CN114250454A - 一种金属氧化物电极用钛基体防护涂层及其制备方法 - Google Patents

一种金属氧化物电极用钛基体防护涂层及其制备方法 Download PDF

Info

Publication number
CN114250454A
CN114250454A CN202111388698.5A CN202111388698A CN114250454A CN 114250454 A CN114250454 A CN 114250454A CN 202111388698 A CN202111388698 A CN 202111388698A CN 114250454 A CN114250454 A CN 114250454A
Authority
CN
China
Prior art keywords
titanium
coating
metal oxide
ruthenium
protective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111388698.5A
Other languages
English (en)
Other versions
CN114250454B (zh
Inventor
蒋玉思
邵彩茹
陶进长
高远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangyin Ming'en New Materials Technology Co.,Ltd.
Original Assignee
Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences filed Critical Institute of Resource Utilization and Rare Earth Development of Guangdong Academy of Sciences
Priority to CN202111388698.5A priority Critical patent/CN114250454B/zh
Publication of CN114250454A publication Critical patent/CN114250454A/zh
Application granted granted Critical
Publication of CN114250454B publication Critical patent/CN114250454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Fuel Cell (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种金属氧化物电极用钛基体防护涂层,该防护涂层位于钛基体与金属氧化物活性涂层的中间,由内到外,依次由钛钌氧化物涂层和亚氧化钛膜层组成;按总质量百分比为100%计,所述的钛钌氧化物涂层组分含量为氧化钛:47%~71%;氧化钌为29%~53%;所述的亚氧化钛膜层成分为Ti4O7或Ti5O9或两者的混合物。本发明防护涂层对F、SCN等有害杂质起阻挡层的作用,解决了现有金属氧化物电极因耐F、SCN腐蚀性能不足造成金属氧化物电极的过早失效的问题。

Description

一种金属氧化物电极用钛基体防护涂层及其制备方法
技术领域:
本发明涉及一种金属氧化物电极用钛基体防护涂层及其制备方法。
背景技术:
金属氧化物电极是一种在钛基表面涂覆或者电沉积金属氧化物活性成分而制成的复合电极。金属氧化物电极一般分为贵金属氧化物电极和贱金属氧化物电极。贵金属氧化物电极,如氧化铱电极、氧化钌电极,具有析氧(氯)电催化活性高、化学稳定性等优点,在金属电镀、金属电解、铝箔化成和氯碱工业等领域具有较大应用价值;贱金属氧化物电极,如氧化锡电极、氧化铅电极,则对有机污染物具有较好的催化降解性能,在有机废水处理领域有良好的应用前景。因矿石的带入或添加剂的引入,所以电解液常存在F-、SCN-等有害杂质。在电解过程中,F-等杂质通过电极金属氧化物涂层的裂纹或孔隙渗入到钛基体表面,与钛材发生配合反应,生成水溶性的化合物,削弱了氧化物涂层与钛基的结合力,从而加速了氧化物涂层的脱落,造成金属氧化物电极的过早失效。因此,金属氧化物电极用低成本防护涂层制备研究具有十分重要的意义。
发明内容:
本发明的目的是提供一种金属氧化物电极用钛基体防护涂层及其制备方法,该防护涂层位于钛基体与金属氧化物活性涂层的中间,对F-、SCN-等有害杂质起阻挡层的作用,解决了现有金属氧化物电极因耐F-、SCN-腐蚀性能不足造成金属氧化物电极的过早失效的问题。
本发明是通过以下技术方案予以实现的:
一种金属氧化物电极用钛基体防护涂层,该防护涂层位于钛基体与金属氧化物活性涂层的中间,由内到外,依次由钛钌氧化物涂层和亚氧化钛膜层组成;按总质量百分比为100%计,所述的钛钌氧化物涂层组分含量为氧化钛:47%~71%;氧化钌为29%~53%;所述的亚氧化钛膜层成分为Ti4O7或Ti5O9或两者的混合物。
所述的金属氧化物为氧化钌、氧化铱、氧化锡中的一种。
所述的钛钌氧化物涂层是过渡层,起连接钛基体和亚氧化钛膜层的作用。因为钛钌氧化物涂层与钛基体的结合较亚氧化钛膜层牢固,所以可起到锚定亚氧化钛膜层的作用。
所述的亚氧化钛膜层是耐蚀膜层,为电解液中F-、SCN-等有害杂质的主要阻挡层,也是钛基体的主要防护层。因为亚氧化钛对F有较强的抵御能力,所以可起到有效保护钛基体的作用。
所述的钛钌氧化物涂层厚度为2~4μm。
所述的亚氧化钛膜层厚度为0.5~3μm。
本发明所述的金属氧化物电极用钛基体防护涂层制备方法,包括以下步骤:
①用质量分数为5%~10%的草酸溶液在85~95℃下蚀刻钛材2~3h,水洗后在110~130℃下烘干5~20min得到清洁的钛基体;
②将钛钌涂液均匀涂覆在清洁的钛基体上,在100~120℃下固化10~15min,然后420~460℃下热氧化分解10~15min,空冷;所述的钛钌涂液为钛钌前驱体的有机溶液,其含钛离子量为0.18~0.24mol/L(摩尔浓度),钌离子浓度为0.06~0.12mol/L(摩尔浓度),盐酸质量分数为0.1~0.5%,所用溶剂为正丁醇;
③重复步骤②1~5次,制得钛钌氧化物涂层;
④将钛涂液均匀涂覆在制得的钛钌氧化物涂层上,在100~120℃下固化10~15min,然后420~460℃下热氧化分解10~15min,空冷;重复1~7次,制得二氧化钛涂层;所述的钛涂液为钛前驱体的有机溶液,其含钛离子量为0.1~0.3mol/L,盐酸质量分数为0.1~0.5%,离子液体质量分数为0.05%~0.2%;所用溶剂为乙醇和正丁醇;
⑤在420~480℃下,空气气氛中,热处理0.5h,制得钛钌氧化物/二氧化钛复合涂层;
⑥在输出功率300~600W下,50%H2+50%Ar等离子体气氛中,还原5~30min,将二氧化钛涂层原位转化为亚氧化钛膜层;
⑦在450~500℃下,氩气气氛中,热处理0.5~1h,最终制得金属氧化物电极用钛基体防护涂层。
所述的钛前驱体是钛金属源物质,为钛酸丁酯、三氯化钛、二氯二丁醇钛中的一种。
所述的钌前驱体是钌金属源物质,为β型三氯化钌。
所述的盐酸为钛水解抑制剂,用以保持涂液均匀、澄清。
所述的离子液体为1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-丁基-3-甲基咪唑甲基磺酸盐中的一种,其作用是改善涂层的湿润性能。
涂覆时,涂液浓度大,涂覆次数少;浓度小,涂覆次数多,操作中灵活使用。涂覆可以采用刷涂、浸涂方式。选用刷涂时,用力适度,横向和纵向刷涂交替进行,以保证涂层的均匀性。采用浸涂时,提拉速度为1~30μm/s。考虑到操作简单和制备效率,涂覆优选浸涂方式。
所述的固化是在热力的作用下去除有机溶剂,将前驱物附着在钛基体或涂层上。当温度高于120℃时,溶剂挥发过快,会影响涂层的结合力,一般选择100~120℃进行干燥固化。
热氧化分解是将金属前驱体转变为金属氧化物。当温度低于420℃时,金属前驱体氧化分解不彻底。当高于460℃时,钛材会发生明显氧化,因此理想的热分解温度为420~460℃。热处理是消除涂层中的内应力,提高涂层的稳定性。温度高于520℃时,钛材会发生严重氧化,因此理想的热处理温度为420~480℃。
氢等离子体还原是将二氧化钛涂层的表层转变为亚氧化钛膜层。所用还原剂为活性氢粒子,如原子态(H)、离子态(H+、H2 +、H3 +)和激发态(H*、H2*)等物种。为方便实施,优选射流型氢等离子体还原。还原时间一般取决于亚氧化钛膜的物相,要制得Ti4O7则还原时间长些。
所述的热处理是在氩气气氛中进行,其目的是防止亚氧化钛膜层发生氧化,提高复合涂层间的结合力,改善防护涂层的性能。
本发明的有益效果如下:本发明防护涂层位于钛基体与金属氧化物活性涂层的中间,对F-、SCN-等有害杂质起阻挡层的作用,解决了现有金属氧化物电极因耐F-、SCN-腐蚀性能不足造成金属氧化物电极的过早失效的问题。
附图说明:
图1是金属氧化物电极用钛基体防护涂层的结构示意图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
选用纯钛片TA2为基体,用10%(质量分数)的草酸90℃下蚀刻3h,水洗后120℃下干燥,得到清洁的钛基体。
按钛摩尔浓度0.21mol/L、钌摩尔浓度0.09mol/L、盐酸质量浓度0.1%,将钛酸丁酯、β-三氯化钌、盐酸溶于正丁醇溶剂中,得到钛钌有机涂液。
用软毛刷均匀涂刷在清洁的钛基体上,接着在110℃下干燥固化10min,然后在430℃下热氧化12min,空冷,反复进行4次,制得钛钌氧化物涂层。
按钛摩尔浓度0.2mol/L、盐酸浓度0.1wt%、离子液体浓度0.1wt%,将钛酸丁酯、盐酸和1-丁基-3-甲基咪唑氯盐溶于体积比为2:1的乙醇-正丁醇混合溶剂中,得到钛有机涂液。
用软毛刷均匀涂刷在制得的钛钌氧化物涂层上,接着在120℃下干燥固化10min,然后在440℃下热氧化10min,空冷,反复进行4次,制得二氧化钛涂层。
在460℃下,空气气氛中,热处理0.5h,制得钛钌氧化物/二氧化钛复合涂层。
将复合氧化物涂层置于氢等离子体射流中,反应气氛为50%H2+50%Ar,输出功率控制300W,还原时间为15min。在450℃下,氩气气氛中,对上述氧化物涂层进行热处理0.5h,最终制得金属氧化物电极用钛基体防护涂层。
借助X射线衍射仪分析,可知该防护涂层为Ti/TiO2-RuO2/Ti4O7
从热力学角度分析,材料的开路电位越正,材料的耐腐蚀性越强。为了便于对照,制备了清洁的纯钛试片,并在常温下分别测试了本发明金属氧化物电极用钛基体防护涂层、纯钛试片等样品在含氟20mg/L的0.5mol/L硫酸溶液中的开路电位。测试结果为:本发明钛表面金属氧化物电极用钛基体防护涂层开路电位为0.72V(Vs SCE),纯钛试片开路电位为-0.21V(Vs SCE)。由此可见,本发明金属氧化物电极用钛基体防护涂层显著提高了钛基体的耐氟腐蚀性能。
实施例2
选用纯钛片TA2为基体,用8%(质量分数)的草酸95℃下蚀刻3h,水洗后125℃下干燥,得到清洁的钛基体。
按钛摩尔浓度0.18mol/L、钌摩尔浓度0.12mol/L、盐酸质量浓度0.1%,将钛酸丁酯、β-三氯化钌溶于正丁醇溶剂中,得到钛钌有机涂液。
用软毛刷均匀涂刷在清洁的钛基体上,接着在120℃下干燥固化15min,然后在440℃下热氧化10min,空冷,反复进行3次,制得钛钌氧化物涂层。
按钛摩尔浓度0.1mol/L、盐酸浓度0.1wt%、离子液体浓度0.1wt%,将三氯化钛、盐酸和1-丁基-3-甲基咪唑溴盐溶于体积比为1:1的乙醇-正丁醇混合溶剂中,得到钛有机涂液。
用软毛刷均匀涂刷在制得的钛钌氧化物涂层上,接着在120℃下干燥固化8min,然后在450℃下热氧化10min,空冷,反复进行5次,制得二氧化钛涂层。
在470℃下,空气气氛中,热处理0.5h,制得钛钌氧化物/二氧化钛复合涂层。
将复合氧化物涂层置于氢等离子体射流中,反应气氛为50%H2+50%Ar,输出功率控制350W,还原时间为10min。在480℃下,氩气气氛中,对上述氧化物涂层进行热处理0.5h,最终制得金属氧化物电极用钛基体防护涂层。
为了便于对照,制备了清洁的纯钛片,并在常温下分别测试了本发明金属氧化物电极用钛基体防护涂层、纯钛试片等样品在含氟20mg/L的0.5mol/L硫酸溶液中的开路电位。测试结果为:本发明金属氧化物电极用钛基体防护涂层开路电位为0.75V(Vs SCE),纯钛试片开路电位为-0.2V(Vs SCE)。由此可见,本发明金属氧化物电极用钛基体防护涂层显著改善了钛基体的耐氟腐蚀性能。
实施例3
选用纯钛片TA2为基体,用10%(质量分数)的草酸90℃下蚀刻3h,水洗后120℃下干燥,得到清洁的钛基体。
按钛摩尔浓度0.24mol/L、钌摩尔浓度0.06mol/L、盐酸质量浓度0.4%,将钛酸丁酯、β-三氯化钌溶于正丁醇溶剂中,得到钛钌有机涂液。
用软毛刷均匀涂刷在清洁的钛基体上,接着在110℃下干燥固化10min,然后在430℃下热氧化10min,空冷,反复进行4次,制得钛钌氧化物涂层。
按钛摩尔浓度0.3mol/L、盐酸浓度0.2wt%、离子液体浓度0.15wt%,将钛酸丁酯、盐酸和1-丁基-3-甲基咪唑氯盐溶于体积比为2:1的乙醇-正丁醇混合溶剂中,得到钛有机涂液。
浸涂时,以10μm/s的提拉速度涂覆,接着在110℃下干燥固化15min,然后在430℃下热氧化10min,空冷,反复进行6次,制得二氧化钛涂层。
在480℃下,空气气氛中,热处理0.5h,制得钛钌氧化物/二氧化钛复合涂层。
将复合氧化物涂层置于氢等离子体射流中,反应气氛为50%H2+50%Ar,输出功率控制300W,还原时间为15min。在470℃下,氩气气氛中,对上述氧化物涂层进行热处理0.5h,最终制得金属氧化物电极用钛基体防护涂层。
为了便于对照,制备了清洁的纯钛片,并在常温下分别测试了本发明金属氧化物电极用钛基体防护涂层、纯钛试片等样品在含硫氰酸根20mg/L的0.5mol/L硫酸溶液中的开路电位。测试结果为:本发明金属氧化物电极用钛基体防护涂层开路电位为0.64V(VsSCE),纯钛试片开路电位为0.15V(Vs SCE)。由此可见,本发明金属氧化物电极用钛基体防护涂层显著提高了钛基体的耐腐蚀性能。
实施例4
选用纯钛片TA2为基体,用10%(质量分数)的草酸90℃下蚀刻2.5h,水洗后130℃下干燥,得到清洁的钛基体。
按钛摩尔浓度0.21mol/L、钌摩尔浓度0.09mol/L、盐酸质量浓度0.1%,将钛酸丁酯、β-三氯化钌溶于正丁醇溶剂中,得到钛钌有机涂液。
浸涂时,以10μm/s的提拉速度涂覆,接着在110℃下干燥固化15min,然后在430℃下热氧化10min,空冷,反复进行4次,制得钛钌氧化物涂层。
按钛摩尔浓度0.25mol/L、盐酸浓度0.15wt%、离子液体浓度0.1wt%,将二氯二丁醇钛、盐酸和1-丁基-3-甲基咪唑氯盐溶于体积比为1:2的乙醇-正丁醇混合溶剂中,得到钛有机涂液。
用软毛刷均匀涂刷在制得的钛钌氧化物涂层上,接着在115℃下干燥固化10min,然后在450℃下热氧化10min,空冷,反复进行4次,最后480℃下、空气气氛中,热处理1h,制得二氧化钛涂层。
在460℃下,空气气氛中,热处理0.5h,制得钛钌氧化物/二氧化钛复合涂层。
将复合氧化物涂层置于氢等离子体射流中,反应气氛为50%H2+50%Ar,输出功率控制400W,还原时间为5min。在450℃下,氩气气氛中,对上述氧化物涂层进行热处理0.5h,最终制得金属氧化物电极用钛基体防护涂层。借助X射线衍射仪分析,可知该防护涂层为Ti/TiO2-RuO2//Ti5O9
为了便于对照,制备了清洁的纯钛片,并在常温下分别测试了本发明金属氧化物电极用钛基体防护涂层、纯钛试片等样品在含氟20mg/L的0.5mol/L硫酸溶液中的开路电位。测试结果为:本发明金属氧化物电极用钛基体防护涂层开路电位为0.65V(Vs SCE),纯钛试片开路电位为-0.21V(Vs SCE)。显而易见,本发明金属氧化物电极用钛基体防护涂层显著提高了钛基体的耐氟腐蚀性能。

Claims (10)

1.一种金属氧化物电极用钛基体防护涂层,其特征在于,该防护涂层位于钛基体与金属氧化物活性涂层的中间,由内到外,依次由钛钌氧化物涂层和亚氧化钛膜层组成;按总质量百分比为100%计,所述的钛钌氧化物涂层组分含量为氧化钛:47%~71%;氧化钌为29%~53%;所述的亚氧化钛膜层成分为Ti4O7或Ti5O9或两者的混合物。
2.根据权利要求1所述的金属氧化物电极用钛基体防护涂层,其特征在于,所述的金属氧化物为氧化钌、氧化铱、氧化锡中的一种。
3.根据权利要求1所述的金属氧化物电极用钛基体防护涂层,其特征在于,所述的钛钌氧化物涂层厚度为2~4μm。
4.根据权利要求1所述的金属氧化物电极用钛基体防护涂层,其特征在于,所述的亚氧化钛膜层厚度为0.5~3μm。
5.权利要求1所述的金属氧化物电极用钛基体防护涂层制备方法,其特征在于,包括以下步骤:
①用质量分数为5%~10%的草酸溶液在85~95℃下蚀刻钛材2~3h,水洗后在110~130℃下烘干5~20min得到清洁的钛基体;
②将钛钌涂液均匀涂覆在清洁的钛基体上,在100~120℃下固化10~15min,然后420~460℃下热氧化分解10~15min,空冷;所述的钛钌涂液为钛钌前驱体的有机溶液,其含钛离子0.18~0.24mol/L,钌离子0.06~0.12mol/L,盐酸质量分数为0.1~0.5%,所用溶剂为正丁醇;
③重复步骤②1~5次,制得钛钌氧化物涂层;
④将钛涂液均匀涂覆在制得的钛钌氧化物涂层上,在100~120℃下固化10~15min,然后420~460℃下热氧化分解10~15min,空冷;重复1~7次,制得二氧化钛涂层;所述的钛涂液为钛前驱体的有机溶液,其含钛离子0.1~0.3mol/L,盐酸质量分数为0.1~0.5%,离子液体质量分数为0.05%~0.2%;所用溶剂为乙醇和正丁醇;
⑤在420~480℃下,空气气氛中,热处理0.5h,制得钛钌氧化物/二氧化钛复合涂层;
⑥在输出功率300~600W下,50%H2和50%Ar等离子体气氛中,还原5~30min,将二氧化钛涂层原位转化为亚氧化钛膜层;
⑦在450~500℃下,氩气气氛中,热处理0.5~1h,最终制得金属氧化物电极用钛基体防护涂层。
6.根据权利要求5所述的金属氧化物电极用钛基体防护涂层制备方法,其特征在于,所述的钛前驱体是钛金属源物质,为钛酸丁酯、三氯化钛、二氯二丁醇钛中的一种。
7.根据权利要求5所述的金属氧化物电极用钛基体防护涂层制备方法,其特征在于,所述的钌前驱体为β型三氯化钌。
8.根据权利要求5所述的金属氧化物电极用钛基体防护涂层制备方法,其特征在于,所述的离子液体为1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-丁基-3-甲基咪唑甲基磺酸盐中的一种。
9.根据权利要求5所述的金属氧化物电极用钛基体防护涂层制备方法,其特征在于,涂覆采用刷涂、浸涂方式。
10.根据权利要求9所述的金属氧化物电极用钛基体防护涂层制备方法,其特征在于,选用刷涂时,横向和纵向刷涂交替进行;采用浸涂时,提拉速度为1~30μm/s。
CN202111388698.5A 2021-11-22 2021-11-22 一种金属氧化物电极用钛基体防护涂层及其制备方法 Active CN114250454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111388698.5A CN114250454B (zh) 2021-11-22 2021-11-22 一种金属氧化物电极用钛基体防护涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111388698.5A CN114250454B (zh) 2021-11-22 2021-11-22 一种金属氧化物电极用钛基体防护涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114250454A true CN114250454A (zh) 2022-03-29
CN114250454B CN114250454B (zh) 2023-08-04

Family

ID=80791035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111388698.5A Active CN114250454B (zh) 2021-11-22 2021-11-22 一种金属氧化物电极用钛基体防护涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114250454B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286108A (zh) * 2022-08-31 2022-11-04 西安理工大学 同步实现污泥减量与碳源回收的电化学处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348510A (zh) * 1999-08-20 2002-05-08 阿托菲纳公司 可用于电解水溶液的阴极
US20170204526A1 (en) * 2016-01-19 2017-07-20 Kabushiki Kaisha Toshiba Electrode, electrochemical cell, electrochemical apparatus and method for manufacturing electrode
CN111003759A (zh) * 2019-12-24 2020-04-14 广东省稀有金属研究所 含亚氧化钛中间层的涂层电极及其制备方法与应用以及电化学水处理设备
CN112340817A (zh) * 2020-11-09 2021-02-09 南通科技职业学院 一种纳米氧化亚钛催化电极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348510A (zh) * 1999-08-20 2002-05-08 阿托菲纳公司 可用于电解水溶液的阴极
US20170204526A1 (en) * 2016-01-19 2017-07-20 Kabushiki Kaisha Toshiba Electrode, electrochemical cell, electrochemical apparatus and method for manufacturing electrode
CN111003759A (zh) * 2019-12-24 2020-04-14 广东省稀有金属研究所 含亚氧化钛中间层的涂层电极及其制备方法与应用以及电化学水处理设备
CN112340817A (zh) * 2020-11-09 2021-02-09 南通科技职业学院 一种纳米氧化亚钛催化电极材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286108A (zh) * 2022-08-31 2022-11-04 西安理工大学 同步实现污泥减量与碳源回收的电化学处理方法
CN115286108B (zh) * 2022-08-31 2024-01-19 西安理工大学 同步实现污泥减量与碳源回收的电化学处理方法

Also Published As

Publication number Publication date
CN114250454B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN104846397B (zh) 一种用于电化学还原co2制甲酸的电极及其制备方法和应用
CN102174704B (zh) 一种含钽中间层金属氧化物电极的制备方法
CN105621541A (zh) 一种用于废水处理的过渡金属掺杂二氧化铅电极及其制备方法和应用
CN107557789B (zh) 一种光阳极材料及其制备与应用
CN104492426A (zh) 一种改性二氧化锰催化剂及改性二氧化锰催化剂电极和制备方法
CA2907805A1 (en) Coated composite anodes
CN114250454B (zh) 一种金属氧化物电极用钛基体防护涂层及其制备方法
CN109518221A (zh) 一种表面富含二氧化铱的梯度分布钛阳极及其制备方法
CN102477565A (zh) 高催化活性Ti基电极:Ti/nanoTiO2-RE2O3;Ti/nanoTiO2-ZrO2制备
CN104393099B (zh) 一种四氟钇钠碘氧铋复合太阳能薄膜的制备方法
WO2012000440A1 (zh) 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法
CN107937920A (zh) 用于海洋平台阴极保护修复用氧化物阳极材料及制备工艺
CN102864465B (zh) 一种高活性Ti/Pr2O3-PbO2修饰电极的制备方法
CN114540824B (zh) 一种利用废酸溶液再生钛阳极板的方法
CN107723743B (zh) 一种三元复合氧化物阳极的制备方法
CN114272920B (zh) 一种有机污染物降解用复合氧化物涂层电极及其制备方法
CN111962131B (zh) 一种析氧电极用复合氧化物催化涂层及其制备方法
CN108677209A (zh) 一种用于固体聚合物水电解器的有序膜电极及其制备方法
CN101736362A (zh) 一种Pt改性复合催化剂及其制备方法
Hosseini et al. Evaluation of the Electrochemical Activity and Stability of Ti/IrO 2–Ta 2 O 5 Electrode as Anode in the Cathodic Protection Systems via Impressed Current
WO2021138961A1 (zh) 一种新型七氧化四钛纳米管改性二氧化铅电极制备技术
CN110257814A (zh) 一种基于机械球磨涂覆技术的金属氧化物阳极制备方法
Chang et al. Effects of Zr content on electrochemical performance of Ti/Sn− Ru− Co− ZrO x electrodes
CN114180539B (zh) 纳米多孔氮化钒材料及其制备方法和储能器件
CN108330512A (zh) 一种铱钌锆三元复合氧化物惰性阳极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240110

Address after: 214434 West Floor, Building B, Power Core, Chuangzhi Industrial Park, No. 201 Jinshan Road, High tech Zone, Jiangyin City, Wuxi City, Jiangsu Province

Patentee after: Jiangyin Yingke New Material Technology Co.,Ltd.

Address before: 510651 No. 363, Changxin Road, Guangzhou, Guangdong, Tianhe District

Patentee before: Institute of resource utilization and rare earth development, Guangdong Academy of Sciences

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: 214434, 1st Floor, Building A, Power Core, Chuangzhi Industrial Park, No. 201 Jinshan Road, High tech Zone, Jiangyin City, Wuxi City, Jiangsu Province

Patentee after: Jiangyin Ming'en New Materials Technology Co.,Ltd.

Country or region after: China

Address before: 214434 West Floor, Building B, Power Core, Chuangzhi Industrial Park, No. 201 Jinshan Road, High tech Zone, Jiangyin City, Wuxi City, Jiangsu Province

Patentee before: Jiangyin Yingke New Material Technology Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address