CN114250217B - 一种理性设计提升腈水解酶活性的方法及应用 - Google Patents

一种理性设计提升腈水解酶活性的方法及应用 Download PDF

Info

Publication number
CN114250217B
CN114250217B CN202111478385.9A CN202111478385A CN114250217B CN 114250217 B CN114250217 B CN 114250217B CN 202111478385 A CN202111478385 A CN 202111478385A CN 114250217 B CN114250217 B CN 114250217B
Authority
CN
China
Prior art keywords
ala
leu
gly
val
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111478385.9A
Other languages
English (en)
Other versions
CN114250217A (zh
Inventor
周哲敏
韩来闯
刘欣悦
崔文璟
程中一
刘中美
周丽
郭军玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202111478385.9A priority Critical patent/CN114250217B/zh
Publication of CN114250217A publication Critical patent/CN114250217A/zh
Application granted granted Critical
Publication of CN114250217B publication Critical patent/CN114250217B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/05Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in nitriles (3.5.5)
    • C12Y305/05001Nitrilase (3.5.5.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种理性设计提升腈水解酶活性的方法及应用,属于酶工程领域。本发明通过腈水解酶的晶体结构进行分析,通过底物对接确定了催化口袋附近与催化活性相关的位点,对每个点做饱和突变后,通过两种计算方法Rosetta‑Cartesian和FEP对获得的突变体进行稳定性和结合自由能分析,对满足要求的突变体做酶活测定。将单点突变酶活高于野生型的位点进行组合突变再进行计算,最终获得符合要求的突变体进行酶活测定。通过这种方法我们最后获得了两个单点突变体,比酶活为野生型的2、1.5倍,组合突变体F64YW170G比酶活为野生型的4.56倍。

Description

一种理性设计提升腈水解酶活性的方法及应用
技术领域
本发明涉及一种理性设计提升腈水解酶活性的方法及应用,属于酶工程领域。
背景技术
腈水解酶(Nitrilase,EC 3.5.5.1)属于腈水解酶超家族,是一种重要的工业用酶,可以将腈类化合物一步反应生成羧酸类物质和氨。羧酸类物质在大宗化学品、医药中间体等有广泛的应用价值,目前烟酸和扁桃酸可以在工业上进行规模化生产。酶法合成相比化学法具有反应条件温和、高立体选择性和不需要添加昂贵的催化剂等优势,既可以产生巨大的经济效益,也可以减轻对环境的污染。但是天然的腈水解酶酶活较低、稳定性和耐受性差使得其在工业应用中存在弊端,因此通过蛋白质工程改造腈水解酶可以为其工业应用做出贡献。
目前常用的酶改造方法有定向进化、半理性设计和理性设计,大多数酶的改造基本上都可以通过对其催化口袋进行设计改造的方法进行,大多数可以取得较好的效果(提高酶的稳定性、耐受性或酶活)。Syechocystis sp.PCC6803的腈水解酶具有较宽广的底物谱,对脂肪族、芳香族等腈类物质都存在一定的催化能力,有很大的应用前景。因此通过对Nit-PCC6803晶体结构进行分析并进行理性设计以期提高腈水解酶的酶活或稳定性。这对于利用Nit6803催化腈类物质生产羧酸类物质具有重要的意义。
发明内容
针对现有的技术难点及存在的问题,本发明旨在提供一种来源于Syechocystissp.的催化烟腈能力提高的腈水解酶突变体(Nit-PCC6803-F64YW170G)。
为提高对腈类物质的催化能力,本发明选用来源于集胞藻(Syechocystissp.PCC6803)的腈水解酶Nit6803(NCBI登录号为:AGF53008.1),通过分析酶结构上的潜在突变位点,选择一个或多个突变位点,应用分子生物学技术,筛选出腈类物质催化能力提高的突变体进一步推进催化腈类物质的腈水合酶的优良改造,为工业化生产奠定基础。
本发明的目的在于提供一种腈类物质催化能力提高的腈水解酶的突变体及其应用。
本发明的第一个目的是提供一种腈水解酶突变体,所述突变体是在氨基酸序列如SEQ ID NO.1的腈水解酶的第64位、第170位的氨基酸中的一个或多个进行突变得到的。
在一种实施方式中,所述突变体为一下(a)~(c)任一:
(a)将氨基酸序列SEQ ID NO.1的第64位的苯丙氨酸氨酸突变成酪氨酸;
(b)将氨基酸序列SEQ ID NO.1的第170位的蛋氨酸突变成甘氨酸;
(c)将氨基酸序列SEQ ID NO.1的第64位的苯丙氨酸氨酸突变成酪氨酸,将第170位的蛋氨酸突变成甘氨酸。
在本发明的一种实施方式中,所述腈水解酶突变体的氨基酸序列如SEQ ID NO.2~SEQ ID NO.4所示。
本发明的第二个目的是提供一种编码上述腈水解酶突变体的基因。
本发明的第三个目的是提供一种携带上述基因的重组载体。
在本发明的一种实施方式中,所述重组载体以pET-24a(+)为表达载体。
本发明的第四个目的是提供一种携带上述基因,或上述重组载体的微生物细胞。
在本发明的一种实施方式中,所述微生物细胞以细菌或真菌为表达宿主。
在本发明的一种实施方式中,所述微生物细胞以E.coli ER2566为表达宿主。
本发明的第五个目的是提供一种烟酸的制备方法,所述方法为,将上述腈水解酶突变体,或上述微生物细胞添加至含有烟腈的培养基中,进行反应制备得到的。
本发明还提供上述腈水解酶突变体,或上述基因,或上述重组载体,或上述微生物细胞在制备含有羧酸类物质中的应用。
本发明还提供上述腈水解酶突变体,或上述基因,或上述重组载体,或上述微生物细胞在制备烟酸或含有烟酸的产品中的应用。
本发明还提供一种上述腈水解酶突变体的构建方法,所述方法具为通过底物对接确定催化口袋周围的相关位点作为计算位点,通过利用Rosetta-Cartesian软件对选择的位点进行饱和突变后选择分析结果中对酶稳定性影响小的突变体,再通过FEP方法对这些突变体突变后与底物3-氰基吡啶之间自由能变化的高低进行筛选,最后选择△△Gbinding小于-1的突变体进行质粒构建并表达测定其全细胞酶活和纯酶比酶活。选择其中效果好的两个位点进行组合设计,再利用Rosetta-Cartesian和FEP进行分析,最后获得较好突变体进行构建、表达并测定其全细胞酶活和纯酶比酶活。
有益效果:
本发明提供了腈水解酶Nit-PCC6803的氨基酸序列,并且通过对晶体结构进行分析后对所选择的位点进行稳定性和自由能的计算,再通过表达、纯化并检测酶活,最终获得腈水解酶突变体F64Y、W170G在37℃下反应比酶活为野生型的2、1.5倍,组合突变体F64YW170G在37℃下反应比酶活为野生型的4.56倍且其稳定性与野生型相比并未下降。所以本发明提供了一个理性设计方案在不影响酶稳定性的前提下提高其催化活性;且获得了高活性突变体,这有利于利用腈水解酶PCC6803催化腈类物质产生羧酸类物质在工业上的应用。
附图说明
图1:PCC6803催化口袋示意图。
图2:酶催化能力相关位点的预测;A:单点突变的Rosetta-Cartesian分析结果,B:单点突变的FEP分析结合自由能结果。
图3:单点突变的全细胞相对酶活及纯酶比酶活结果;A:全细胞相对酶活,B:纯酶比酶活。
图4:A:组合突变的Rosetta-Cartesian分析结果,B:组合突变的FEP分析结合自由能结果。
图5:组合突变的全细胞相对酶活及纯酶比酶活结果;A:全细胞相对酶活,B:纯酶比酶活。
图6:野生型与组合突变体F64YW170G的稳定性比较。
具体实施方式
腈水解酶的酶活力(U):单位酶活力定义为37℃下,每分钟催化烟腈生成1μmol烟酸所需要的酶量。
腈水解酶的比酶活(U/mg):每毫克腈水解酶所具有的酶活力。
相对酶活的定义(%):以野生型在37℃下反应10min的酶活作为100%。
LB培养基(1L):胰蛋白胨10g,酵母提取物5g,NaCl 10g。
2×YT培养基(1L):胰蛋白胨16.0g,酵母提取物10.0g,NaCl 5.0g。
实施例1 Nit6803各突变体的构建
将集胞藻(Syechocystis sp.PCC6803)来源的腈水解酶(Nit6803)与底物3-氰基吡啶对接后,选择催化口袋附近可能与酶催化能力有关的位点作为突变位点如图1所示。然后利用Rosetta-Cartesian软件对每个突变位点进行饱和突变后产生的突变体进行稳定性的分析,选择△△G小于5的突变体(认为突变后对酶的结构影响小)进行下一步分析;再利用FEP对其结合自由能进行计算,最终选择△△Gbinding小于-1的突变体进行质粒构建及表达验证(图2)。
合成Syechocystis sp.NitPCC6803基因(氨基酸序列的NCBI登录号为:AGF53008.1),并将该基因克隆于pET24a(+)质粒的NdeI和EcoRI酶切位点处,由苏州金唯智公司完成,获得pET24a-Nit6803重组质粒。
以pET24a-Nit6803质粒作为模板,利用突变位点相应的引物进行全质粒PCR,构建了重组质粒F64Y、T139K、Y140H、Y140A、H141K、W170G、M197Y、M197V、M197I、V198D。
所用引物序列如表1所示,扩增体系如表2所示,PCR扩增反应条件为98℃预变性3min,98℃变性15s,55℃退火30s,72℃延伸1min45s,72℃延伸5min,共30个循环。
将PCR产物用DpnI消化酶消化2-3h,纯化获得各个突变体单一片段。将获得的单一片段转化至E.coli JM109,阳性转化子的基因序列由苏州金唯智公司进行测序验证。
表1引物
表2全质粒PCR扩增反应体系
实施例2野生酶WT与各突变体的表达及酶活检测
(1)重组菌株的构建:
将Nit6803的野生型WT及实施例1测序正确的突变体质粒F64Y、T139K、Y140H、Y140A、H141K、W170G、M197Y、M197V、M197I、V198D分别转化至感受态细胞E.coli ER2566,涂布至LB培养基中,37℃培养12-18h后,挑取单菌落至3mL LB培养基(卡那霉素终浓度50μg/mL),37℃、200rpm条件下培养7-8h,获得种子液。
将种子液按2%(v/v)转接至5mL LB培养基(卡那霉素终浓度50μg/mL),在37℃、200rpm条件下培养至OD600至0.6-0.8,加入终浓度为0.5mM的异丙基硫代半乳糖苷(IPTG),改变培养温度为25℃,诱导表达12-16h,获得菌液。
(2)全细胞酶活测定:
收1mL菌液12000rpm离心1min,用1mL PBS缓冲液(pH7.4)重悬,用紫外分光光度计测定其在OD600下的吸光度,然后调OD600至2。取100μL菌液12000rpm离心1min,再用500μLPBS缓冲液(pH7.4)重悬,加入500μL 100mM 3-氰基吡啶底物,37℃、200rpm反应10min,取出后1200rpm离心10min,取上清过0.22μm的滤膜后作为液相检测样品。
腈水解酶的测定:用HPLC检测体系中烟酸产量,流动相为乙腈:水=1:2,检测波长为210nm,流速为0.6mL/min,柱温为40℃,色谱柱为C18柱。
野生型和突变体的相对酶活结果如图3A所示,在所构建的突变体中F64Y和W170G的相对酶活为200%、150%,全细胞催化活性显著高于野生型酶WT。
(3)蛋白纯化:
将突变体F64Y和W170G挑取单菌落至3mL LB培养基(卡那霉素终浓度50μg/mL),37℃、200rpm条件下培养7-8h,获得种子液。将种子液按2%(v/v)转接至100mL 2×YT培养基(卡那霉素终浓度50μg/mL),在37℃、200rpm条件下培养至OD600至0.6-0.8,加入终浓度为0.5mM的异丙基硫代半乳糖苷(IPTG),改变培养温度为25℃,诱导表达12-16h,获得菌液。
在10000rpm条件下离心菌液3min收集菌体细胞,用20mL PBS缓冲液(pH 7.4)重悬,于冰水混合物中超声破碎。破碎液在4℃、12000rpm条件下离心30min,取上清液过0.22μm有机滤膜。
采用亲和层析的方法纯化野生型WT及突变体F64Y、W170G,纯化柱为GE公司的HisTrap HP 5mL柱。纯化柱在用结合缓冲液(Binding buffer)(0.2M磷酸二氢钠,0.2M磷酸氢二钠,调pH为7.4,加入20mM咪唑)平衡后,进行上样,然后用结合缓冲液洗去杂蛋白,目的蛋白用洗脱缓冲液(Washing buffer)(0.2M磷酸二氢钠,0.2M磷酸氢二钠,调pH为7.4,加入500mM咪唑)梯度洗脱并收集。蛋白浓度使用Bradford蛋白浓度检测试剂盒进行定量。采用SDS-PAGE检测目的蛋白的纯化质量,可见野生型及其突变体所表达的蛋白在纯化后蛋白条带单一,纯化质量高。
(4)纯酶酶活测定:
纯酶反应:用磷酸盐缓冲液(pH 7.4)将WT及其突变体F64Y、T139K、Y140H、Y140A、H141K、W170G、M197Y、M197V、M197I、V198D纯酶的浓度稀释至0.5mg/mL,取10μL至1.5mL离心管中,置于37℃金属浴上。向离心管中加入490μL底物(100mM烟腈溶液),充分涡旋混匀,37℃下反应10min,然后加入500μL纯乙腈溶液进行终止。然后离心去除沉淀,取上清过0.22μm的滤膜后作为液相测定的样品。
腈水解酶的测定:用HPLC检测体系中烟酸产量,流动相为乙腈:水=1:2,检测波长为210nm,流速为0.6mL/min,柱温为40℃,色谱柱为C18柱。
野生型及突变体的纯酶比酶活结果如图3所示,其中野生型比酶活为4.93±0.48U/mg,F64Y的比酶活为10.04±0.24U/mg,W170G的比酶活为7.1±0.41U/mg。相对于野生型来说分别提高了103.6%和44%。
实施例3 Nit-6803组合突变体构建及表达
(1)重组菌的构建
由实施例2可知64和170两个位点对于腈水解酶的酶活有很大作用,所以选择这两个位点做组合突变以期获得酶活提升更多的突变体。将两个点同时做饱和突变然后利用Rosetta-Cartesian软件对每个突变体进行稳定性的分析,选择△△G小的突变体(认为突变后对酶的结构影响小)进行下一步分析;再利用FEP对其结合自由能进行计算,最终发现F64YW170G的组合突变体的效果最好,所以选择这个突变体进行质粒构建及表达验证(图4)。
以pET24a-Nit6803质粒作为模板,利用引物6803-64Y-F、6803-64Y-R扩增得到片段p24a-6803-64i,利用引物6803-170G-F、6803-170G-R扩增得到片段p24a-6803-170v,所用引物序列如表1所示,扩增体系如表2所示,PCR扩增反应条件为98℃预变性3min,98℃变性15s,55℃退火30s,72℃延伸1min10s/8s,72℃延伸5min,共30个循环。将PCR产物用DpnI消化酶消化2-3h,纯化获得单一片段。
将纯化后的片段p24a-6803-64i和p24a-6803-170v进行组装,组装体系为4μL 2×MultiF Seamless Aaaembly Mix/2μL p24a-6803-64i/2μL p24a-6803-170v,50℃下孵育30min,转化至E.coli JM109,阳性转化子的基因序列由苏州金唯智公司进行测序验证。
将正确的质粒转化至感受态细胞E.coli ER2566,涂布至LB培养基中,37℃培养12-18h后,挑取单菌落至3mL LB培养基(卡那霉素终浓度50μg/mL)中,在37℃、200rpm条件下培养7-8h,获得种子液。
将种子液按2%(v/v)转接至5mL LB培养基(卡那霉素终浓度50μg/mL),在37℃、200rpm条件下培养至OD600至0.6-0.8,加入终浓度为0.5mM的异丙基硫代半乳糖苷(IPTG),改变培养温度为25℃,诱导表达12-16h,获得菌液。
(2)全细胞酶活测定
收1mL菌液12000rpm离心1min,用1mLPBS缓冲液(pH7.4)重悬,用紫外分光光度计测定其在OD600下的吸光度,然后调OD至2。取100μL菌液12000rpm离心1min,再用500μL PBS缓冲液(pH7.4)重悬,加入500μL 100mM 3-氰基吡啶底物,37℃、200rpm反应10min,取出后1200rpm离心10min,取上清过0.22μm的滤膜后作为液相检测样品。
腈水解酶的测定:用HPLC检测体系中烟酸产量,流动相为乙腈:水=1:2,检测波长为210nm,流速为0.6mL/min,柱温为40℃,色谱柱为C18柱。
结果如图5所示,突变体F64YW170G的相对酶活为野生型的476%,相对于野生型来说有明显的提升。
实施例4组合突变体及野生型纯酶比酶活检测及稳定性分析
(1)蛋白纯化:
将野生型与突变体F64YW170G挑取单菌落至3mL LB培养基(卡那霉素终浓度50μg/mL),37℃、200rpm条件下培养7-8h,获得种子液。将种子液按2%(v/v)转接至100mL 2×YT培养基(卡那霉素终浓度50μg/mL),在37℃、200rpm条件下培养至OD600至0.6-0.8,加入终浓度为0.5mM的异丙基硫代半乳糖苷(IPTG),改变培养温度为25℃,诱导表达12-16h,获得菌液。
在10000rpm条件下离心菌液3min收集菌体细胞,用20mL PBS缓冲液(pH 7.4)重悬,于冰水混合物中超声破碎。破碎液在4℃、12000rpm条件下离心30min,取上清液过0.22μm有机滤膜。
采用亲和层析的方法纯化野生型WT及突变体F64YW170G,纯化柱为GE公司的HisTrap HP 5mL柱。纯化柱在用结合缓冲液(Binding buffer)平衡后,进行上样,然后用结合缓冲液洗去杂蛋白,目的蛋白用洗脱缓冲液(Washing buffer)梯度洗脱并收集。蛋白浓度使用Bradford蛋白浓度检测试剂盒进行定量。采用SDS-PAGE检测目的蛋白的纯化质量,可见野生型及其突变体所表达的蛋白在纯化后蛋白条带单一,纯化质量高。
(2)纯酶酶活测定:
纯酶反应:用磷酸盐缓冲液(pH 7.4)将WT及其突变体F64YW170G纯酶的浓度稀释至0.5mg/mL,取10μL至1.5mL离心管中,置于37℃金属浴上。向离心管中加入490μL底物(100mM烟腈溶液),充分涡旋混匀,37℃下反应10min,然后加入500μL纯乙腈溶液进行终止。然后离心去除沉淀,取上清过0.22μm的滤膜后作为液相测定的样品。
腈水解酶的测定:用HPLC检测体系中烟酸产量,流动相为乙腈:水=1:2,检测波长为210nm,流速为0.6mL/min,柱温为40℃,色谱柱为C18柱。
野生型及突变体的纯酶比酶活结果如图5所示,其中野生型比酶活为4.93±0.48U/mg,突变体F64YW170G的比酶活为22.48±0.64U/mg,为野生型的4.56倍。
然后我们在40℃和50℃下分别孵育4h,取0min、30min、1h、2h、4h的样品进行反应,反应方法如上述所示。最终结果如图6所示,突变体的稳定性与野生型几乎没有差别,在40℃下热稳定性略好于野生型。
本发明通过对腈水解酶的晶体结构进行分析,利用两种不同计算方法Rosetta-Cartesian和FEP,在不影响稳定性的前提下提高酶活,最终我们获得了单点突变体F64Y和W170G的酶活高于野生型,组合突变体F64YW170G的比酶活为野生型的4.56倍,且其稳定性不低于野生型。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
SEQUENCE LISTING
<110> 江南大学
<120> 一种理性设计提升腈水解酶活性的方法及应用
<130> BAA211549A
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 346
<212> PRT
<213> 集胞藻
<400> 1
Met Leu Gly Lys Ile Met Leu Asn Tyr Thr Lys Asn Ile Arg Ala Ala
1 5 10 15
Ala Ala Gln Ile Ser Pro Val Leu Phe Ser Gln Gln Gly Thr Met Glu
20 25 30
Lys Val Leu Asp Ala Ile Ala Asn Ala Ala Lys Lys Gly Val Glu Leu
35 40 45
Ile Val Phe Pro Glu Thr Phe Val Pro Tyr Tyr Pro Tyr Phe Ser Phe
50 55 60
Val Glu Pro Pro Val Leu Met Gly Lys Ser His Leu Lys Leu Tyr Gln
65 70 75 80
Glu Ala Val Thr Val Pro Gly Lys Val Thr Gln Ala Ile Ala Gln Ala
85 90 95
Ala Lys Thr His Gly Met Val Val Val Leu Gly Val Asn Glu Arg Glu
100 105 110
Glu Gly Ser Leu Tyr Asn Thr Gln Leu Ile Phe Asp Ala Asp Gly Ala
115 120 125
Leu Val Leu Lys Arg Arg Lys Ile Thr Pro Thr Tyr His Glu Arg Met
130 135 140
Val Trp Gly Gln Gly Asp Gly Ala Gly Leu Arg Thr Val Asp Thr Thr
145 150 155 160
Val Gly Arg Leu Gly Ala Leu Ala Cys Trp Glu His Tyr Asn Pro Leu
165 170 175
Ala Arg Tyr Ala Leu Met Ala Gln His Glu Gln Ile His Cys Gly Gln
180 185 190
Phe Pro Gly Ser Met Val Gly Gln Ile Phe Ala Asp Gln Met Glu Val
195 200 205
Thr Met Arg His His Ala Leu Glu Ser Gly Cys Phe Val Ile Asn Ala
210 215 220
Thr Gly Trp Leu Thr Ala Glu Gln Lys Leu Gln Ile Thr Thr Asp Glu
225 230 235 240
Lys Met His Gln Ala Leu Ser Gly Gly Cys Tyr Thr Ala Ile Ile Ser
245 250 255
Pro Glu Gly Lys His Leu Cys Glu Pro Ile Ala Glu Gly Glu Gly Leu
260 265 270
Ala Ile Ala Asp Leu Asp Phe Ser Leu Ile Ala Lys Arg Lys Arg Met
275 280 285
Met Asp Ser Val Gly His Tyr Ala Arg Pro Asp Leu Leu Gln Leu Thr
290 295 300
Leu Asn Asn Gln Pro Trp Ser Ala Leu Glu Ala Asn Pro Val Thr Pro
305 310 315 320
Asn Ala Ile Pro Ala Val Ser Asp Pro Glu Leu Thr Glu Thr Ile Glu
325 330 335
Ala Leu Pro Asn Asn Pro Ile Phe Ser His
340 345
<210> 2
<211> 346
<212> PRT
<213> 人工序列
<400> 2
Met Leu Gly Lys Ile Met Leu Asn Tyr Thr Lys Asn Ile Arg Ala Ala
1 5 10 15
Ala Ala Gln Ile Ser Pro Val Leu Phe Ser Gln Gln Gly Thr Met Glu
20 25 30
Lys Val Leu Asp Ala Ile Ala Asn Ala Ala Lys Lys Gly Val Glu Leu
35 40 45
Ile Val Phe Pro Glu Thr Phe Val Pro Tyr Tyr Pro Tyr Phe Ser Phe
50 55 60
Val Glu Pro Pro Val Leu Met Gly Lys Ser His Leu Lys Leu Tyr Gln
65 70 75 80
Glu Ala Val Thr Val Pro Gly Lys Val Thr Gln Ala Ile Ala Gln Ala
85 90 95
Ala Lys Thr His Gly Met Val Val Val Leu Gly Val Asn Glu Arg Glu
100 105 110
Glu Gly Ser Leu Tyr Asn Thr Gln Leu Ile Phe Asp Ala Asp Gly Ala
115 120 125
Leu Val Leu Lys Arg Arg Lys Ile Thr Pro Thr Tyr His Glu Arg Met
130 135 140
Val Trp Gly Gln Gly Asp Gly Ala Gly Leu Arg Thr Val Asp Thr Thr
145 150 155 160
Val Gly Arg Leu Gly Ala Leu Ala Cys Gly Glu His Tyr Asn Pro Leu
165 170 175
Ala Arg Tyr Ala Leu Met Ala Gln His Glu Gln Ile His Cys Gly Gln
180 185 190
Phe Pro Gly Ser Met Val Gly Gln Ile Phe Ala Asp Gln Met Glu Val
195 200 205
Thr Met Arg His His Ala Leu Glu Ser Gly Cys Phe Val Ile Asn Ala
210 215 220
Thr Gly Trp Leu Thr Ala Glu Gln Lys Leu Gln Ile Thr Thr Asp Glu
225 230 235 240
Lys Met His Gln Ala Leu Ser Gly Gly Cys Tyr Thr Ala Ile Ile Ser
245 250 255
Pro Glu Gly Lys His Leu Cys Glu Pro Ile Ala Glu Gly Glu Gly Leu
260 265 270
Ala Ile Ala Asp Leu Asp Phe Ser Leu Ile Ala Lys Arg Lys Arg Met
275 280 285
Met Asp Ser Val Gly His Tyr Ala Arg Pro Asp Leu Leu Gln Leu Thr
290 295 300
Leu Asn Asn Gln Pro Trp Ser Ala Leu Glu Ala Asn Pro Val Thr Pro
305 310 315 320
Asn Ala Ile Pro Ala Val Ser Asp Pro Glu Leu Thr Glu Thr Ile Glu
325 330 335
Ala Leu Pro Asn Asn Pro Ile Phe Ser His
340 345
<210> 3
<211> 346
<212> PRT
<213> 人工序列
<400> 3
Met Leu Gly Lys Ile Met Leu Asn Tyr Thr Lys Asn Ile Arg Ala Ala
1 5 10 15
Ala Ala Gln Ile Ser Pro Val Leu Phe Ser Gln Gln Gly Thr Met Glu
20 25 30
Lys Val Leu Asp Ala Ile Ala Asn Ala Ala Lys Lys Gly Val Glu Leu
35 40 45
Ile Val Phe Pro Glu Thr Phe Val Pro Tyr Tyr Pro Tyr Phe Ser Tyr
50 55 60
Val Glu Pro Pro Val Leu Met Gly Lys Ser His Leu Lys Leu Tyr Gln
65 70 75 80
Glu Ala Val Thr Val Pro Gly Lys Val Thr Gln Ala Ile Ala Gln Ala
85 90 95
Ala Lys Thr His Gly Met Val Val Val Leu Gly Val Asn Glu Arg Glu
100 105 110
Glu Gly Ser Leu Tyr Asn Thr Gln Leu Ile Phe Asp Ala Asp Gly Ala
115 120 125
Leu Val Leu Lys Arg Arg Lys Ile Thr Pro Thr Tyr His Glu Arg Met
130 135 140
Val Trp Gly Gln Gly Asp Gly Ala Gly Leu Arg Thr Val Asp Thr Thr
145 150 155 160
Val Gly Arg Leu Gly Ala Leu Ala Cys Trp Glu His Tyr Asn Pro Leu
165 170 175
Ala Arg Tyr Ala Leu Met Ala Gln His Glu Gln Ile His Cys Gly Gln
180 185 190
Phe Pro Gly Ser Met Val Gly Gln Ile Phe Ala Asp Gln Met Glu Val
195 200 205
Thr Met Arg His His Ala Leu Glu Ser Gly Cys Phe Val Ile Asn Ala
210 215 220
Thr Gly Trp Leu Thr Ala Glu Gln Lys Leu Gln Ile Thr Thr Asp Glu
225 230 235 240
Lys Met His Gln Ala Leu Ser Gly Gly Cys Tyr Thr Ala Ile Ile Ser
245 250 255
Pro Glu Gly Lys His Leu Cys Glu Pro Ile Ala Glu Gly Glu Gly Leu
260 265 270
Ala Ile Ala Asp Leu Asp Phe Ser Leu Ile Ala Lys Arg Lys Arg Met
275 280 285
Met Asp Ser Val Gly His Tyr Ala Arg Pro Asp Leu Leu Gln Leu Thr
290 295 300
Leu Asn Asn Gln Pro Trp Ser Ala Leu Glu Ala Asn Pro Val Thr Pro
305 310 315 320
Asn Ala Ile Pro Ala Val Ser Asp Pro Glu Leu Thr Glu Thr Ile Glu
325 330 335
Ala Leu Pro Asn Asn Pro Ile Phe Ser His
340 345
<210> 4
<211> 346
<212> PRT
<213> 人工序列
<400> 4
Met Leu Gly Lys Ile Met Leu Asn Tyr Thr Lys Asn Ile Arg Ala Ala
1 5 10 15
Ala Ala Gln Ile Ser Pro Val Leu Phe Ser Gln Gln Gly Thr Met Glu
20 25 30
Lys Val Leu Asp Ala Ile Ala Asn Ala Ala Lys Lys Gly Val Glu Leu
35 40 45
Ile Val Phe Pro Glu Thr Phe Val Pro Tyr Tyr Pro Tyr Phe Ser Tyr
50 55 60
Val Glu Pro Pro Val Leu Met Gly Lys Ser His Leu Lys Leu Tyr Gln
65 70 75 80
Glu Ala Val Thr Val Pro Gly Lys Val Thr Gln Ala Ile Ala Gln Ala
85 90 95
Ala Lys Thr His Gly Met Val Val Val Leu Gly Val Asn Glu Arg Glu
100 105 110
Glu Gly Ser Leu Tyr Asn Thr Gln Leu Ile Phe Asp Ala Asp Gly Ala
115 120 125
Leu Val Leu Lys Arg Arg Lys Ile Thr Pro Thr Tyr His Glu Arg Met
130 135 140
Val Trp Gly Gln Gly Asp Gly Ala Gly Leu Arg Thr Val Asp Thr Thr
145 150 155 160
Val Gly Arg Leu Gly Ala Leu Ala Cys Gly Glu His Tyr Asn Pro Leu
165 170 175
Ala Arg Tyr Ala Leu Met Ala Gln His Glu Gln Ile His Cys Gly Gln
180 185 190
Phe Pro Gly Ser Met Val Gly Gln Ile Phe Ala Asp Gln Met Glu Val
195 200 205
Thr Met Arg His His Ala Leu Glu Ser Gly Cys Phe Val Ile Asn Ala
210 215 220
Thr Gly Trp Leu Thr Ala Glu Gln Lys Leu Gln Ile Thr Thr Asp Glu
225 230 235 240
Lys Met His Gln Ala Leu Ser Gly Gly Cys Tyr Thr Ala Ile Ile Ser
245 250 255
Pro Glu Gly Lys His Leu Cys Glu Pro Ile Ala Glu Gly Glu Gly Leu
260 265 270
Ala Ile Ala Asp Leu Asp Phe Ser Leu Ile Ala Lys Arg Lys Arg Met
275 280 285
Met Asp Ser Val Gly His Tyr Ala Arg Pro Asp Leu Leu Gln Leu Thr
290 295 300
Leu Asn Asn Gln Pro Trp Ser Ala Leu Glu Ala Asn Pro Val Thr Pro
305 310 315 320
Asn Ala Ile Pro Ala Val Ser Asp Pro Glu Leu Thr Glu Thr Ile Glu
325 330 335
Ala Leu Pro Asn Asn Pro Ile Phe Ser His
340 345

Claims (8)

1.一种腈水解酶突变体,其特征在于,所述突变体是将氨基酸序列SEQ ID NO.1的第64位的苯丙氨酸氨酸突变成酪氨酸,将第170位的蛋氨酸突变成甘氨酸。
2.一种编码权利要求1所述腈水解酶突变体的基因。
3.一种携带权利要求2所述基因的重组载体。
4.根据权利要求3所述的重组载体,其特征在于,所述重组载体以pET-24a(+)为表达载体。
5.一种携带权利要求2所述基因,或权利要求3或4所述重组载体的微生物细胞。
6.根据权利要求5所述的微生物细胞,其特征在于,所述微生物细胞以细菌或真菌为表达宿主。
7.一种烟酸的制备方法,其特征在于,所述方法为,将权利要求1所述腈水解酶突变体,或权利要求5或6所述微生物细胞添加至含有烟腈的培养基中,进行反应制备得到的。
8.权利要求1所述腈水解酶突变体,或权利要求2所述基因,或权利要求3或4所述重组载体,或权利要求5或6所述微生物细胞在制备烟酸或含有烟酸的产品中的应用。
CN202111478385.9A 2021-12-06 2021-12-06 一种理性设计提升腈水解酶活性的方法及应用 Active CN114250217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111478385.9A CN114250217B (zh) 2021-12-06 2021-12-06 一种理性设计提升腈水解酶活性的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111478385.9A CN114250217B (zh) 2021-12-06 2021-12-06 一种理性设计提升腈水解酶活性的方法及应用

Publications (2)

Publication Number Publication Date
CN114250217A CN114250217A (zh) 2022-03-29
CN114250217B true CN114250217B (zh) 2023-11-28

Family

ID=80791691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111478385.9A Active CN114250217B (zh) 2021-12-06 2021-12-06 一种理性设计提升腈水解酶活性的方法及应用

Country Status (1)

Country Link
CN (1) CN114250217B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116004593B (zh) * 2022-12-06 2024-04-12 江苏集萃未来食品技术研究所有限公司 半理性设计酶定向进化方法及其在腈水解酶分子改造中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254134A (zh) * 2018-12-03 2020-06-09 中国科学院天津工业生物技术研究所 腈基水解酶突变体及其在(s)-单腈单酸合成中的应用
CN112063607A (zh) * 2020-10-09 2020-12-11 浙江工业大学 一种腈水解酶突变体及其在催化合成2-氯烟酸中的应用
CN112210549A (zh) * 2019-07-09 2021-01-12 中国科学院天津工业生物技术研究所 腈水解酶突变蛋白及其在催化合成(r)-3-取代-4-氰基丁酸类化合物中的应用
CN112852789A (zh) * 2019-11-28 2021-05-28 中国科学院天津工业生物技术研究所 腈水解酶突变体及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254134A (zh) * 2018-12-03 2020-06-09 中国科学院天津工业生物技术研究所 腈基水解酶突变体及其在(s)-单腈单酸合成中的应用
CN112210549A (zh) * 2019-07-09 2021-01-12 中国科学院天津工业生物技术研究所 腈水解酶突变蛋白及其在催化合成(r)-3-取代-4-氰基丁酸类化合物中的应用
CN112852789A (zh) * 2019-11-28 2021-05-28 中国科学院天津工业生物技术研究所 腈水解酶突变体及其应用
CN112063607A (zh) * 2020-10-09 2020-12-11 浙江工业大学 一种腈水解酶突变体及其在催化合成2-氯烟酸中的应用

Also Published As

Publication number Publication date
CN114250217A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
CN108913671B (zh) 一种ω-转氨酶突变体及其应用
CN110229805B (zh) 一种通过序列一致性制备的谷氨酸脱羧酶突变体及其应用
CN110938616B (zh) 一种温泉热碱芽孢杆菌来源的腈水合酶的突变体
CN112877307B (zh) 一种氨基酸脱氢酶突变体及其应用
CN109321549B (zh) 一种比酶活提高的肝素酶i的定向改造酶及分子改造方法和表达工程菌
CN111471668A (zh) 一种腈水解酶突变体及其在制备1-氰基环己基乙酸中的应用
CN114250217B (zh) 一种理性设计提升腈水解酶活性的方法及应用
CN111778223A (zh) 一种改造羰基还原酶立体选择性的方法、羰基还原酶突变体及应用
CN114525268B (zh) 一种pH耐受性提高的谷氨酸脱羧酶突变体及其在γ-氨基丁酸合成中的应用
CN109072215B (zh) 一种头孢菌素c酰化酶突变体及其应用
CN112661820B (zh) 天山根瘤菌转录调控蛋白MsiR突变蛋白及其在刀豆氨酸生物传感器中的应用
CN114214308B (zh) 一种经半理性改造提升活性的腈水解酶突变体
CN112746067A (zh) 用于制备d-鸟氨酸的赖氨酸脱羧酶突变体
CN110129305B (zh) 一种用于制备7-aca的头孢菌素c酰化酶突变体
CN114934035B (zh) 一种淀粉降解能力提高的嗜热酸性iii型普鲁兰水解酶突变体及其制备方法和应用
CN112831532B (zh) 一种酶促合成d-亮氨酸的方法
CN114277020B (zh) 一种腈水解酶突变体、工程菌及其应用
US20150050701A1 (en) Cellulase compositions having improved thermostability and synergy
CN110846288B (zh) 一种谷胱甘肽双功能酶突变体及其应用
CN115896081A (zh) 天冬氨酸酶突变体及其应用
US9334517B2 (en) Endoglucanase having enhanced thermostability and activity
CN110628745B (zh) 一种突变酶Xynh31-K210R及其应用
CN111690675B (zh) 一种表达腈水合酶突变体的重组菌及其制备方法和应用
CN110699345A (zh) 一种卤醇脱卤酶突变体及其应用
CN111286497A (zh) 一种催化性能提高的脂肪酶及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant