WO2012000440A1 - 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法 - Google Patents

表面覆盖纳米铑铱涂层的钛电极材料及其制备方法 Download PDF

Info

Publication number
WO2012000440A1
WO2012000440A1 PCT/CN2011/076603 CN2011076603W WO2012000440A1 WO 2012000440 A1 WO2012000440 A1 WO 2012000440A1 CN 2011076603 W CN2011076603 W CN 2011076603W WO 2012000440 A1 WO2012000440 A1 WO 2012000440A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
coated
electrode material
ruthenium
nano
Prior art date
Application number
PCT/CN2011/076603
Other languages
English (en)
French (fr)
Inventor
张世文
Original Assignee
波鹰(厦门)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 波鹰(厦门)科技有限公司 filed Critical 波鹰(厦门)科技有限公司
Publication of WO2012000440A1 publication Critical patent/WO2012000440A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys

Definitions

  • the present invention relates to an electrochemical electrode material, and more particularly to a titanium electrode material having a surface covering nano-antimony coating and a method of manufacturing the same.
  • electrochemistry is more and more extensive, especially in the electrochemical industry (such as chlor-alkali industry), metallurgical industry (such as electrolytic aluminum, electrolytic copper, electrolytic manganese, etc.), environmental protection industry, etc. have been widely used.
  • electrochemistry has been developed very rapidly in wastewater treatment.
  • graphite electrode materials and lead alloy electrode materials are commonly used in the electrochemical industry.
  • iron electrodes, etc. which have the advantages of low cost, low current density, short service life, and large amount of electrode consumption.
  • the electrode composition remains in the product, increasing the post-treatment process and increasing the cost.
  • a variety of new electrode materials have recently been developed, but most of them are chemical battery electrodes and capacitor electrodes, and there are not many electrode materials used in the field of environmental protection.
  • Ciobium discloses a titanium electrode plate comprising a substrate, and a coating of tantalum or niobium is also provided on the surface of the substrate. It has good electrical conductivity and corrosion resistance.
  • the object of the present invention is to provide a titanium nano-coated coating with a large current density, a small overpotential and a long service life. Electrode material and preparation method thereof.
  • the titanium electrode material coated with the nano-ruthenium coating surface of the invention is provided with a titanium metal material substrate, and a nano-ruthenium coating layer is disposed on the upper and lower surfaces of the titanium metal material substrate, and the titanium metal material substrate may be a sheet shape.
  • the method for preparing a titanium electrode material coated with a nano-ruthenium coating according to the present invention comprises the following steps:
  • a titanium thin plate or a titanium alloy thin plate having a thickness of 0.04 to 4.99 mm is cut into a titanium metal material substrate having a length of 2 to 200 cm and a width of 0.99 to 200 cm;
  • Step 2) was repeated until the layers 10-15 of the nano-ruthenium coating layer were prepared to prepare a titanium electrode material (RhO2-IrO2/Ti) having a surface covering nano-ruthenium coating.
  • the titanium electrode material of the obtained surface-coated nano-antimony coating has a grain size of 10 to 25 nm.
  • the titanium alloy sheet may be a titanium-aluminum alloy sheet, a titanium-molybdenum alloy sheet, a titanium-silicon alloy sheet or a titanium-iron alloy sheet, etc.; the titanium thin plate or the titanium alloy thin plate is cut, preferably After shearing, alkaline degreasing, water washing, pickling, secondary washing and drying; the alkaline degreasing can be used to cut the titanium thin plate or titanium alloy sheet at a temperature of 35 to 45 ° C.
  • the composition of the alkaline degreasing liquid may be an aqueous solution of sodium carbonate (Na 2 CO 3 ) 20 g / L and sodium silicate (Na 2 SiO 3 ) 15 g / l; the water washing, The alkaline degreased titanium substrate is rinsed twice with water for 10-15s each time; in the pickling, the titanium substrate obtained by washing can be immersed in a dilute nitric acid solution having a volume ratio of 15% to 20% for 30 to 45 seconds.
  • the double-washing, the acid-washed titanium substrate can be rinsed twice with water for 10-15s each time; the drying, the titanium substrate obtained by the second water washing can be hung on the hanger and dried or placed in an oven. Dry at 65 ⁇ 110 °C.
  • the cerium salt may be H2RhCl6 or H2IrCl6, etc.
  • the drying temperature may be 75-180 ° C
  • the drying time may be 8-25 min
  • the sintering temperature is 400-550 ° C
  • the sintering time can be 15 to 25 minutes.
  • the cerium salt is dissolved in a mixed solution of n-butanol and isopropanol, and the ratio of n-butanol:isopropanol may be 1:(1 to 5) by volume; the rhodium (Rh) and iridium (Ir) The atomic ratio may be 6:1, and the total metal concentration of rhodium (Rh) and iridium (Ir) may be 0.1 to 1 mol/L.
  • the titanium electrode material coated with the nano-ruthenium coating of the present invention has the following advantages:
  • Titanium has very good corrosion resistance, but it is used as an electrode alone.
  • the conductive effect in the electrolyte is not ideal. Since the tantalum and niobium have good electrical conductivity, the nano-ruthenium coating is coated on the titanium electrode substrate. A titanium electrode with excellent electrical conductivity.
  • Tantalum and niobium not only have good corrosion resistance and electrical conductivity, but also have good electrocatalytic effect, but the price is too expensive. If the electrode is made separately, the price is bound to be high. Instead of using a titanium substrate as an electrode substrate and covering the surface with a nano-ruthenium coating, an inexpensive titanium electrode is obtained.
  • the nano-ruthenium coating has a very strong electrocatalytic effect, which greatly reduces the electrochemical reaction overpotential, the reaction is rapidly increased by a hundredfold or even a thousand times, the working voltage is lower, and the energy consumption is greatly reduced.
  • electrolytic purification of seawater its working voltage is 3.8 ⁇ 6.5V, tons of water consumption of 0.0057 degrees; electrolysis of a printing and dyeing plant advanced treatment of printing and dyeing wastewater (COD of 300, turbidity of 3.9, chromaticity of 4), 2min can be By completely decomposing the colored components in the wastewater, the COD can be reduced by more than half.
  • Fig. 1 is a schematic view showing the structure of an embodiment of a titanium electrode material coated with a nano-ruthenium coating according to the present invention.
  • the surface is covered with a nano-ruthenium-coated titanium electrode material.
  • Embodiment A titanium metal material substrate is provided.
  • a nano-clam cover layer 2 is provided, and the titanium metal material substrate 1 may be a sheet-like titanium metal material substrate or a mesh-shaped titanium metal material substrate.
  • the titanium electrode material whose surface is covered with a nano-ruthenium coating is made by the following steps.
  • the titanium material substrate is 20 g/L sodium carbonate. Soak for 50 s with an aqueous solution of sodium silicate 15 g/L.
  • the titanium metal substrate obtained by washing the step (3) at a normal temperature is at a concentration of 15% ⁇ Soak for 30 to 45 s in a 20% (by volume) dilute nitric acid solution.
  • a thickness of 0.04mm Titanium - Aluminium sheet is cut into a length of 200cm and a width of 199.99cm Titanium substrate.
  • the volume ratio of n-butanol to isopropanol is 1, and the total metal concentration of Rh+Ir is 0.1 mol/L. .
  • the titanium substrate coated with the ruthenium solution was sintered in an electric furnace at 400 ° C for 25 min, and the above steps were repeated until coating 10 Floor.
  • the volume ratio of n-butanol to isopropanol is 3, and the total metal concentration of Rh+Ir is 0.5 mol/L. .
  • the titanium substrate coated with the ruthenium solution was sintered in an electric furnace at 520 ° C for 18 min.
  • a titanium substrate having a thickness of 4.99 mm and an aluminum thin plate was cut into a length of 50 cm and a width of 19.9 cm.
  • the volume ratio of n-butanol to isopropanol is 5, and the total metal concentration of Rh+Ir is 0.3 mol/L. .
  • the titanium substrate coated with the ruthenium solution was sintered in an electric furnace at 500 ° C for 20 min, and the above steps were repeated until coating 10 Floor.
  • the volume ratio of n-butanol to isopropanol is 2, and the total metal concentration of Rh+Ir is 0.6 mol/L. .
  • the titanium substrate coated with the ruthenium solution was sintered in an electric furnace at 550 ° C for 16 min, and the above steps were repeated until 15 layers were applied.
  • the titanium electrode material coated with the nano-ruthenium coating surface of the invention has good electrical conductivity effect, strong corrosion resistance, long service life, low electrode price, low overpotential, high electric efficiency and good industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

表面覆盖纳米铑铱涂层的钛电极材料及其制备方法,涉及一种电化学的电极材料。提供一种电流密度较大,过电位较小,使用寿命较长的表面覆盖纳米铑铱涂层的钛电极材料及其制备方法。钛电极材料设有钛金属材料基片,在基片上下表面设有纳米铑铱覆盖层。将厚度为0.04~4.99mm的钛薄板或钛合金薄板剪切成长度为2~200cm,宽度为0.99~200cm的钛金属材料基片;将铑铱盐溶解于正丁醇与异丙醇混和液中,得铑铱溶液,然后将其喷涂在钛金属材料基片的正反两面上,烘干后,烧结,使铑铱盐分解生成纳米铑铱涂层,取出后冷却至室温;直至制备纳米铑铱覆盖层10~15层,制得表面覆盖纳米铑铱涂层的钛电极材料。

Description

表面覆盖纳米铑铱涂层的钛 电极材料及其制备方法 技术领域
本发明涉及一种电化学的电极材料,特别是涉及一种 表面覆盖纳米铑铱涂层的钛 电极材料及其制造方法。
背景技术
电化学的应用越来越广泛,尤其是在电化学工业(如氯碱工业)、冶金工业(如电解铝、电解铜、电解锰等)、环保工业等都得到十分广泛的应用。特别是近些年来,电化学在废水处理中得到十分快速的发展。 目前,在电化学工业中普遍使用的是石墨电极材料和铅合金电极材料,此外,还有铁电极等,其优点是造价低,但是电流密度小,使用寿命短,且因电极消耗,有大量的电极成分留在产品中,增加了后处理工艺,增加了成本。为了促进电化学的更加广泛的应用,满足使用的要求,近来已开发出多种新型电极材料,但多为化学电池电极和电容器电极,而应用于环保领域中的电极材料不多。
中国专利02243152.7公开了一种钛材电极板,它包括基板,在基板的表面还设有钌或者铱的涂层。它具有良好的导电性、耐腐蚀性。
技术问题
本发明的目的在于提供一种电流密度较大,过电位较小,使用寿命较长的 表面覆盖纳米铑铱涂层的钛 电极材料及其制备方法。
技术解决方案
本发明所述表面覆盖纳米铑铱涂层的钛电极材料设有钛金属材料基片,在钛金属材料基片上下表面设有纳米铑铱覆盖层,所述钛金属材料基片可为片状钛金属材料基片或网状钛金属材料基片等。
本发明所述表面覆盖纳米铑铱涂层的钛电极材料的制备方法包括以下步骤:
1)制备钛金属材料基片:将厚度为0.04~4.99mm的钛薄板或钛合金薄板剪切成长度为2~200cm,宽度为0.99~200cm的钛金属材料基片;
2)制备纳米铑铱覆盖层:将铑铱盐溶解于正丁醇与异丙醇混和液中,得铑铱溶液,然后将其喷涂在钛金属材料基片的正反两面上,烘干后,烧结,使铑铱盐分解生成纳米铑铱涂层,取出后冷却至室温;
3)重复步骤2)直至制备纳米铑铱覆盖层10~15层,制得表面覆盖纳米铑铱涂层的钛电极材料(RhO2-IrO2/Ti)。
所得表面覆盖纳米铑铱涂层的钛电极材料的晶粒尺寸为10~25nm。
在步骤1)中,所述钛合金薄板可为钛-铝合金板、钛-钼合金板、钛-硅合金板或钛-铁合金板等;所述钛薄板或钛合金薄板剪切,最好剪切后进行碱性除油、水洗、酸洗、二次水洗、干燥;所述碱性除油,可在温度为35~45℃的条件下,将剪切后的钛薄板或钛合金薄板在碱性除油液中浸泡30~50s;所述碱性除油液的组成可为碳酸钠(Na2CO3)20g/L和硅酸钠(Na2SiO3)15g/l的水溶液;所述水洗,可将经碱性除油的钛基板用水漂洗2次,每次10~15s;所述酸洗,可将水洗所得的钛基板于体积比浓度为15%~20%的稀硝酸溶液中浸泡30~45s;所述二次水洗,可将酸洗后的钛基板用水漂洗2次,每次10~15s;所述干燥,可将经二次水洗所得钛基板挂于挂具上凉干或置于烘箱中65~110℃烘干。
在步骤2)中,所述铑铱盐可为H2RhCl6或H2IrCl6等;所述烘干的温度可为75~180℃,烘干的时间可为8~25min;所述烧结的温度400~550℃,烧结的时间可为15~25min。所述将铑铱盐溶解于正丁醇与异丙醇混和液,按体积比,正丁醇∶异丙醇可为1∶(1~5);所述铑(Rh)与铱(Ir)的原子比可为6∶1,铑(Rh)和铱(Ir)的总金属浓度可为0.1~1mol/L。
有益效果
与现有的钛电极材料比较,本发明所述表面覆盖纳米铑铱涂层的钛 电极材料 具有如下优点:
1 )导电效果好
钛具有非常好的耐腐蚀性,但单独作为电极使用,在电解液中的导电效果不理想,由于铑、铱具有良好的导电性,因此在钛电极基板上覆盖纳米铑铱涂层,可得到具有优良导电性能的钛电极。
2 ) 耐腐蚀性强、使用寿命长
经试验,所述表面覆盖有纳米铑铱涂层的钛电极的使用寿命长达 86000 ~ 113000 h 。
3 )电极价格便宜
铑、铱不仅具有良好的耐腐蚀性和导电性,而且具有很好的电催化效果,但价格太贵,如果单独用其制作电极,价格势必很高。而采取以钛作电极基板,并在其表面覆盖纳米铑铱涂层的办法,从而得到价格便宜的钛电极。
4 )过电位低、电效率高
纳米铑铱涂层具有非常强的电催化作用,使电化学反应过电位大大减小,反应快速成百倍甚至千倍增加,工作电压更低,能源消耗大幅度减小。如电解净化海水,其工作电压为3.8~6.5V,吨水耗电0.0057度;电解某印染厂经深度处理的印染废水(COD为300,浊度为3.9,色度为4),2min就可以使废水中的有色成分完全分解,COD可下降一半以上。
附图说明
图 1 为本发明所述表面覆盖纳米铑铱涂层的钛 电极材料 实施例的 结构示意图。
本发明的最佳实施方式
如图 1 所示,所述表面覆盖纳米铑铱涂层的钛 电极材料 实施例 设有钛金属材料基片 1 ,在钛金属材料基片 1 上下表面设有纳米铑铱覆盖层 2 ,所述钛金属材料基片 1 可为片状钛金属材料基片或网状钛金属材料基片等。
所述的表面覆盖有纳米铑铱涂层的钛 电极材料由以下步骤制成。
1 )制备钛金属材料基片:
( 1 )将厚度为 1.99mm 的纯钛薄板剪切成长度为200cm ,宽度为190cm 的钛金属材料基片。
( 2 )碱性除油 : 在温度为35 ℃的条件下,将 钛金属材料基片 在碳酸钠20 g/L 和硅酸钠15 g/L 的水溶液中浸泡 50 s 。
( 3 )水洗 : 将经碱性除油的 钛金属材料基片 在常温条件下用自来水漂洗2 次,每次10 ~ 15 s 。
( 4 )酸洗 : 在常温条件下,将工序( 3 )水洗所得的 钛金属材料基片 于浓度为15% ~ 20% (体积比)的稀硝酸溶液中浸泡 30 ~ 45 s 。
( 5 )二次水洗 : 将工序( 4 )酸洗的 钛金属材料基片 在常温条件下用自来水漂洗2 次,每次10 ~ 15 s 。
( 6 )干燥 : 将经二次水洗所得 钛金属材料基片 挂于挂具上自然凉干或置于烘箱中65 ~ 110 ℃烘干得钛 基板 。
2 )制备纳米铑铱覆盖层
( 1 )铑铱溶液的制备 : 将H2RhCl6 和 H2IrCl6 溶解于正丁醇与异丙醇混和液中 , 正丁醇与异丙醇的体积比为5 , Rh 和 Ir 的原子比为6 ∶ 1 , Rh+Ir 的总金属浓度为1mol/L 。
( 2 )喷涂 : 将工序( 1 )制备的铑铱溶液均匀地喷涂在片状或网状钛金属材料基片的正反两面上,挂于挂具上置于烘箱中 180 ℃烘干 8min 。
( 3 )烧结:将工序(2)喷涂了铑铱溶液的钛基板于电炉中550℃烧结15min,使铑铱盐分解生成铑铱氧化物涂层,取出后空气冷却至室温,重复以上步骤直至涂覆10层,制得纳米晶铑铱氧化物涂层钛电极RhO2-IrO2/Ti,晶粒尺寸在10~25nm之间。
本发明的实施方式
实施例1
与上述最佳实施例类似,其区别在于:
选取厚度为0.04mm 钛 - 铝薄板切割成长度为200cm ,宽度为199.99cm 的钛基板。碱性除油 时 ,是在碳酸钠20 g/L 和硅酸钠15 g/L 的水溶液中浸泡50 s 。
制备铑铱溶液时,正丁醇与异丙醇的体积比为1 , Rh+Ir 的总金属浓度为0.1mol/L 。
喷涂时 , 挂于挂具上置于烘箱中75 ℃烘干25min 。
烧结时,将喷涂了铑铱溶液的钛基板于电炉中400 ℃烧结25min ,重复以上步骤直至涂覆10 层。
实施例2
与上述最佳实施例类似,其区别在于:
选取厚度为0.99mm 钛 - 铝薄板切割成长度为50cm ,宽度为19.90cm 的钛基板。
制备铑铱溶液时,正丁醇与异丙醇的体积比为3 , Rh+Ir 的总金属浓度为0.5mol/L 。
喷涂时 , 挂于挂具上置于烘箱中150 ℃烘干12min 。
烧结时,将喷涂了铑铱溶液的钛基板于电炉中520 ℃烧结18min 。
实施例3
与上述最佳实施例1 类似,其区别在于:
选取厚度为4.99mm 钛 - 铝薄板切割成长度为50cm ,宽度为19.9cm 的钛基板。
制备铑铱溶液时,正丁醇与异丙醇的体积比为5 , Rh+Ir 的总金属浓度为 0.3mol/L 。
烧结时,将喷涂了铑铱溶液的钛基板于电炉中500 ℃烧结 20min ,重复以上步骤直至涂覆 10 层。
实施例4
与上述最佳实施例类似,其区别在于:
选取厚度为0.99mm 钛 - 铝薄板切割成长度为150cm ,宽度为99.9cm 的钛基板。
制备铑铱溶液时,正丁醇与异丙醇的体积比为2 , Rh+Ir 的总金属浓度为0.6mol/L 。
喷涂时 , 挂于挂具上置于烘箱中120 ℃烘干 10min 。
烧结时,将喷涂了铑铱溶液的钛基板于电炉中550℃烧结16min,重复以上步骤直至涂覆15层。
工业实用性
本发明的表面覆盖纳米铑铱涂层的钛电极材料导电效果好,耐腐蚀性强、使用寿命长,电极价格便宜,过电位低、电效率高,具备良好的工业实用性。
序列表自由内容

Claims (10)

  1. 表面覆盖纳米铑铱涂层的钛电极材料,其特征在于设有钛金属材料基片,在钛金属材料基片上下表面设有纳米铑铱覆盖层。
  2. 如权利要求1所述的表面覆盖纳米铑铱涂层的钛电极材料,其特征在于所述钛金属材料基片为片状钛金属材料基片或网状钛金属材料基片。
  3. 如权利要求1所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于包括以下步骤:
    1)制备钛金属材料基片:将厚度为0.04~4.99mm的钛薄板或钛合金薄板剪切成长度为2~200cm,宽度为0.99~200cm的钛金属材料基片;
    2)制备纳米铑铱覆盖层:将铑铱盐溶解于正丁醇与异丙醇混和液中,得铑铱溶液,然后将其喷涂在钛金属材料基片的正反两面上,烘干后,烧结,使铑铱盐分解生成纳米铑铱涂层,取出后冷却至室温;
    3)重复步骤2)直至制备纳米铑铱覆盖层10~15层,制得表面覆盖纳米铑铱涂层的钛电极材料。
  4. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤1)中,所述钛合金薄板为钛-铝合金板、钛-钼合金板、钛-硅合金板或钛-铁合金板。
  5. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤1)中,所述钛薄板或钛合金薄板剪切,是剪切后进行碱性除油、水洗、酸洗、二次水洗、干燥;所述碱性除油,是在温度为35~45℃的条件下,将剪切后的钛薄板或钛合金薄板在碱性除油液中浸泡30~50s;所述碱性除油液的组成为碳酸钠20g/L和硅酸钠15g/l的水溶液。
  6. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤1)中,所述水洗,是将经碱性除油的钛基板用水漂洗2次,每次10~15s;所述酸洗,是将水洗所得的钛基板于体积比浓度为15%~20%的稀硝酸溶液中浸泡30~45s;所述二次水洗,是将酸洗后的钛基板用水漂洗2次,每次10~15s;所述干燥,是将经二次水洗所得钛基板挂于挂具上凉干或置于烘箱中65~110℃烘干。
  7. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤2)中,所述铑铱盐为H2RhCl6或H2IrCl6。
  8. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤2)中,所述烘干的温度为75~180℃,烘干的时间为8~25min;所述烧结的温度400~550℃,烧结的时间为15~25min。
  9. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤2)中,所述将铑铱盐溶解于正丁醇与异丙醇混和液,按体积比,正丁醇∶异丙醇为1∶1~5。
  10. 如权利要求3所述的表面覆盖纳米铑铱涂层的钛电极材料的制备方法,其特征在于在步骤2)中,所述铑与铱的原子比为6∶1,铑和铱的总金属浓度为0.1~1mol/L。
PCT/CN2011/076603 2010-07-02 2011-06-30 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法 WO2012000440A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010218092.2 2010-07-02
CN2010102180922A CN101914781B (zh) 2010-07-02 2010-07-02 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2012000440A1 true WO2012000440A1 (zh) 2012-01-05

Family

ID=43322412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076603 WO2012000440A1 (zh) 2010-07-02 2011-06-30 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN101914781B (zh)
WO (1) WO2012000440A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115121450A (zh) * 2022-07-29 2022-09-30 西安泰金工业电化学技术有限公司 一种可连续加工网状钛电极的涂刷装置及工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914781B (zh) * 2010-07-02 2013-06-12 波鹰(厦门)科技有限公司 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法
CN102703925B (zh) * 2012-04-23 2014-12-17 江阴安凯特电化学设备有限公司 一种双面涂层的复合电极制备工艺
CN106037732A (zh) * 2016-05-11 2016-10-26 苏州海神联合医疗器械有限公司 电磁屏蔽表面肌电电极及其制备方法
CN110441349B (zh) * 2019-07-22 2022-02-18 苏州工业园区传世汽车电子有限公司 纳米金属氧化物复合贵金属电极及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517609A (en) * 1975-10-21 1978-07-12 Nippon Mining Co Plating with platinum group metals
EP0538955A1 (en) * 1991-10-21 1993-04-28 Magneto-Chemie B.V. Anodes with extended service life and methods for their manufacturing
CN1715431A (zh) * 2004-06-30 2006-01-04 株式会社神户制钢所 钛材料及其制备方法
CN101565836A (zh) * 2009-05-27 2009-10-28 福州大学 IrO2种子嵌入铱系涂层钛阳极及其制备方法
CN101914781A (zh) * 2010-07-02 2010-12-15 波鹰(厦门)科技有限公司 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法
CN201778123U (zh) * 2010-07-02 2011-03-30 波鹰(厦门)科技有限公司 表面覆盖纳米铑铱涂层的钛电极板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594121A (zh) * 2003-09-10 2005-03-16 王家君 组合式微电流电解水处理技术和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517609A (en) * 1975-10-21 1978-07-12 Nippon Mining Co Plating with platinum group metals
EP0538955A1 (en) * 1991-10-21 1993-04-28 Magneto-Chemie B.V. Anodes with extended service life and methods for their manufacturing
CN1715431A (zh) * 2004-06-30 2006-01-04 株式会社神户制钢所 钛材料及其制备方法
CN101565836A (zh) * 2009-05-27 2009-10-28 福州大学 IrO2种子嵌入铱系涂层钛阳极及其制备方法
CN101914781A (zh) * 2010-07-02 2010-12-15 波鹰(厦门)科技有限公司 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法
CN201778123U (zh) * 2010-07-02 2011-03-30 波鹰(厦门)科技有限公司 表面覆盖纳米铑铱涂层的钛电极板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115121450A (zh) * 2022-07-29 2022-09-30 西安泰金工业电化学技术有限公司 一种可连续加工网状钛电极的涂刷装置及工艺

Also Published As

Publication number Publication date
CN101914781B (zh) 2013-06-12
CN101914781A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
FI68670C (fi) Elektrod med elektrokatalytisk yta och foerfarande foer dess framstaellning
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
KR101073351B1 (ko) 백금 계 금속에 의한 전기촉매 코팅과 그로부터 제조된전극
Yan et al. A study on the performance of IrO2–Ta2O5 coated anodes with surface treated Ti substrates
CN101048535B (zh) 用于低氯超电压的含pd涂层
WO2012000440A1 (zh) 表面覆盖纳米铑铱涂层的钛电极材料及其制备方法
CA2761292C (en) Electrode for electrolytic applications
CN1324155C (zh) 钛材料及其制备方法
JPS636636B2 (zh)
JP2014136832A (ja) 陽極酸化皮膜及びその製造方法
KR20050083767A (ko) 전기화학 전지에서의 바람직하지 못한 산화를 억제하기위한 코팅 방법
CN106283125A (zh) 金属电积用涂层钛电极及其制备方法
CN105483744B (zh) 一种多孔析氢催化剂及其制备方法及含有所述析氢催化剂的电极
CN112853352A (zh) 一种钛基不溶性阳极的制备方法
KR20140043886A (ko) 전기 화학적 산업 공정에 있어서 산소를 발생시키기 위한 전극
CN105154915B (zh) 一种钛基复合阳极及其制备方法和应用
JPH04231491A (ja) 電気触媒陰極およびその製造法
CN113061926A (zh) 一种用于pem水电解池的亚氧化钛阳极扩散层及其制备方法与应用
Liu et al. Effect of molar ratio of ruthenium and antimony on corrosion mechanism of Ti/Sn-Sb-RuOx electrode for zinc electrowinning
EP1620582A2 (en) Smooth surface morphology anode coatings
CN107937920A (zh) 用于海洋平台阴极保护修复用氧化物阳极材料及制备工艺
US5531875A (en) Electrode substrate for electrolysis and production method thereof
RU2379380C2 (ru) Высокоэффективное анодное покрытие для получения гипохлорита
FI84496B (fi) Anod foer anvaendning foer framstaellning av vaeteperoxidloesning och foerfarande foer framstaellning av anoden.
JP2009102676A (ja) 耐食導電被覆材料及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800185

Country of ref document: EP

Kind code of ref document: A1