CN114230330A - 一种固体氧化物燃料电池阴极材料及阴极层的制备方法 - Google Patents

一种固体氧化物燃料电池阴极材料及阴极层的制备方法 Download PDF

Info

Publication number
CN114230330A
CN114230330A CN202111517356.9A CN202111517356A CN114230330A CN 114230330 A CN114230330 A CN 114230330A CN 202111517356 A CN202111517356 A CN 202111517356A CN 114230330 A CN114230330 A CN 114230330A
Authority
CN
China
Prior art keywords
solid oxide
oxide fuel
fuel cell
cathode
cathode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111517356.9A
Other languages
English (en)
Other versions
CN114230330B (zh
Inventor
张醴陵
毕磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of South China
Original Assignee
University of South China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of South China filed Critical University of South China
Priority to CN202111517356.9A priority Critical patent/CN114230330B/zh
Publication of CN114230330A publication Critical patent/CN114230330A/zh
Application granted granted Critical
Publication of CN114230330B publication Critical patent/CN114230330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明公开了一种固体氧化物燃料电池阴极材料及阴极层的制备方法,其电池阴极材料为双钙钛矿材料,该双钙钛矿材料的分子式为Sr2Fe1.5(MoxScy)O6,其中,x+y=0.5,所述x为0.2~0.3。其制备方法为在去离子水中加入硝酸溶液混合根据Sr2Fe1.5(MoxScy)O6的化学计量比依次加入Sc2O3、SrCO3、Fe(NO3)3、(NH4)2MoO4,搅拌溶解均匀后,加入柠檬酸和乙二胺四乙酸作为络合剂溶解,再加入氨水,调节pH为弱碱性,然后在恒温下搅拌蒸发水分后继续加热得到粉体,即为Sr2Fe1.5(MoxScy)O6前驱体,将前驱体置于马弗炉中煅烧,得到Sr2Fe1.5(MoxScy)O6粉体,将Sr2Fe1.5(MoxScy)O6粉体研磨成阴极浆料,涂刷在已制备的半电池成品上,然后在微波烧结炉中煅烧得到电池阴极层,在测试温度为700℃下,其全电池的功率可达到1278mW cm‑2

Description

一种固体氧化物燃料电池阴极材料及阴极层的制备方法
技术领域
本发明涉及固体氧化物燃料电池制备技术领域,尤其涉及一种固体氧化物燃料电池阴极材料及阴极层的制备方法。
背景技术
近几十年来,质子传导的固体氧化物燃料电池(H-SOFCs)继承了传统SOFCs的优点(如全固态结构),又避免了传统SOFCs的高工作温度和燃料的稀释,是目前燃料电池领域的一个重要研究方向。H-SOFCs的阴极材料多数为钙钛矿结构,而双钙钛矿结构也相继被人们利用起来。
微波烧结是20世纪80年代中后期发展起来的一种新的烧结技术,其原理与常规烧结工艺有本质的区别,常规烧结时热量是通过介质由表向里扩散。而微波烧结则利用了微波的体加热特性,使材料整体同时均匀加热,因此其加热和烧结速度非常快,这对于制备超细晶粒结构的高密度、高强度、高韧性材料非常有利。
近年来,微波烧结技术在各种材料的制备中受到广泛关注,但并未针对SOFCs方面深入探究。因此,利用微波烧结制备方法在H-SOFCs的阴极材料中鲜有被使用到,鉴于此,有必要设计出一种固体氧化物燃料电池阴极材料及阴极层的微波烧结制备方法,以解决上述问题。
发明内容
本发明提供了固体氧化物燃料电池阴极材料及其制备方法,并将其制备成浆料涂刷在半电池成品上,利用微波烧结法制备出了具有新型微观结构和优良性能的阴极层结构,使得H-SOFCs性能得到显著提高。
本发明提供了一种固体氧化物燃料电池阴极材料,其为双钙钛矿材料,该双钙钛矿材料的分子式为Sr2Fe1.5(MoxScy)O6,其中,x+y=0.5,所述x为0.2~0.3。
其制备方法包括以下步骤:
S1.在去离子水中加入硝酸溶液混合,根据Sr2Fe1.5(MoxScy)O6的化学计量比依次加入Sc2O3、SrCO3、Fe(NO3)3、(NH4)2MoO4,搅拌溶解均匀得到混合溶液A;
S2.在步骤S1得到的混合溶液A中,加入柠檬酸和乙二胺四乙酸作为络合剂溶解,再加入氨水,调节pH为弱碱性,得到混合溶液B;
S3.将S2配制得到的混合溶液B在恒温下搅拌蒸发水分后继续加热直至成粉体,即为Sr2Fe1.5(MoxScy)O6前驱体;
S4.将步骤S3得到的Sr2Fe1.5(MoxScy)O6前驱体置于马弗炉中煅烧,得到Sr2Fe1.5(MoxScy)O6粉体,即为所述固体氧化物燃料电池阴极材料;
所述步骤S1、S2和S3均在140~160℃下进行。
所述步骤S2中的柠檬酸、乙二胺四乙酸和溶液中总金属离子的摩尔量比值为1.5:1:1。
所述步骤S4中的煅烧温度为850~1050℃,煅烧时间为1~3h。
本发明还提供了固体氧化物燃料电池阴极层的制备方法,将上述固体氧化物燃料电池阴极材料研磨成阴极浆料,涂刷在已制备的半电池成品上,烘干后在微波烧结炉中煅烧得到电池阴极层;所述煅烧温度为800~850℃,煅烧时间为10~20min。
本发明的有益效果是:
(1)本发明通过溶胶-凝胶法,在弱碱性的条件下,制备得到Sr2Fe1.5(MoxScy)O6前驱体,将前驱体进行传统马弗炉高温煅烧得到所需固体氧化物燃料电池阴极材料后,将其制备成浆料涂刷在半电池成品上,再进行微波烧结得到阴极层,在测试温度为700℃下,其全电池的功率可达到1278mW cm-2
(2)微波烧结制备技术使阴极材料内外受热均匀,使其具有新型微观结构和优良性能,改变了传统的阴极层烧结工艺的现状,在固体氧化物燃料电池领域具有广阔的应用前景和巨大的发展潜力。
附图说明
图1为实施例1、2、3、4和5制备得到的电池阴极材料的XRD图。
图2为实施例6和对比例1得到的全电池的功率密度曲线图。
图3为实施例7、对比例2和对比例3得到的全电池的功率密度曲线图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在具体实施例中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
实施例1一种固体氧化物燃料电池阴极材料的制备方法
S1.在100ml去离子水中加入10ml浓度为12mol/L硝酸水溶液溶液混合,根据Sr2Fe1.5(Mo0.25Sc0.25)O6的化学计量比依次加入0.086g Sc2O3、1.48g SrCO3、3.03g Fe(NO3)3、0.22g(NH4)2MoO4,搅拌溶解均匀得到混合溶液A;
S2.在步骤S1得到的混合溶液A中,加入6.3g柠檬酸和5.84g乙二胺四乙酸作为络合剂溶解,再加入20ml氨水,调节pH为7~9,得到混合溶液B;所述柠檬酸、乙二胺四乙酸和溶液A中总金属离子的摩尔量比值为1.5:1:1;
S3.将步骤S2得到的混合溶液B在恒温搅拌下蒸发水分后转入坩埚中继续加热直至成粉体,即为Sr2Fe1.5(Mo0.25Sc0.25)O6前驱体;
S4.将步骤S3得到的Sr2Fe1.5(Mo0.25Sc0.25)O6前驱体置于马弗炉中,在850℃下进行3h的煅烧,得到Sr2Fe1.5(Mo0.25Sc0.25)O6粉体,即为所述固体氧化物燃料电池阴极材料。
所述步骤S1、S2和S3均在150℃下进行。
实施例2一种固体氧化物燃料电池阴极材料的制备方法
其制备方法基本同实施例1,与实施例1的区别在于:煅烧温度为900℃。
实施例3一种固体氧化物燃料电池阴极材料的制备方法
其制备方法基本同实施例1,与实施例1的区别在于:煅烧温度为950℃。
实施例4一种固体氧化物燃料电池阴极材料的制备方法
其制备方法基本同实施例1,与实施例1的区别在于:煅烧温度为1000℃。
实施例5一种固体氧化物燃料电池阴极材料的制备方法
其制备方法基本同实施例1,与实施例1的区别在于:煅烧温度为1050℃。
图1为实施例1、2、3、4和5制备得到的电池阴极材料的XRD图,从图1可以看出,通过马弗炉850~1050℃高温煅烧后可获得纯相的阴极材料。
实施例6一种固体氧化物燃料电池阴极层的制备方法
(1)将实施例1制备得到的Sr2Fe1.5(Mo0.25Sc0.25)O6粉体与松油醇按1:1的质量比放在研钵中研磨成黏胶状,得到所需的阴极浆料;
(2)将阳极和电解质粉体共压成半电池,经过马弗炉1350℃高温煅烧6h,得到半电池成品;
(3)将阴极浆料涂刷在半电池上成品上,进行烘干后,再放入微波烧结炉中800℃煅烧10min得到电池阴极层,组成全电池。
实施例7一种固体氧化物燃料电池阴极层的制备方法
(1)将实施例5制备得到的Sr2Fe1.5(Mo0.25Sc0.25)O6粉体与松油醇按1:1的质量比放在研钵中研磨成黏胶状,得到所需的阴极浆料;
(2)将阳极和电解质粉体共压成半电池,经过马弗炉1350℃高温煅烧6h,得到半电池成品;
(3)将阴极浆料涂刷在半电池成品上,进行烘干后,再放入微波烧结炉中850℃煅烧10min,得到电池阴极层,组成全电池。
对比例1一种固体氧化物燃料电池阴极层的制备方法
其制备方法基本同实施例6,与实施例6的区别在于:将微波烧结炉中800℃煅烧10min替换为马弗炉中800℃煅烧10min。
图2为实施例6和对比例1得到的全电池的功率密度曲线图,在测试温度为700℃下,用马弗炉煅烧的全电池功率为1015mW cm-2,使用微波煅烧的全电池功率为1278mW cm-2。可以看出,通过微波高温煅烧后的阴极层所在的全电池的性能得到了明显提高。
对比例2一种固体氧化物燃料电池阴极层的制备方法
其制备方法基本同实施例7,与实施例7的区别在于:将Sr2Fe1.5(Mo0.25Sc0.25)O6粉体替换为Sr2Fe1.5Mo0.5O6粉体材料。
对比例3一种固体氧化物燃料电池阴极层的制备方法
其制备方法基本同实施例7,与实施例7的区别在于:将Sr2Fe1.5(Mo0.25Sc0.25)O6粉体替换为Sr2Fe1.5Sc0.5O6粉体材料。
图3为实施例7、对比例2和对比例3得到的全电池的功率密度曲线图,从图3可以看出,在测试温度为700℃下,电池阴极层材料为Sr2Fe1.5(Mo0.25Sc0.25)O6经过微波高温煅烧后,电池测试性能高于Sr2Fe1.5Mo0.5O6与Sr2Fe1.5Sc0.5O材料,达到了1232mW cm-2

Claims (5)

1.一种固体氧化物燃料电池阴极材料,其特征在于:其为双钙钛矿材料,该双钙钛矿材料的分子式为Sr2Fe1.5(MoxScy)O6,其中,x+y=0.5,所述x为0.2~0.3。
2.如权利要求1所述的固体氧化物燃料电池阴极材料的制备方法,其特征在于:包括以下步骤:
S1.在去离子水中加入硝酸溶液混合,根据Sr2Fe1.5(MoxScy)O6的化学计量比依次加入Sc2O3、SrCO3、Fe(NO3)3、(NH4)2MoO4,搅拌溶解均匀得到混合溶液A;
S2.在步骤S1得到的混合溶液A中,加入柠檬酸和乙二胺四乙酸作为络合剂溶解,再加入氨水,调节pH为弱碱性,得到混合溶液B;
S3.将S2得到的混合溶液B在恒温下搅拌蒸发水分后继续加热直至成粉体,即为Sr2Fe1.5(MoxScy)O6前驱体;
S4.将步骤S3得到的Sr2Fe1.5(MoxScy)O6前驱体置于马弗炉中煅烧,得到Sr2Fe1.5(MoxScy)O6粉体,即为所述的固体氧化物燃料电池阴极材料;
所述步骤S1、S2和S3均在140~160℃下进行。
3.如权利要求1所述的固体氧化物燃料电池阴极材料的制备方法,其特征在于:所述步骤S2中的柠檬酸、乙二胺四乙酸和溶液A中总金属离子的摩尔量比值为1.5:1:1。
4.如权利要求1所述的固体氧化物燃料电池阴极材料的制备方法,其特征在于:所述步骤S4中的煅烧温度为850~1050℃,煅烧时间为1~3h。
5.一种固体氧化物燃料电池阴极层的制备方法,其特征在于:将权利要求1~4任意一项所述的固体氧化物燃料电池阴极材料研磨成阴极浆料,涂刷在已制备的半电池成品上,然后在微波烧结炉中煅烧得到电池阴极层;所述煅烧温度800~850℃,时间为10~20min。
CN202111517356.9A 2021-12-09 2021-12-09 一种固体氧化物燃料电池阴极材料及阴极层的制备方法 Active CN114230330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111517356.9A CN114230330B (zh) 2021-12-09 2021-12-09 一种固体氧化物燃料电池阴极材料及阴极层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111517356.9A CN114230330B (zh) 2021-12-09 2021-12-09 一种固体氧化物燃料电池阴极材料及阴极层的制备方法

Publications (2)

Publication Number Publication Date
CN114230330A true CN114230330A (zh) 2022-03-25
CN114230330B CN114230330B (zh) 2022-10-25

Family

ID=80755062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111517356.9A Active CN114230330B (zh) 2021-12-09 2021-12-09 一种固体氧化物燃料电池阴极材料及阴极层的制备方法

Country Status (1)

Country Link
CN (1) CN114230330B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956838A (zh) * 2022-06-02 2022-08-30 山东工业陶瓷研究设计院有限公司 一种sofc用阳极支撑体制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789501A (zh) * 2010-01-22 2010-07-28 清华大学 用于固体氧化物电解池阴极的钙钛矿粉体材料的制备方法
US20110189582A1 (en) * 2010-02-03 2011-08-04 University Of South Carolina Mixed Ionic and Electronic Conductor Based on Sr2Fe2-x MoXO6 Perovskite
CN102584231A (zh) * 2011-12-23 2012-07-18 南京工业大学 离子掺杂的双钙钛矿结构钨钼酸盐氧化物粉体的制备方法
CN110098410A (zh) * 2019-05-17 2019-08-06 福州大学 一种纳米结构含钴复合阴极材料的合成方法
CN112408490A (zh) * 2019-08-20 2021-02-26 南京理工大学 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789501A (zh) * 2010-01-22 2010-07-28 清华大学 用于固体氧化物电解池阴极的钙钛矿粉体材料的制备方法
US20110189582A1 (en) * 2010-02-03 2011-08-04 University Of South Carolina Mixed Ionic and Electronic Conductor Based on Sr2Fe2-x MoXO6 Perovskite
CN102584231A (zh) * 2011-12-23 2012-07-18 南京工业大学 离子掺杂的双钙钛矿结构钨钼酸盐氧化物粉体的制备方法
CN110098410A (zh) * 2019-05-17 2019-08-06 福州大学 一种纳米结构含钴复合阴极材料的合成方法
CN112408490A (zh) * 2019-08-20 2021-02-26 南京理工大学 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG SUN ET AL.: "Investigation of Sc doped Sr2Fe1.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells", 《JOURNAL OF POWER SOURCES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956838A (zh) * 2022-06-02 2022-08-30 山东工业陶瓷研究设计院有限公司 一种sofc用阳极支撑体制备方法
CN114956838B (zh) * 2022-06-02 2023-10-27 山东工业陶瓷研究设计院有限公司 一种sofc用阳极支撑体制备方法

Also Published As

Publication number Publication date
CN114230330B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
CN106684369A (zh) 一种钠快离子导体镶嵌包覆的钠离子电池正极材料及其合成方法
CN108110229A (zh) 氧化铝包覆改性锂镍钴锰氧正极材料的制备方法
CN102617139B (zh) 一种钛酸锶镧基粉体材料的制备方法
CN109860534A (zh) 一种碳量子点修饰的三元正极材料及其制备方法
CN110858643A (zh) 一种快离子导体改性锂离子电池正极材料及其制备方法
KR20130000849A (ko) 리튬이온 이차전지용 전극 활물질 제조 방법 및 이를 이용한 리튬이온 이차전지
CN105870459A (zh) 一种高催化活性中温固体氧化物燃料电池复合阴极材料及其制备方法
CN109920995A (zh) 一种硅或其氧化物@钛氧化物核壳结构复合材料及制备
CN112186201B (zh) 金属氧化物阴极材料、复合阴极材料及电池
CN114230330B (zh) 一种固体氧化物燃料电池阴极材料及阴极层的制备方法
CN112408490B (zh) 水热合成Ba掺杂Sr2Fe1.5Mo0.5O6双钙钛矿纳米材料的方法
CN105185992A (zh) 一种碳-磷酸铁锂复相单层共包覆磷酸铁锰锂材料及其制备方法
CN112382739A (zh) 一种表面包覆改性的镍钴锰酸锂三元正极材料的制备方法
CN107742722A (zh) 一种锂离子电池用锰酸锂正极材料的改性方法
CN110224128A (zh) 一种pva热解包覆碳的钴酸锌纳米阵列材料及其制备方法、应用
CN113044890A (zh) 一种正极材料及其制备方法和锂离子电池
CN113745497A (zh) 单晶高镍锂离子电池正极材料的梯度掺杂和表面修饰方法
Gan et al. Zr doped NASICON-type LATP glass-ceramic as a super-thin coating onto deoxidized carbon wrapped CNT-S cathode for lithium-sulphur battery
CN210006820U (zh) 一种具有掺杂和包覆双修饰的锂离子电池正极结构
CN109616656B (zh) 锂电池用铜镁掺杂的包覆磷酸镍锂正极材料及制备方法
CN114122382B (zh) 一种p3型钠离子电池层状正极材料及其制备方法和应用
CN116081591A (zh) 一种钠离子电池负极材料的制备方法
CN115947387A (zh) 一种b位五元高熵双钙钛矿结构氧化物电极材料及其制备方法
CN115417462A (zh) 一种高效稳定的空气极及其制备方法和应用
CN112864392B (zh) 一种加热溶液法制备含掺杂元素的正极材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant