CN114230329A - 一种铁氧体吸波材料及其制备方法 - Google Patents

一种铁氧体吸波材料及其制备方法 Download PDF

Info

Publication number
CN114230329A
CN114230329A CN202111516909.9A CN202111516909A CN114230329A CN 114230329 A CN114230329 A CN 114230329A CN 202111516909 A CN202111516909 A CN 202111516909A CN 114230329 A CN114230329 A CN 114230329A
Authority
CN
China
Prior art keywords
oxide
absorbing material
wave
equal
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111516909.9A
Other languages
English (en)
Inventor
李宇东
谭春林
陈肯
高银
姚锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Aerospace Magnet and Magneto Co Ltd
Original Assignee
Hunan Aerospace Magnet and Magneto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Aerospace Magnet and Magneto Co Ltd filed Critical Hunan Aerospace Magnet and Magneto Co Ltd
Priority to CN202111516909.9A priority Critical patent/CN114230329A/zh
Publication of CN114230329A publication Critical patent/CN114230329A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种铁氧体吸波材料及其制备方法,该铁氧体吸波材料的化学式为BaCoxNiyTizLa2‑x‑y‑ zFe16‑2x‑2y‑2zO27,式中:0≤x≤2,0≤y≤2,0≤z≤2;所述铁氧体吸波材料为,以原料碳酸钡和氧化亚铁,还包括氧化钛、氧化钴、氧化镍和氧化镧中的至少两种以上混合物为主体,氧化铜为助剂混合烧结而成。本发明吸波材料的吸波性能好,且匹配厚度薄,当厚度仅为0.85 mm时,在26.5‑40 GHz频段内的最大反射损耗达‑21 dB,‑10 dB有效吸收带宽达13.5 GHz,其性能可以通过调节吸波材料的厚度进一步进行调控;本发明采用固相烧结法制备,工艺简单,成本低,适合工业大批量生产。

Description

一种铁氧体吸波材料及其制备方法
技术领域
本发明涉及一种吸波材料及其制备方法,尤其涉及一种能够应用于Ka波段的高频铁氧体吸波材料及其制备方法。
背景技术
此前,国家工信部批复的四个5G频段包括3.4 - 3.6 GHz、4.8 - 5.0 GHz、24.75- 27.5 GHz和37 - 42.5 GHz频段,按照搜索雷达的工作频段划分,Ka波段为26.5 - 40GHz,部分涵盖于5G频段中。然而,随着5G网络的普及,社会环境充斥着漫天的电磁辐射,高频电磁波带来的危害越来越明显,不仅会影响电子器件的正常运转,还会产生环境污染。
吸波材料是指能将入射的电磁波吸收和衰减,并将其转换成热能而耗散,或令电磁波因干涉作用而消失的一类材料。雷达吸波材料能够有效抑制透射波和反射波,被广泛用于隐身、电磁屏蔽等领域。
吸波材料,根据损耗机理可分为电阻型、电介质型、磁介质型三类。
电阻型吸波材料包括碳纳米管、石墨、导电高分子、非磁性金属粉等。
电介质型吸波材料主要为钛酸钡铁电陶瓷。
磁损耗型吸波材料主要为磁性金属粉和铁氧体。其中铁氧体兼具电损耗和磁损耗,是一种优异的电磁吸波材料。
迄今为止,关于Ka波段吸波材料的研究较少,可批量应用于工业生产的技术还不成熟。
CN104844182A公开了一种锆钛共掺杂钡铁氧体吸波粉体材料,其化学式为BaFe12-xZrxTixO19,其中x=0.2~0.4,所述锆钛共掺杂钡铁氧体为单相多晶粉体,钡铁氧体中同时存在Fe3+和Fe2+
CN104628372A公开了一种铌镍共掺杂钡铁氧体吸波粉体材料,该材料为单相多晶粉体,化学式为BaFe12-2xNbxNixO19,其中x=0.4~0.6,钡铁氧体中同时存在Fe3+和Fe2+
CN104671764A公开了一种铌掺杂钡铁氧体吸波粉体材料,及其化学式为BaFe12- xNbxO19,其中x=0.6~0.8,所述铌掺杂钡铁氧体为单相多晶粉体,钡铁氧体中同时存在Fe3+和Fe2+
上述专利申请文件公开的技术方案,均是采用自蔓延燃烧法、溶胶-凝胶法等化学法制备离子掺杂钡铁氧体,通过掺杂高价态的离子取代低价态的铁离子,实现在Ka波段内出现双吸收峰。但是,通过上述化学法制备铁氧体虽然可精确控制材料的晶相成分,但相对应的工艺过程较为复杂,化学反应程度需要大量的经验控制,难以采用自动化运用于工业生产模式;且制备过程中会用到酸、有机试剂等化学物品,不利于工业中安全环保要求,难以大批量生产。
CN103740233A公开了一种毫米波吸波涂层材料及其制备方法,所述材料由复合吸收剂、树脂和固化剂组成;所述复合吸收剂包括质量比为(5~30):(15~60):(10~55)的碳纳米管、纳米氧化锡锑和钡铁氧体。该方法制备的吸波涂层材料虽然吸收频段较宽,但匹配厚度达到2 mm,在实际运用过程中,不仅会带来成本的大幅上升,也会导致无法满足对膜厚有严格要求的场景中的应用,应用范围受限。
发明内容
本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种吸波能力强、频带宽、厚度薄的铁氧体吸波材料。
本发明进一步要解决的技术问题是,提供一种操作简便,反应过程中不使用酸和有机试剂,适用于工业生产的铁氧体吸波材料的制备方法。
本发明解决其技术问题采用的技术方案是,一种铁氧体吸波材料,所述铁氧体吸波材料的化学式为BaCoxNiyTizLa2-x-y-zFe16-2x-2y-2zO27,其中0≤x≤2,0≤y≤2,0≤z≤2,式中铁的化合价为+2、+3。
进一步,所述铁氧体吸波材料为,以原料碳酸钡和氧化亚铁,氧化钛、氧化钴、氧化镍和氧化镧中的两种以上混合物为主体,氧化铜为助剂混合烧结而成。
进一步,所述原料的质量分数为:碳酸钡10~20wt%,氧化亚铁70~80 wt %,氧化钛、氧化钴、氧化镍和氧化镧中的两种以上混合物5~10 wt %,氧化铜1~2 wt %。
进一步,所述混合物由氧化钛、氧化钴、氧化镍和氧化镧中的三种以上混合。
进一步,所述氧化钛、氧化钴、氧化镍和氧化镧的质量比为0~4:0~3:0~7:1~2。
本发明进一步解决其技术问题采用的技术方案是,一种铁氧体吸波材料的制备方法,包括下列步骤:
(1)将原料碳酸钡和氧化亚铁,与氧化钛、氧化钴、氧化镍和氧化镧中的两种以上混合物混合,再加入助剂氧化铜,得混合料;将所述混合料进行湿法球磨,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热,进行烧结反应,然后冷却,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎,过筛,得铁氧体吸波材料。
进一步,步骤(1)中,所述湿法球磨的时间为1~3h。
进一步,步骤(1)中,所述湿法球磨中混合料:钢球:水的质量比为1~2:8~15:1~2。
进一步,步骤(3)中,所述烧结的温度为1320 ~1370℃;所述烧结的时间为1~3h。温度过高或烧结时间太久易出现过烧的情况,此时材料的晶粒异常长大,影响其吸波性能,而温度过低或烧结时间不够则导致固相反应不充分,因此温度过高或过低都将影响其吸波性能。
进一步,步骤(4)中,所述过筛的筛网目数为100~200目。
与现有技术相比,本发明具有以下有益效果:(1)本发明通过掺杂金属阳离子,改变原体系中铁元素的含量,利用各种金属元素间的协同作用,共同调节铁氧体的磁导率,如在铁氧体中掺杂稀土元素,提高了介电常数;本发明通过调节材料的介电常数和磁导率,进而调节材料整体的吸波性能;在烧结体系中加入少量助烧剂氧化铜,助烧剂氧化铜本身的熔点相对较低,烧结过程中熔融成液相促进铁氧体材料的烧结,降低了烧结的温度,减少保温时间,节约了能耗,降低了生产成本;(2)本发明吸波材料的吸波性能好,且匹配厚度薄,优选方案,当厚度仅为0.85 mm时,在26.5 - 40 GHz频段内的最大反射损耗达- 21 dB,-10dB有效吸收带宽达13.5GHz,其性能还能通过调节吸波材料的厚度进一步进行调控;(3)本发明采用固相烧结法制备,工艺简单,成本低,适合工业大批量生产;同时可进一步配合树脂、固化剂等制成吸波涂层,适用面更广。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
本实施例铁氧体吸波材料的化学式为BaCo0.6Ni1.5La0.1Fe15.8O27,其中铁的化合价为+2、+3。
本实施例铁氧体吸波材料的制备方法,包括下列步骤:
(1)将原料碳酸钡、氧化亚铁、氧化钴、氧化镍、氧化镧和氧化铜按质量比10:79:2:6:2:1进行混合,加入去离子水湿法球磨2 h,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热至1370℃烧结2 h,然后冷却至室温,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎细磨,过160筛网,得铁氧体吸波材料。
采用矢量网络分析仪对制得的多离子掺杂钡铁氧体吸波材料进行测试。测试方法为,将本实施例铁氧体吸波材料配合树脂、固化剂按粉:树脂:固化剂为80:20:10的比例混合后,喷涂在铝板上进行吸波性能实测,检测结果见表1。以下实施例和对比例的检测方法与本实施例的检测方法相同。
实施例2
本实施例铁氧体吸波材料的化学式为BaCo0.6Ni1.8La0.1Fe15.5O27,其中铁的化合价为+2、+3。
本实施例铁氧体吸波材料的制备方法,包括下列步骤:
(1)将原料碳酸钡、氧化亚铁、氧化钴、氧化镍、氧化镧和氧化铜按质量比18:72:2:7:1:1进行混合,加入去离子水湿法球磨2 h,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热至1370℃烧结2 h,然后冷却至室温,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎细磨,过160筛网,得铁氧体吸波材料。
实施例3
本实施例铁氧体吸波材料的化学式为BaCo1.2Ti0.7La0.1Fe16O27,其中铁的化合价为+2、+3。
本实施例铁氧体吸波材料的制备方法,包括下列步骤:
(1)将原料碳酸钡、氧化亚铁、氧化钴、氧化钛、氧化镧和氧化铜按质量比17:76:4:1:1:1进行混合,加入去离子水湿法球磨2 h,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热至1350℃烧结2 h,然后冷却至室温,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎细磨,过160筛网,得铁氧体吸波材料。
实施例4
本实施例铁氧体吸波材料的化学式为BaCo0.6Ti1.8La0.1Fe15.5O27,其中铁的化合价为+2、+3。
本实施例铁氧体吸波材料的制备方法,包括下列步骤:
(1)将原料碳酸钡、氧化亚铁、氧化钴、氧化钛、氧化镧和氧化铜按质量比17:76:2:3:1:1进行混合,加入去离子水湿法球磨2 h,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热至1320℃烧结2 h,然后冷却至室温,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎细磨,过160筛网,得铁氧体吸波材料。
对比例1
与实施例4比较,主要区别在于,在钡铁氧体体系中只加入了氧化钛和氧化钴。
本实施例铁氧体吸波材料的制备方法,包括下列步骤:
(1)将原料碳酸钡、氧化亚铁、氧化钴、氧化钛和氧化铜按质量比15:77:3:3:2进行混合,加入去离子水湿法球磨2 h,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热至1320℃烧结2 h,然后冷却至室温,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎细磨,过160筛网,得铁氧体吸波材料。
对比例2
与实施例1比较,主要区别在于,铁氧体吸波材料的主体成分仅为碳酸钡和氧化亚铁,没有加入氧化钴、氧化镍和氧化镧;其他制备条件与实施例1相同。
对比例3
与实施例3比较,主要区别在于,在钡铁氧体体系中只加入了氧化钛;其他制备条件与实施例3相同。
对比例4
与实施例2比较,主要区别在于,将碳酸钡的含量增加至23%,高于20%;将氧化亚铁的含量降低至65%,低于70%;其他制备条件与实施例2相同。
表1 实施例1~4和对比例1~4铁氧体吸波材料的吸波性能检测结果
实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3 对比例4
碳酸钡(wt%) 10 18 17 17 15 18 17 23
氧化亚铁(wt%) 79 72 77 76 77 80 77 65
氧化钴(wt%) 2 2 / 3 3 / / 2
氧化镍(wt%) 6 7 / / / / / 7
氧化镧(wt%) 2 1 1 1 / / / 1
氧化钛(wt%) / / 4 2 3 / 5 /
氧化铜(wt%) 1 1 1 1 2 2 1 2
涂层厚度(mm) 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
最大反射损耗(dB) - 21 -16 -18 - 17 -16 -5 -12 -12
最大吸收峰频率(GHz) 38 32 28 30 34.5 36.5 29.5 32
-10 dB吸收带宽(GHz) 12.63 13.5 12.28 12.51 9.67 0 8.77 7.78

Claims (8)

1.一种铁氧体吸波材料,其特征在于,所述铁氧体吸波材料的化学式为BaCoxNiyTizLa2-x-y-zFe16-2x-2y-2zO27,其中0≤x≤2,0≤y≤2,0≤z≤2。
2.根据权利要求1所述的铁氧体吸波材料,其特征在于,所述铁氧体吸波材料为,以原料碳酸钡和氧化亚铁,氧化钛、氧化钴、氧化镍和氧化镧中的两种以上混合物为主体,氧化铜为助剂混合烧结而成。
3. 根据权利要求1或2所述的铁氧体吸波材料,其特征在于,所述原料的质量分数为:碳酸钡10~20wt%,氧化亚铁70~80 wt %,氧化钛、氧化钴、氧化镍和氧化镧中的两种以上混合物5~10 wt %,氧化铜1~2 wt %。
4.一种如权利要求1~3之一所述的铁氧体吸波材料的制备方法,其特征在于,包括下列步骤:
(1)将原料碳酸钡和氧化亚铁,与氧化钛、氧化钴、氧化镍和氧化镧中的两种以上混合物混合,再加入助剂氧化铜,得混合料;将所述混合料进行湿法球磨,得球磨浆料;
(2)将步骤(1)所得的球磨浆料喷雾干燥,得干燥混合料;
(3)将步骤(2)所得的干燥混合料加热,进行烧结,然后冷却,得吸波剂烧结料;
(4)将步骤(3)所得的吸波剂烧结料进行振磨破碎细磨,过筛,得铁氧体吸波材料。
5.根据权利要求4所述的铁氧体吸波材料的制备方法,其特征在于,步骤(1)中,所述湿法球磨的时间为1~3h。
6.根据权利要求4或5所述的铁氧体吸波材料的制备方法,其特征在于,步骤(1)中,所述湿法球磨中,混合料:钢球:水的质量比为1~2:8~15:1~2。
7.根据权利要求4~6之一所述的铁氧体吸波材料的制备方法,其特征在于,步骤(3)中,所述烧结的温度为1320~1370℃;所述烧结的时间为1~3h。
8.根据权利要求4~7之一所述的铁氧体吸波材料的制备方法,其特征在于,步骤(4)中,所述过筛的筛网目数为100~200目。
CN202111516909.9A 2021-12-13 2021-12-13 一种铁氧体吸波材料及其制备方法 Pending CN114230329A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111516909.9A CN114230329A (zh) 2021-12-13 2021-12-13 一种铁氧体吸波材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111516909.9A CN114230329A (zh) 2021-12-13 2021-12-13 一种铁氧体吸波材料及其制备方法

Publications (1)

Publication Number Publication Date
CN114230329A true CN114230329A (zh) 2022-03-25

Family

ID=80755095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111516909.9A Pending CN114230329A (zh) 2021-12-13 2021-12-13 一种铁氧体吸波材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114230329A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822097A (en) * 1956-06-02 1959-10-21 Philips Electrical Ind Ltd Improvements in methods of manufacturing ferromagnetic ferrite bodies from ferromagnetic ferrite materials
US5232617A (en) * 1990-04-09 1993-08-03 Centre National de la Recherche Scientiique Process for the preparation of hexaferrites
US6093338A (en) * 1997-08-21 2000-07-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Crystal-oriented ceramics, piezoelectric ceramics using the same, and methods for producing the same
CN102643082A (zh) * 2012-03-05 2012-08-22 沈阳理工大学 一种w型钡铁氧体的制备方法
CN112430078A (zh) * 2020-12-31 2021-03-02 杨方宗 一种高性能纳米稀土掺杂钡铁氧体永磁材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB822097A (en) * 1956-06-02 1959-10-21 Philips Electrical Ind Ltd Improvements in methods of manufacturing ferromagnetic ferrite bodies from ferromagnetic ferrite materials
US5232617A (en) * 1990-04-09 1993-08-03 Centre National de la Recherche Scientiique Process for the preparation of hexaferrites
US6093338A (en) * 1997-08-21 2000-07-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Crystal-oriented ceramics, piezoelectric ceramics using the same, and methods for producing the same
CN102643082A (zh) * 2012-03-05 2012-08-22 沈阳理工大学 一种w型钡铁氧体的制备方法
CN112430078A (zh) * 2020-12-31 2021-03-02 杨方宗 一种高性能纳米稀土掺杂钡铁氧体永磁材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
何玉平等: "BaMnZnCoTi-W型铁氧体微波吸收剂的制备和特性研究", 《功能材料》 *
周克省等: "W型Ba_(1-x)La_xCo_2Fe_(16)O_(27)的微波吸收性能", 《中南大学学报(自然科学版)》 *
王潇雅等: "W型钡铁氧体的研究进展", 《宇航材料工艺》 *
王等: "稀土元素对W型钡铁氧体微波吸收特性的作用", 《功能材料与器件学报》 *

Similar Documents

Publication Publication Date Title
CN110526702B (zh) 一种碳复合锰锌铁氧体宽频吸波材料的制备方法
CN104844182B (zh) 一种锆钛共掺杂钡铁氧体吸波粉体材料及其制备方法
CN110511013B (zh) 一种La-Ce二元掺杂钡铁氧体吸波材料及制备方法
CN107418510B (zh) 一种埃洛石基软磁铁氧体吸波材料的制备方法
CN103482969A (zh) 一种铁氧体吸波材料及其制备方法
CN110856432B (zh) 一种制备碳包覆锰氧化合物电磁吸波材料的方法
CN104030667A (zh) 一种锆掺杂钡铁氧体吸波材料及其制备方法
Deng et al. Magnetic and microwave absorbing properties of low-temperature sintered BaZr x Fe (12− x) O 19
CN104628372A (zh) 一种铌镍共掺杂钡铁氧体吸波粉体材料及其制备方法
CN109095919B (zh) 一种具有多级微结构分布的钛酸钡/四氧化三钴复相毫米波吸波粉体及制备方法
CN112408409A (zh) 一种耐高温高熵吸波陶瓷及其制备方法和应用
CN112142456A (zh) 一种铁氧体吸波材料及其制备方法
CN110540735B (zh) 一种环氧树脂基复合吸波材料及其制备方法和应用
CN113956027A (zh) 一种铁氧体吸波材料及其制备方法
CN102153338A (zh) 一种渗流型钛酸钡-镍锌铁氧体复合陶瓷吸波材料及其制备方法
CN115117640A (zh) 一种耐候性强的低频雷达吸收剂及其制备方法
CN108892502B (zh) 一种钒镍共掺的钡铁氧体吸波粉体材料及其制备方法
CN111073596A (zh) 一种吸波剂及其制备方法
CN104671764B (zh) 一种铌掺杂钡铁氧体吸波粉体材料及制备方法
CN103833351A (zh) 微波介质陶瓷及其制备方法
CN103242037B (zh) 在l波段内具有高磁损耗的六角铁氧体材料及制备方法
CN114230329A (zh) 一种铁氧体吸波材料及其制备方法
CN114455630B (zh) 一种多频段复合电磁波吸收材料及其制备方法和应用
CN109179490B (zh) 一种镧掺杂二氧化锡空心多孔微纳米球及其制备方法和应用
CN114716148B (zh) 一种可见光/激光/红外/雷达兼容隐身材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220325

RJ01 Rejection of invention patent application after publication