CN106256765B - 一种磁性羧甲基壳聚糖纳米材料及其制备方法 - Google Patents

一种磁性羧甲基壳聚糖纳米材料及其制备方法 Download PDF

Info

Publication number
CN106256765B
CN106256765B CN201610607642.7A CN201610607642A CN106256765B CN 106256765 B CN106256765 B CN 106256765B CN 201610607642 A CN201610607642 A CN 201610607642A CN 106256765 B CN106256765 B CN 106256765B
Authority
CN
China
Prior art keywords
carboxymethyl chitosan
preparation
chitosan
solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610607642.7A
Other languages
English (en)
Other versions
CN106256765A (zh
Inventor
王小慧
钟浩权
李孟阳
孙润仓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610607642.7A priority Critical patent/CN106256765B/zh
Publication of CN106256765A publication Critical patent/CN106256765A/zh
Application granted granted Critical
Publication of CN106256765B publication Critical patent/CN106256765B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种磁性羧甲基壳聚糖纳米材料及其制备方法,包括如下步骤:(1)将三价铁盐与二价铁盐混合,其中Fe3+与Fe2+的摩尔比为1.5~2:1,加水配成溶液;(2)将羧甲基壳聚糖溶于水配成溶液,与步骤(1)的溶液混合并搅拌均匀,将混合液在微波条件下反应,微波的功率为700~900W,温度设为70~85℃,在反应过程中逐滴加入氨水,使溶液的pH稳定在8~9,反应30min;(3)反应结束后冷却到室温,用磁铁分离固液两相,倒去上层液体,将颗粒用去离子水洗涤至中性,再用无水乙醇洗涤,最后将固体颗粒冷冻干燥,得到磁性羧甲基壳聚糖纳米材料。该制备方法工艺简便,产品粒径均一,且具备较好的超顺磁性。

Description

一种磁性羧甲基壳聚糖纳米材料及其制备方法
技术领域
本发明涉及一种用微波法快速制备水溶性的羧甲基壳聚糖包裹的纳米四氧化三铁材料的绿色方法,属于材料科学领域。
背景技术
纳米磁性材料作为一种新材料,由于其独特的物理化学性质,使其在物理化学等方面表现出与常规磁性材料不同的特殊性质。而且,当纳米磁性材料的尺寸小于一临界值时,则会表现出超顺磁性,即当外界施予磁场时,磁畴中的原子以及晶体的磁矩会按照同一方向排列;不存在磁场时,净磁矩为零,使磁性消失。在众多超顺磁性材料中,由于超顺磁性氧化铁粒子具有很好的安全性,血液循环时间长,组织特异性高,故其被广泛用于磁流体、靶向给药、传感器和磁共振造影剂等领域。但是,单纯的纳米四氧化三铁具有较高的表面能,极易团聚,进入人体后容易聚集,引起血栓,没有生物活性基团,这极大地限制了其在生物医药和磁共振造影剂方面的应用。利用亲水基团来修饰四氧化三铁是一种增加其水溶性的有效方法。
壳聚糖由于具有无毒副作用、可经微生物降解、良好的生物可容性和成膜性等优良特性,在轻工业、食品、医药卫生、环保、生物工程、农业等诸多领域得到了应用。壳聚糖的来源极其丰富,广泛存在于植物细胞壁、甲壳类动物和昆虫的外壳中,其中海洋生物的生成量在10亿吨以上。目前,利用壳聚糖包裹的四氧化三铁纳米粒子已被成功制备,但是,壳聚糖的水溶性也不好。
发明内容
本发明的目的在于提供一种温和快速地制备水溶的羧甲基壳聚糖/纳米四氧化三铁复合粒子的方法,采用高分子羧甲基壳聚糖为模板,在羧甲基壳聚糖原位生长纳米四氧化三铁粒子,利用羧甲基壳聚糖高分子和纳米颗粒之间的相互作用,有效的解决了一般化学制备方法粒径分布宽、易团聚的缺陷,获得了分散均匀,水溶性良好的纳米颗粒。本发明实现了在温和条件下快速制备水溶性羧甲基壳聚糖修饰的纳米氧化铁,该方法工艺简单,条件温和,所需设备少,可实现批量生产。
本发明目的通过以下技术方案实现:
一种磁性羧甲基壳聚糖纳米材料的制备方法,包括如下步骤:
(1)将三价铁盐与二价铁盐混合,其中Fe3+与Fe2+的摩尔比为1.5~2:1,加水配成溶液;
(2)将羧甲基壳聚糖溶于水配成溶液,与步骤(1)的溶液混合并搅拌均匀,将混合液在微波条件下反应,微波的功率为700~900W,温度设为70~85℃,在反应过程中逐滴加入氨水,使溶液的pH稳定在8~9,反应25~35min;
(3)反应结束后冷却到室温,用磁铁分离固液两相,倒去上层液体,将颗粒用去离子水洗涤至中性,再用无水乙醇洗涤,最后将固体颗粒冷冻干燥,得到磁性羧甲基壳聚糖纳米材料。
步骤(1)所述混合液中Fe3+的浓度为0.1~0.4mol/L,羧甲基壳聚糖的浓度为5~15g/L。
所述微波的条件为功率为800W,温度为80℃。
所述羧甲基壳聚糖的制备方法:
将纯化的壳聚糖粉末加入氢氧化钠溶液,搅拌3h,冷冻过夜,加水溶胀后缓慢加入异丙醇搅拌均匀,取氯乙酸分数次加入,加入后搅拌12h,滤出异丙醇,加水溶解,用稀醋酸调节pH为中性,依次用75%甲醇,无水乙醇洗涤,冷冻干燥得到羧甲基壳聚糖。
所述氯乙酸与壳聚糖粉末的质量比为1:(1~3),优选1:2。
所述纯化的壳聚糖粉末的制备方法为:将壳聚糖粉末加入醋酸水溶液中,在磁力搅拌下浸泡5h,然后将沉淀物固液分离,用去离子水洗涤2~3次,放入烘箱在温度为60~80℃下烘干,粉碎后即可。
所述三价铁盐是三氯化铁或硫酸铁的一种,所述二价铁盐是氯化亚铁和/或硫酸亚铁中的一种。
该方法包括以下工艺步骤:
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明在微波的条件下,在羧甲基壳聚糖中原位合成纳米四氧化三铁,从而使纳米四氧化三铁被羧甲基壳聚糖所包裹,所得到的羧甲基壳聚糖/四氧化三铁纳米粒子由于表面被羧甲基壳聚糖包裹,使得其表面带有大量亲水的羧基和氨基,有效增加了四氧化三铁的水溶性。
(2)同时,由于四氧化三铁被羧甲基壳聚糖包裹,增加了其表面电荷,有效地避免了自聚集与分布不均的问题,极大地提高了磁性纳米四氧化三铁在水中的稳定性。
(3)本发明羧甲基壳聚糖纳米材料尺寸较小,粒径均一,分散均匀,水溶性良好,在其表面修饰羧甲基壳聚糖,具有很好的生物相容性和可生物降解性,为实现纳米四氧化三铁在生物医药和生物成像等领域的应用提供了优良的载体。
(4)整个制备工艺清洁、条件温和、简单、无污染,适合大规模生产。
附图说明
图1为本发明制备的羧甲基壳聚糖(a)、羧甲基壳聚糖包裹纳米四氧化三铁(b)和四氧化三铁(c)粒子的红外(FT-IR)光谱。
图2(a)(b)分别为实施例3的纳米四氧化三铁粒子和实施例2的羧甲基壳聚糖包裹的纳米四氧化三铁粒子的X射线衍射(XRD)光谱。
图3(a)(b)分别为实施例3的纳米四氧化三铁粒子和实施例2的羧甲基壳聚糖包裹的纳米四氧化三铁粒子的粒径及粒径分布。
图4为本发明制备的羧甲基壳聚糖包裹纳米四氧化三铁粒子的透射电镜(TEM)。
具体实施方式
下面结合具体实施例对本发明作进一步具体详细描述,但本发明的实施方式不限于此,对于未特别注明的工艺参数,可参照常规技术进行。实施例1所用壳聚糖分子量为5万,脱乙酰度为90%。
实施例1
(1)纯化壳聚糖,将5g壳聚糖粉末加入1%的醋酸溶液中淹没,在磁力搅拌下浸泡5h,将溶液进行固液分离,用去离子水洗涤固体2次,再将块状壳聚糖放在70℃下烘干,粉碎后即为纯化的壳聚糖粉末。
(2)制备羧甲基壳聚糖,称取50g氢氧化钠固体,加100mL超纯水配成溶液,取2g纯化的壳聚糖粉末加入上述溶液,磁力搅拌3h,放入冰箱冷冻过夜,将溶胀后的样品转入200mL三口烧瓶,缓慢加入20mL异丙醇搅拌均匀,取1g氯乙酸分4次加入烧瓶,每次间隔20min,全部加入后机械搅拌12h,滤出异丙醇,加适量超纯水溶解,用稀醋酸调节pH为中性,依次用75%甲醇,无水乙醇洗涤2次,将样品冷冻干燥得到所需的羧甲基壳聚糖。
(3)制备羧甲基壳聚糖修饰的纳米四氧化三铁,采用微波法,在烧杯中加入5.14gFeCl3.6H2O和1.99g FeCl2.4H2O,加去离子水配成50mL溶液,取1g实施例1所制备的羧甲基壳聚糖溶于水配成50mL溶液并搅拌均匀,两者混合转入250mL的三口烧瓶,将盛混合液的烧瓶放在微波催化合成仪中,频率设为800W,温度设为80℃,在反应过程中逐滴加入25%的氨水,使溶液的pH稳定在8~9,反应30min。反应结束后将混合液冷却到室温,用磁铁分离固液两相,倒去上层液体,将颗粒用去离子水洗涤至中性,再用无水乙醇洗涤2~3次,最后将固体颗粒冷冻干燥2天,得到羧甲基壳聚糖包裹的氧化铁。
(4)羧甲基壳聚糖修饰的纳米四氧化三铁的结构表征
使用FT-IR、XRD、动态光散射(DLS)和TEM测定获得的羧甲基壳聚糖包覆型纳米四氧化三铁进行分析。
如图1所示,a、b分别为所制备的羧甲基壳聚糖和羧甲基壳聚糖纳米磁性材料。在羧甲基壳聚糖谱图中,1589cm-1和1406cm-1处为-COOH的不对称和对称的拉伸振动峰,2916cm-1处为C-H伸缩振动峰,1067cm-1处为C-O伸缩振动峰,3420cm-1处为O-H的伸缩振动。图b中为本发明所制的羧甲基壳聚糖包裹四氧化三铁颗粒,出现了羧甲基壳聚糖的位于2916cm-1处为C-H伸缩振动峰,1067cm-1处为C-O伸缩振动峰,且壳聚糖1589处的-COOH的不对称拉伸振动峰红移到了1626cm-1处,这可能是因为羧甲基壳聚糖通过-COOH与四氧化三铁结合,C=O不再受氢键影响而发生红移。587cm-1处的吸收峰是Fe-O的振动峰,证明产物主要是氧化铁。XRD测试结果分别见图2(a)衍射谱峰出现在2θ=30.24°、35.40°、43.48°、53.64°、57.04°、62.68°处,分别对应立方相Fe3O4的(220),(311),(400),(422),(511)和(440)晶面,这证明所制备的晶体主要为Fe3O4。如图3(a)所示,用羧甲基壳聚糖包裹的四氧化三铁纳米颗粒的粒径约为11nm,PDI=0.229。TEM照片如图4所示,羧甲基壳聚糖包覆纳米四氧化三铁呈现出的球形分布。
实施例2
将实施例1中的步骤(1)和(2)舍去,步骤(3)中不加入羧甲基壳聚糖,其余步骤与实施例1完全相同,制得被包裹的纳米四氧化三铁纳米材料。
如图1所示,在红外光谱中并没有出现羧甲基壳聚糖的特征峰,在587cm-1处的吸收峰是Fe-O的振动峰。XRD测试结果分别见图2(b),衍射谱峰出现在2θ=30.24°、35.40°、43.48°、53.64°、57.04°、62.68°处,分别对应立方相Fe3O4的(220),(311),(400),(422),(511)和(440)晶面,这证明所制备的晶体主要为Fe3O4。该纳米颗粒的粒径及粒径分布如图3(b)所示,粒径约为9nm,PDI=0.242。

Claims (8)

1.一种磁性羧甲基壳聚糖纳米材料的制备方法,其特征在于,包括如下步骤:
(1)将三价铁盐与二价铁盐混合,其中Fe3+与Fe2+的摩尔比为1.5~2:1,加水配成溶液;
(2)将羧甲基壳聚糖溶于水配成溶液,与步骤(1)的溶液混合并搅拌均匀,将混合液在微波条件下反应,微波的功率为700~900W,温度设为70~85℃,在反应过程中逐滴加入氨水,使溶液的pH稳定在8~9,反应25~35min;
(3)反应结束后冷却到室温,用磁铁分离固液两相,倒去上层液体,将颗粒用去离子水洗涤至中性,再用无水乙醇洗涤,最后将固体颗粒冷冻干燥,得到磁性羧甲基壳聚糖纳米材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述混合液中Fe3+的浓度为0.1~0.4mol/L,羧甲基壳聚糖的浓度为5~15g/L。
3.根据权利要求2所述的制备方法,其特征在于,所述微波的条件为功率为800W,温度为80℃。
4.根据权利要求1或2或3所述的制备方法,其特征在于,所述羧甲基壳聚糖的制备方法:
将纯化的壳聚糖粉末加入氢氧化钠溶液,搅拌3h,冷冻过夜,加水溶胀后缓慢加入异丙醇搅拌均匀,取氯乙酸分数次加入,加入后搅拌12h,滤出异丙醇,加水溶解,用稀醋酸调节pH为中性,依次用75%甲醇,无水乙醇洗涤,冷冻干燥得到羧甲基壳聚糖。
5.根据权利要求4所述的制备方法,其特征在于,所述氯乙酸与壳聚糖粉末的质量比为1:(1~3)。
6.根据权利要求5所述的制备方法,其特征在于,所述纯化的壳聚糖粉末的制备方法为:将壳聚糖粉末加入醋酸水溶液中,在磁力搅拌下浸泡5h,然后将沉淀物固液分离,用去离子水洗涤2~3次,放入烘箱在温度为60~80℃下烘干,粉碎后即可。
7.根据权利要求1或2或3所述的制备方法,其特征在于,所述三价铁盐是三氯化铁或硫酸铁的一种,所述二价铁盐是氯化亚铁和/或硫酸亚铁中的一种。
8.权利要求1~7任一项所述方法制备的磁性羧甲基壳聚糖纳米材料。
CN201610607642.7A 2016-07-28 2016-07-28 一种磁性羧甲基壳聚糖纳米材料及其制备方法 Active CN106256765B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610607642.7A CN106256765B (zh) 2016-07-28 2016-07-28 一种磁性羧甲基壳聚糖纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610607642.7A CN106256765B (zh) 2016-07-28 2016-07-28 一种磁性羧甲基壳聚糖纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106256765A CN106256765A (zh) 2016-12-28
CN106256765B true CN106256765B (zh) 2018-01-05

Family

ID=57714023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610607642.7A Active CN106256765B (zh) 2016-07-28 2016-07-28 一种磁性羧甲基壳聚糖纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106256765B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830096B (zh) * 2017-02-28 2018-04-24 东南大学 一种磁性纳米氧化铁的制备方法
CN108479715A (zh) * 2018-05-04 2018-09-04 苏州聚康新材料科技有限公司 一种凹凸棒/磁性纳米材料的制备方法
CN110152023B (zh) * 2019-04-25 2022-05-17 国家纳米科学中心 一种t1-t2双核磁共振成像造影剂及其制备方法和应用
CN112090406A (zh) * 2020-08-24 2020-12-18 兰州理工大学 一种聚乙烯亚胺改性壳聚糖磁性复合材料制备方法
CN114736434B (zh) * 2022-04-23 2023-11-17 浙江科赛新材料科技有限公司 一种具有金属可探测ptfe紧固件的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229901B (zh) * 2014-10-11 2016-05-11 中南林业科技大学 一种磁性四氧化三铁纳米粒子的制备方法
CN104801280A (zh) * 2015-04-01 2015-07-29 河海大学 一种负载壳聚糖磁性纳米颗粒生物质炭吸附剂的制备方法

Also Published As

Publication number Publication date
CN106256765A (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
CN106256765B (zh) 一种磁性羧甲基壳聚糖纳米材料及其制备方法
Cai et al. Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@ polypyrrole core-shell nanohybrids for cancer therapy
Soares et al. Thermal and magnetic properties of chitosan-iron oxide nanoparticles
Ghanbari et al. Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery
Hu et al. Heat treatment effects on Fe3O4 nanoparticles structure and magnetic properties prepared by carbothermal reduction
Hong et al. Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids
Zargar et al. Effects of hydrothermal process parameters on the physical, magnetic and thermal properties of Zn0. 3Fe2. 7O4 nanoparticles for magnetic hyperthermia applications
CN111909396B (zh) 一种天然高分子基超分子自愈合水凝胶及其制备方法与应用
Hsieh et al. Green fabrication of agar-conjugated Fe3O4 magnetic nanoparticles
Kalska-Szostko et al. Stability of Fe3O4 nanoparticles in various model solutions
JP5765520B2 (ja) 磁性粒子含有水分散体の製造方法
Nalle et al. Synthesis and characterization of magnetic Fe3O4 nanoparticles using oleic acid as stabilizing agent
CN111072070B (zh) 一种高饱和磁化超顺磁多孔铁氧体微球的制备方法
Hafiz et al. Magnetic nanoparticles draw solution for forward osmosis: Current status and future challenges in wastewater treatment
Lu et al. Sodium polyacrylate modified Fe3O4 magnetic microspheres formed by self-assembly of nanocrystals and their applications
Stojanović et al. The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly (l-lactide)–polyethyleneimine magnetic particles
Yuan et al. A novel approach to fabrication of superparamagnetite hollow silica/magnetic composite spheres
CN103570072A (zh) 一种四氧化三锰的制备方法及该方法制备得到的四氧化三锰
Yu et al. Decoration of CNTs’ surface by Fe3O4 nanoparticles: influence of ultrasonication time on the magnetic and structural properties
CN101125684A (zh) 一种γ-Fe2O3磁性纳米颗粒的制备方法
Yan et al. Hydrothermal synthesis of monodisperse Fe3O4 nanoparticles based on modulation of tartaric acid
Saputra et al. Highly monodisperse and colloidal stable of L-serine capped magnetite nanoparticles synthesized via sonochemistry assisted co-precipitation method
Lin et al. Large-scale production of Fe3O4 nanopowder using ferrous ions in a rotating packed bed with precipitation
CN113398896B (zh) 聚丙烯酸钠分散硫化亚铁插层层状双氢氧化物的制备方法
CN107010708A (zh) 一种海藻多糖硫酸酯包覆纳米零价铁及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant