛关注。固体相变材料中的有效载荷可在其熔化时迅速释放以响应温度的升高。在各种类型的固体相变材料中,天然脂肪酸作为细胞的关键结构成分和动物重要的饮食能量来源,由于其生物相容性、生物降解性、多样性、丰富性和低成本而特别具有吸引力。然而,由脂肪酸制成的纳米颗粒在水介质中的分散性通常很差。它们往往聚集成更大的颗粒,然后漂浮在水溶液的表面。尽管可以通过在纳米颗粒表面添加两亲性分子(如磷脂或泊洛沙姆)来解决分散性问题,但要防止脂肪酸在溶液中提前降解和载荷的泄露都非常有挑战。
另外,传统的药物递送策略主要依靠体液循环,由于缺乏选择性和靶向性,治疗效果较差。此外,药物直接暴露在生理环境中。因此,药物与健康组织之间的非特异性相互作用会对人体产生有害影响。
发明内容
本发明是为了解决上述问题而进行的,目的在于提供一种智能温度响应性纳米马达的超组装制备方法。
本发明提供了一种智能温度响应性纳米马达的超组装制备方法,具有这样的特征,包括以下步骤:步骤1,将油酸钠和聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物溶解在去离子水中,搅拌后形成纳米乳液,将核糖溶解于去离子水中,形成核糖溶液,将纳米乳液和核糖溶液在磁力搅拌下混合后进行水热处理得到混合物,对混合物进行离心、洗涤后得到产物,将产物进行冷冻干燥,得到烧瓶状碳纳米颗粒;
步骤2,将烧瓶状碳纳米颗粒在氮气保护下煅烧;
步骤3,将煅烧后的烧瓶状碳纳米颗粒超声分散在去离子水中,得到第一分散液;
步骤4,将四氯合铂酸钾溶解在去离子水中并进行老化,在搅拌下向老化后的四氯合铂酸钾溶液中依次添加封端剂Pluronic F-127以及抗坏血酸水溶液,混合得到第一混合溶液;
步骤5,向第一混合溶液中加入第一分散液,搅拌、超声后得到产品,对产品进行离心、洗涤、冻干后,得到铂纳米颗粒/烧瓶状碳纳米颗粒;
步骤6,在磁力搅拌下,将脂肪酸与目标货物分子溶解于二甲基亚砜中,得到第二混合溶液;
步骤7,向第二混合溶液中加入步骤6得到的铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌,得到第二分散液,将第二分散液置于真空烘箱中,在真空压力下进行灌注,排出铂纳米颗粒/烧瓶状碳纳米颗粒腔内留存的空气,然后离心悬浮液并丢弃上清液,并用二甲基亚砜洗涤多次除去多余的脂肪酸,然后向沉淀中加入去离子水,使空腔内的脂肪酸凝固,冷冻干燥后得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子,该铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤1中,纳米乳液和核糖溶液在磁力搅拌下混合后在160℃下水热处理8h-18h后得到混合物,混合物在8500rpm下离心5分钟再用去离子水洗涤3次后得到产物。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤1中,油酸钠与聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物的质量比为1:7-3:5,纳米乳液中的油酸钠的质量与核糖质量比为1:300-3:200。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤1中,烧瓶状碳纳米颗粒的平均尺寸为700nm-800nm。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤2中,烧瓶状碳纳米颗粒在800℃-900℃氮气保护下煅烧2h,升温速率为2.5℃/min-3.5℃/min。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤3中,第一分散液的浓度为1mg/mL,
步骤4中,四氯合铂酸钾溶解在去离子水中并老化至少24h,
步骤5中,进行搅拌的时间为20min,在工作频率为40kHz的超声波清洁器进行超声处理30min,产品在8500rpm下离心5分钟,再用去离子水洗涤3次后得到最终产物。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤4中,四氯合铂酸钾、Pluronic F-127以及抗坏血酸水溶液中的抗坏血酸的质量比为(1-2):(2-4):(2-4)。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤5中,铂纳米颗粒/烧瓶状碳纳米颗粒的平均尺寸为20nm-30nm。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤7中,第二混合溶液中加入铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌30min,得到第二分散液,第二分散液置于真空烘箱中,在1bar的真空压力下灌注1h。
在本发明提供的智能温度响应性纳米马达的超组装制备方法中,还可以具有这样的特征:其中,步骤6中,脂肪酸包括月桂酸和硬脂酸,月桂酸为与脂肪酸的质量比为1:1-4:1,硬脂酸与二甲基亚砜的质量体积比为(100mg-200mg):(1mL-2mL),目标货物分子为亚甲基蓝、罗丹明B、罗丹明6G、阿霉素或吲哚菁绿,
步骤7中,硬脂酸和目标货物分子的质量比为2:3-4:1,硬脂酸和铂纳米颗粒/烧状碳纳米颗粒的质量比为3:200-1:20。
发明的作用与效果
根据本发明所涉及的智能温度响应性纳米马达的超组装制备方法,在烧瓶状碳纳米颗粒的基础上生长铂金属纳米颗粒和脂肪酸结构,得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。铂纳米颗粒的赋予了烧瓶状碳纳米颗粒独特的催化能力,脂肪酸的存在则赋予了烧瓶状碳纳米颗粒装载货物的能力和温度响应性。本发明的智能温度响应性纳米马达具有分散性良好,负载量大,温度控制释放,可自主运动的优点。并且能够作为主动药物载体,使药物可以精确地传递到病灶内部,且不良反应最小,为高级药物传递开辟一条新的途径。
附图说明
图1是本发明的实施例1中的智能温度响应性纳米马达的TEM图;
图2是本发明的实施例1中的智能温度响应性纳米马达在不同浓度过氧化氢溶液中的运动速度变化图;
图3是本发明的实施例1中的智能温度响应性纳米马达在不同浓度过氧化氢溶液中的扩散系数变化图;
图4是本发明的实施例1中的智能温度响应性纳米马达在不同温度下载荷的释放曲线。
具体实施方式
为了使本发明实现的技术手段与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。
<实施例1>
本实施例的一种智能温度响应性纳米马达的超组装制备方法,包括以下步骤:
步骤1,将0.01g油酸钠和0.05g聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物溶解在20mL去离子水中,搅拌后形成纳米乳液,将2g核糖溶解于40mL去离子水中,形成核糖溶液,将纳米乳液和核糖溶液在磁力搅拌下混合后进行水热处理得到混合物,对混合物进行离心、洗涤后得到产物,将产物进行冷冻干燥,得到烧瓶状碳纳米颗粒。
步骤1中,纳米乳液和核糖溶液在磁力搅拌下混合后在160℃下水热处理12h后得到混合物,混合物在8500rpm下离心5分钟再用去离子水洗涤3次后得到产物。
步骤2,将烧瓶状碳纳米颗粒在氮气保护下煅烧。
步骤2中,烧瓶状碳纳米颗粒在850℃氮气保护下煅烧2h,升温速率为3℃/min。
步骤3,将煅烧后的烧瓶状碳纳米颗粒超声分散在去离子水中,得到第一分散液。
步骤3中,第一分散液的浓度为1mg/mL。
步骤4,将5mg四氯合铂酸钾溶解在去离子水中并进行老化,在搅拌下向老化后的四氯合铂酸钾溶液中依次添加10mg封端剂Pluronic F-127以及10mg抗坏血酸水溶液,混合得到第一混合溶液。
步骤4中,四氯合铂酸钾溶解在去离子水中并老化至少24h。
步骤5,向第一混合溶液中加入第一分散液,搅拌、超声后得到产品,对产品进行离心、洗涤、冻干后,得到铂纳米颗粒/烧瓶状碳纳米颗粒。
步骤5中,进行搅拌的时间为20min,在工作频率为40kHz的超声波清洁器进行超声处理30min后溶液颜色由灰色变为不透明的黑色,表明形成了铂纳米粒子。产品在8500rpm下离心5分钟,再用去离子水洗涤3次后得到最终产物。
步骤6,在磁力搅拌下,将脂肪酸包括200mg月桂酸、100mg硬脂酸与50mg亚甲基蓝溶解于1mL二甲基亚砜中,得到第二混合溶液。
步骤7,向第二混合溶液中加入3mg步骤6得到的铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌,得到第二分散液,将第二分散液置于真空烘箱中,在真空压力下进行灌注,排出铂纳米颗粒/烧瓶状碳纳米颗粒腔内留存的空气,然后离心悬浮液并丢弃上清液,并用二甲基亚砜洗涤多次除去多余的脂肪酸,然后向沉淀中加入去离子水,使空腔内的脂肪酸凝固,冷冻干燥后得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子,该铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。
步骤7中,第二混合溶液中加入铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌30min,得到第二分散液,第二分散液置于真空烘箱中,在1bar的真空压力下灌注1h。
本实施例中,取步骤7制备得到的智能温度响应性纳米马达分散于不同浓度过氧化氢溶液中,并室温下使用光学显微镜记录其运动轨迹并用ImageJ软件分析运动行为。
过氧化氢溶液浓度为0wt%,1wt%,5wt%,10wt%。
同时,将步骤7制备得到的智能温度响应性纳米马达分散于过氧化氢溶液中,并置于不同环境温度下,离心后取上清液用紫外分光光度计测量模型载荷释放量。
环境温度分别为为20℃和45℃。
图1是本发明的实施例1中的智能温度响应性纳米马达的TEM图。
如图1所示,本实施例的智能温度响应性纳米马达中,铂纳米颗粒均匀分布在烧瓶状碳纳米颗粒的内外表面,且其密度和粒径可调。
本发明以非对称烧瓶状碳纳米颗粒为模板超组装铂纳米颗粒和脂肪酸,保留直径为400nm-500nm的空腔,为运载货物提供足够的空间。脂肪酸占据纳米马达空腔体积的80%以上。
图2是本发明的实施例1中的智能温度响应性纳米马达在不同浓度过氧化氢溶液中的运动速度变化图。
如图2所示,本实施例的智能温度响应性纳米马达在过氧化氢溶液中表现出显著的运动增强性能,并且运动能力随过氧化氢溶度的升高而增强。
图3是本发明的实施例1中的智能温度响应性纳米马达在不同浓度过氧化氢溶液中的扩散系数变化图。
如图3所示,本实施例的智能温度响应性纳米马达的扩散系数随着过氧化氢溶液度的升高而升高,具有良好的分散性,结构稳定。
图4是本发明的实施例1中的智能温度响应性纳米马达在不同温度下载荷的释放曲线。
如图4所示,本实施例的智能温度响应性纳米马达在20℃时能够有效包封载荷,在45℃时能够有效释放载荷。这是由于空腔内的脂肪酸在环境温度低于40℃时为固态,有效包封载荷,而脂肪酸在环境温度高于40℃时融化,有效释放载荷。
综上,通过本发明的一种智能温度响应性纳米马达的超组装制备方法制备得到的智能温度响应性纳米马达,能够将脂肪酸轻松封装在烧瓶状碳纳米颗粒的空腔内,且烧瓶状碳纳米颗粒上有一个明确的开口,用于温度控制释放治疗药物。烧瓶状碳纳米颗粒的表面上还生长有铂金属纳米颗粒,用于催化过氧化氢的分解。在过氧化氢存在的条件下,该纳米颗粒可以催化过氧化氢分解产生氧气,氧气在烧瓶状碳纳米颗粒周围的不对称分布可以引发其自主运动。使得本发明制备的智能温度响应性纳米马达能够作为一种潜在的智能主动给药材料。
<实施例2>
本实施例的一种智能温度响应性纳米马达的超组装制备方法,包括以下步骤:
步骤1,将0.02g油酸钠和0.06g聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物溶解在20mL去离子水中,搅拌后形成纳米乳液,将2.5g核糖溶解于40mL去离子水中,形成核糖溶液,将纳米乳液和核糖溶液在磁力搅拌下混合后进行水热处理得到混合物,对混合物进行离心、洗涤后得到产物,将产物进行冷冻干燥,得到烧瓶状碳纳米颗粒。
步骤1中,纳米乳液和核糖溶液在磁力搅拌下混合后在160℃下水热处理14h后得到混合物,混合物在8500rpm下离心5分钟再用去离子水洗涤3次后得到产物。
步骤2,将烧瓶状碳纳米颗粒在氮气保护下煅烧。
步骤2中,烧瓶状碳纳米颗粒在850℃氮气保护下煅烧2h,升温速率为3℃/min。
步骤3,将煅烧后的烧瓶状碳纳米颗粒超声分散在去离子水中,得到第一分散液。
步骤3中,第一分散液的浓度为1mg/mL。
步骤4,将7.5mg四氯合铂酸钾溶解在去离子水中并进行老化,在搅拌下向老化后的四氯合铂酸钾溶液中依次添加15mg封端剂Pluronic F-127以及15mg抗坏血酸水溶液,混合得到第一混合溶液。
步骤4中,四氯合铂酸钾溶解在去离子水中并老化至少24h。
步骤5,向第一混合溶液中加入第一分散液,搅拌、超声后得到产品,对产品进行离心、洗涤、冻干后,得到铂纳米颗粒/烧瓶状碳纳米颗粒。
步骤5中,进行搅拌的时间为20min,在工作频率为40kHz的超声波清洁器进行超声处理30min,产品在8500rpm下离心5分钟,再用去离子水洗涤3次后得到最终产物。
步骤6,在磁力搅拌下,将脂肪酸包括300mg月桂酸、150mg硬脂酸与100mg亚甲基蓝溶解于1mL二甲基亚砜中,得到第二混合溶液。
步骤7,向第二混合溶液中加入4mg步骤6得到的铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌,得到第二分散液,将第二分散液置于真空烘箱中,在真空压力下进行灌注,排出铂纳米颗粒/烧瓶状碳纳米颗粒腔内留存的空气,然后离心悬浮液并丢弃上清液,并用二甲基亚砜洗涤多次除去多余的脂肪酸,然后向沉淀中加入去离子水,使空腔内的脂肪酸凝固,冷冻干燥后得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子,该铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。
步骤7中,第二混合溶液中加入铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌30min,得到第二分散液,第二分散液置于真空烘箱中,在1bar的真空压力下灌注1h。
<实施例3>
本实施例的一种智能温度响应性纳米马达的超组装制备方法,包括以下步骤:
步骤1,将0.03g油酸钠和0.07g聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物溶解在20mL去离子水中,搅拌后形成纳米乳液,将3g核糖溶解于40mL去离子水中,形成核糖溶液,将纳米乳液和核糖溶液在磁力搅拌下混合后进行水热处理得到混合物,对混合物进行离心、洗涤后得到产物,将产物进行冷冻干燥,得到烧瓶状碳纳米颗粒。
步骤1中,纳米乳液和核糖溶液在磁力搅拌下混合后在160℃下水热处理18h后得到混合物,混合物在8500rpm下离心5分钟再用去离子水洗涤3次后得到产物。
步骤2,将烧瓶状碳纳米颗粒在氮气保护下煅烧。
步骤2中,烧瓶状碳纳米颗粒在850℃氮气保护下煅烧2h,升温速率为3℃/min。
步骤3,将煅烧后的烧瓶状碳纳米颗粒超声分散在去离子水中,得到第一分散液。
步骤3中,第一分散液的浓度为1mg/mL。
步骤4,将10mg四氯合铂酸钾溶解在去离子水中并进行老化,在搅拌下向老化后的四氯合铂酸钾溶液中依次添加20mg封端剂Pluronic F-127以及20mg抗坏血酸水溶液,混合得到第一混合溶液。
步骤4中,四氯合铂酸钾溶解在去离子水中并老化至少24h。
步骤5,向第一混合溶液中加入第一分散液,搅拌、超声后得到产品,对产品进行离心、洗涤、冻干后,得到铂纳米颗粒/烧瓶状碳纳米颗粒。
步骤5中,进行搅拌的时间为20min,在工作频率为40kHz的超声波清洁器进行超声处理30min,产品在8500rpm下离心5分钟,再用去离子水洗涤3次后得到最终产物。
步骤6,在磁力搅拌下,将脂肪酸包括400mg月桂酸、200mg硬脂酸与150mg亚甲基蓝溶解于1mL二甲基亚砜中,得到第二混合溶液。
步骤7,向第二混合溶液中加入5mg步骤6得到的铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌,得到第二分散液,将第二分散液置于真空烘箱中,在真空压力下进行灌注,排出铂纳米颗粒/烧瓶状碳纳米颗粒腔内留存的空气,然后离心悬浮液并丢弃上清液,并用二甲基亚砜洗涤多次除去多余的脂肪酸,然后向沉淀中加入去离子水,使空腔内的脂肪酸凝固,冷冻干燥后得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子,该铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。
步骤7中,第二混合溶液中加入铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌30min,得到第二分散液,第二分散液置于真空烘箱中,在1bar的真空压力下灌注1h。
实施例的作用与效果
根据本实施例所涉及的智能温度响应性纳米马达的超组装制备方法,在烧瓶状碳纳米颗粒的基础上生长铂金属纳米颗粒和脂肪酸结构,得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。铂纳米颗粒的赋予了烧瓶状碳纳米颗粒独特的催化能力,脂肪酸的存在则赋予了烧瓶状碳纳米颗粒装载货物的能力和温度响应性。本实施例的智能温度响应性纳米马达具有分散性良好,负载量大,温度控制释放,可自主运动的优点。并且能够作为主动药物载体,使药物可以精确地传递到病灶内部,且不良反应最小,为高级药物传递开辟一条新的途径。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (10)

1.一种智能温度响应性纳米马达的超组装制备方法,其特征在于,包括以下步骤:
步骤1,将油酸钠和聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物溶解在去离子水中,搅拌后形成纳米乳液,将核糖溶解于去离子水中,形成核糖溶液,将所述纳米乳液和所述核糖溶液在磁力搅拌下混合后进行水热处理得到混合物,对所述混合物进行离心、洗涤后得到产物,将所述产物进行冷冻干燥,得到烧瓶状碳纳米颗粒;
步骤2,将所述烧瓶状碳纳米颗粒在氮气保护下煅烧;
步骤3,将煅烧后的所述烧瓶状碳纳米颗粒超声分散在去离子水中,得到第一分散液;
步骤4,将四氯合铂酸钾溶解在去离子水中并进行老化,在搅拌下向老化后的所述四氯合铂酸钾溶液中依次添加封端剂Pluronic F-127以及抗坏血酸水溶液,混合得到第一混合溶液;
步骤5,向所述第一混合溶液中加入所述第一分散液,搅拌、超声后得到产品,对所述产品进行离心、洗涤、冻干后,得到铂纳米颗粒/烧瓶状碳纳米颗粒;
步骤6,在磁力搅拌下,将脂肪酸与目标货物分子溶解于二甲基亚砜中,得到第二混合溶液;
步骤7,向所述第二混合溶液中加入步骤6得到的所述铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌,得到第二分散液,将所述第二分散液置于真空烘箱中,在真空压力下进行灌注,排出所述铂纳米颗粒/烧瓶状碳纳米颗粒腔内留存的空气,然后离心悬浮液并丢弃上清液,并用二甲基亚砜洗涤多次除去多余的所述脂肪酸,然后向沉淀中加入去离子水,使空腔内的所述脂肪酸凝固,冷冻干燥后得到铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子,该铂纳米颗粒/烧瓶状碳纳米颗粒/脂肪酸复合粒子作为智能温度响应性纳米马达。
2.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤1中,所述纳米乳液和所述核糖溶液在磁力搅拌下混合后在160℃下水热处理8h-18h后得到所述混合物,
所述混合物在8500rpm下离心5分钟再用去离子水洗涤3次后得到所述产物。
3.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤1中,所述油酸钠与所述聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物的质量比为1:7-3:5,
所述纳米乳液中的油酸钠的质量与所述核糖质量比为1:300-3:200。
4.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤1中,所述烧瓶状碳纳米颗粒的平均尺寸为700nm-800nm。
5.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤2中,所述烧瓶状碳纳米颗粒在800℃-900℃氮气保护下煅烧2h,升温速率为2.5℃/min-3.5℃/min。
6.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤3中,所述第一分散液的浓度为1mg/mL,
步骤4中,所述四氯合铂酸钾溶解在去离子水中并老化至少24h,
步骤5中,进行搅拌的时间为20min,在工作频率为40kHz的超声波清洁器进行超声处理30min,所述产品在8500rpm下离心5分钟,再用去离子水洗涤3次后得到所述最终产物。
7.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤4中,所述四氯合铂酸钾、所述Pluronic F-127以及所述抗坏血酸水溶液中的抗坏血酸的质量比为(1-2):(2-4):(2-4)。
8.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤5中,所述铂纳米颗粒/烧瓶状碳纳米颗粒的平均尺寸为20nm-30nm。
9.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤7中,所述第二混合溶液中加入所述铂纳米颗粒/烧瓶状碳纳米颗粒,进行搅拌30min,得到所述第二分散液,
所述第二分散液置于真空烘箱中,在1bar的真空压力下灌注1h。
10.根据权利要求1所述的智能温度响应性纳米马达的超组装制备方法,其特征在于:
其中,步骤6中,所述脂肪酸包括月桂酸和硬脂酸,所述月桂酸为与所述脂肪酸的质量比为1:1-4:1,所述硬脂酸与所述二甲基亚砜的质量体积比为(100mg-200mg):(1mL-2mL),所述目标货物分子为亚甲基蓝、罗丹明B、罗丹明6G、阿霉素或吲哚菁绿,
步骤7中,所述硬脂酸和所述目标货物分子的质量比为2:3-4:1,所述硬脂酸和所述铂纳米颗粒/烧状碳纳米颗粒的质量比为3:200-1:20。
CN202111623694.0A 2021-12-28 2021-12-28 一种智能温度响应性纳米马达的超组装制备方法 Active CN114259571B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111623694.0A CN114259571B (zh) 2021-12-28 2021-12-28 一种智能温度响应性纳米马达的超组装制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111623694.0A CN114259571B (zh) 2021-12-28 2021-12-28 一种智能温度响应性纳米马达的超组装制备方法

Publications (2)

Publication Number Publication Date
CN114259571A true CN114259571A (zh) 2022-04-01
CN114259571B CN114259571B (zh) 2022-11-29

Family

ID=80831064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111623694.0A Active CN114259571B (zh) 2021-12-28 2021-12-28 一种智能温度响应性纳米马达的超组装制备方法

Country Status (1)

Country Link
CN (1) CN114259571B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116814060A (zh) * 2023-04-17 2023-09-29 国科温州研究院(温州生物材料与工程研究所) 一种瓶状二氧化锰纳米马达及其制备方法
CN116869963A (zh) * 2023-08-23 2023-10-13 中科汇生(北京)医药科技有限公司 一种基于结构修饰的中空碳质纳米泵材料载体药物及其在制备降糖药物的应用
CN116942632A (zh) * 2023-08-23 2023-10-27 中科汇生(北京)医药科技有限公司 一种基于结构修饰的中空碳质纳米泵材料载体药物及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556935A (zh) * 2012-03-06 2012-07-11 哈尔滨工业大学 人造中空微纳米马达及其制备方法
RU2013102769A (ru) * 2013-04-10 2014-10-20 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Способ получения платинусодержащих катализаторов на наноуглеродных носителях
CN105776131A (zh) * 2016-04-21 2016-07-20 厦门大学 一种负载于石墨烯表面的银铂纳米复合材料及其制备方法
CN105800619A (zh) * 2016-03-19 2016-07-27 复旦大学 一种内部亲水外部疏水的氧化硅纳米瓶及其制备方法和应用
CN108524941A (zh) * 2018-04-08 2018-09-14 哈尔滨工业大学 一种酶驱动瓶状纳米马达及其制备方法
CN109546168A (zh) * 2018-11-22 2019-03-29 龙岩学院 一种碳材料负载的银铂纳米合金复合材料及其制备方法
US20190352183A1 (en) * 2017-01-26 2019-11-21 Chongqing Lummy Pharmaceutical Co.,LTD Nanocarbon-iron composite system as well as composition, preparation method and use thereof
US20190381490A1 (en) * 2016-11-07 2019-12-19 Hangzhou Tong-King Enviro-Tech Co., Ltd Composite photocatalysts, method for making the same and application thereof
WO2020096318A1 (ko) * 2018-11-05 2020-05-14 가톨릭대학교 산학협력단 pH 민감성 탄소 나노입자, 이의 제조방법 및 이를 이용한 약물전달
CN112691659A (zh) * 2019-10-22 2021-04-23 中国科学院青岛生物能源与过程研究所 一种制备介孔碳负载金属纳米粒子催化剂的方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102556935A (zh) * 2012-03-06 2012-07-11 哈尔滨工业大学 人造中空微纳米马达及其制备方法
RU2013102769A (ru) * 2013-04-10 2014-10-20 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Способ получения платинусодержащих катализаторов на наноуглеродных носителях
CN105800619A (zh) * 2016-03-19 2016-07-27 复旦大学 一种内部亲水外部疏水的氧化硅纳米瓶及其制备方法和应用
CN105776131A (zh) * 2016-04-21 2016-07-20 厦门大学 一种负载于石墨烯表面的银铂纳米复合材料及其制备方法
US20190381490A1 (en) * 2016-11-07 2019-12-19 Hangzhou Tong-King Enviro-Tech Co., Ltd Composite photocatalysts, method for making the same and application thereof
US20190352183A1 (en) * 2017-01-26 2019-11-21 Chongqing Lummy Pharmaceutical Co.,LTD Nanocarbon-iron composite system as well as composition, preparation method and use thereof
CN108524941A (zh) * 2018-04-08 2018-09-14 哈尔滨工业大学 一种酶驱动瓶状纳米马达及其制备方法
WO2020096318A1 (ko) * 2018-11-05 2020-05-14 가톨릭대학교 산학협력단 pH 민감성 탄소 나노입자, 이의 제조방법 및 이를 이용한 약물전달
CN109546168A (zh) * 2018-11-22 2019-03-29 龙岩学院 一种碳材料负载的银铂纳米合金复合材料及其制备方法
CN112691659A (zh) * 2019-10-22 2021-04-23 中国科学院青岛生物能源与过程研究所 一种制备介孔碳负载金属纳米粒子催化剂的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANTING ZHANG等: "Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery", 《INTERNATIONAL JOURNAL OF PHARMACEUTICS》 *
万密密等: "微纳米马达在药物递送的应用进展", 《科技导报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116814060A (zh) * 2023-04-17 2023-09-29 国科温州研究院(温州生物材料与工程研究所) 一种瓶状二氧化锰纳米马达及其制备方法
CN116814060B (zh) * 2023-04-17 2024-05-17 国科温州研究院(温州生物材料与工程研究所) 一种瓶状二氧化锰纳米马达及其制备方法
CN116869963A (zh) * 2023-08-23 2023-10-13 中科汇生(北京)医药科技有限公司 一种基于结构修饰的中空碳质纳米泵材料载体药物及其在制备降糖药物的应用
CN116942632A (zh) * 2023-08-23 2023-10-27 中科汇生(北京)医药科技有限公司 一种基于结构修饰的中空碳质纳米泵材料载体药物及其制备方法

Also Published As

Publication number Publication date
CN114259571B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN114259571B (zh) 一种智能温度响应性纳米马达的超组装制备方法
Parakhonskiy et al. Colloidal micro-and nano-particles as templates for polyelectrolyte multilayer capsules
Gedanken Preparation and properties of proteinaceous microspheres made sonochemically
CN104587489B (zh) 一种埃洛石纳米管药物缓释材料及其制备方法
CN109453136B (zh) 一种含富勒烯的抗氧化微胶囊及其制备方法
Hou et al. Formulation of robust organic–inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization
Piras et al. Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents
CN101461945A (zh) 海藻酸磁性材料的制备方法
Greene et al. Development of MnO2 hollow nanoparticles for potential drug delivery applications
CN109588721A (zh) 一种类胡萝卜素-蛋白微粒及其制备方法和应用
Safdar et al. Preparation, characterization and stability evaluation of ionic liquid blended chitosan tripolyphosphate microparticles
CN107961378A (zh) 一种磁性氧化石墨烯-壳聚糖/葡聚糖复合物的制备方法及应用
CN100467114C (zh) 高分子微纳米囊的制备方法
CN106256765B (zh) 一种磁性羧甲基壳聚糖纳米材料及其制备方法
Cheng et al. Chemical template-assisted synthesis of monodisperse rattle-type Fe3O4@ C hollow microspheres as drug carrier
CN103242519B (zh) 两亲性聚合物及其制备方法和应用
Qiao et al. Temperature‐Regulated Core Swelling and Asymmetric Shrinkage for Tunable Yolk@ Shell Polydopamine@ Mesoporous Silica Nanostructures
Song et al. Versatile synthesis of hollow PDA motors by interfacial protection
Jebors et al. Solid lipid nanoparticles (SLNs) derived from para-acyl-calix [9]-arene: preparation and stability
CN111228487B (zh) 含石墨化荧光碳点且具有yolk-shell结构的磁性粒子及其制备方法和应用
Voronova et al. Interactions in solvent–polycaprolactone–cellulose nanocrystals–polyvinyl pyrrolidone system: Experiment and molecular dynamics simulation
CN114314559B (zh) 一种智能温度响应性复合粒子的超组装制备方法
CN107970224A (zh) 一种脂质修饰磁性氧化石墨烯复合材料的制备方法及应用
CN107412193A (zh) 以麦羟硅钠石为乳化剂的Pickering乳液模板法制备的纳米杂化药物载体及其制法
CN107982242B (zh) 一种抗肿瘤治疗可降解有机无机复合纳米颗粒及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant