CN114227754B - 一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法 - Google Patents

一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法 Download PDF

Info

Publication number
CN114227754B
CN114227754B CN202111567904.9A CN202111567904A CN114227754B CN 114227754 B CN114227754 B CN 114227754B CN 202111567904 A CN202111567904 A CN 202111567904A CN 114227754 B CN114227754 B CN 114227754B
Authority
CN
China
Prior art keywords
electric actuating
artificial muscle
film
muscle device
sodium alginate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111567904.9A
Other languages
English (en)
Other versions
CN114227754A (zh
Inventor
杨俊杰
王思永
姚金彤
韦康
于涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202111567904.9A priority Critical patent/CN114227754B/zh
Publication of CN114227754A publication Critical patent/CN114227754A/zh
Application granted granted Critical
Publication of CN114227754B publication Critical patent/CN114227754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1075Programme-controlled manipulators characterised by positioning means for manipulator elements with muscles or tendons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Robotics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Prostheses (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法,属于生物材料技术领域,本发明采用碘化钙CaI2交联海藻酸钠以配制电致动液、并通过液氮超低温速冻和微波真空干燥而制得电致动膜,再与经过远红外干燥后的电极膜装配成型人工肌肉器件;其中,基于正交实验法来获得多工艺耦合方法下的最佳工艺参数,进而增强天然高分子水凝胶人工肌肉器件的强韧性能。同时该多工艺耦合方法操作简单、提升效果好且可广泛应用,这对于未来人工肌肉器件的多领域发展及工程实践应用,均具有重要的价值和意义。

Description

一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法
技术领域
本发明属于生物材料技术领域,特别是涉及到一种基于碘化钙CaI2交联海藻酸钠、液氮超低温速冻、微波真空干燥以及远红外干燥技术的多工艺耦合的天然高分子水凝胶人工肌肉器件的强韧方法。
背景技术
人工肌肉器件是一种能够在外部电场激励下,通过其内部结构改变而呈现出各种复杂形变的智能响应性电致动器。相较于现今的智能响应构筑材料,如压电陶瓷、导电聚合物与形状记忆合金等,以天然高分子水凝胶构筑的人工肌肉器件,具有变形量大、能量密度高、质量轻和噪声低等优势。然而,通常的天然高分子水凝胶人工肌肉器件因自身强韧性能较差,而呈现出电致动输出力性能低、内部电化学特性劣及工作寿命较短的缺陷,极大地限制了人工肌肉器件的应用发展。亟待解决的是,找到一种构筑工艺方法从根本上增强天然高分子水凝胶人工肌肉器件的强韧性能,以提高其电致动输出力学性能、内部电化学特性与工作寿命。
发明内容
本发明所要解决的技术问题是:提供一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法,其操作简单、提升效果好且可广泛应用。同时,通过正交实验法来获得该多工艺耦合方法下的最佳工艺参数,进而得到具有优异的内部微观结构与极好强韧性能的天然高分子水凝胶人工肌肉器件,并且其智能响应特性表现为:电致动输出力学性能极好、内部电化学特性优良和工作寿命延长。
一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法,其特征是:包括以下步骤,且以下步骤顺次进行,
步骤一、采用碘化钙CaI2交联海藻酸钠获得电致动液,采用液氮超低温速冻及微波真空干燥工艺,构筑内部为多孔网络微观结构的强韧化电致动膜;
步骤二、采用远红外干燥技术制备无内应力的强韧柔性电极膜;
步骤三、通过正交实验法来获得所述步骤一和步骤二方法下的最佳工艺参数,并取最佳工艺参数下所构筑的两片电极膜,分别粘附到表面已均匀涂抹电致动液的电致动膜两侧,获得具有三维宏观结构与强韧性能的人工肌肉器件。
所述步骤一获得电致动膜的具体方法为,
将盛有40mL蒸馏水的烧杯置于磁力搅拌机,设置50℃水浴、搅拌速度50%,并加入1.0g海藻酸钠粉末,待其完全溶解后,滴入10mL浓度为2g/L碘化钙溶液,恒温搅拌10min,再加入2mL甘油,继续加热搅拌直至混合均匀,获得电致动液;
将所述电致动液倒入培养皿中并放入液氮深冷箱,设置温度-110℃、时间15min,获得速冻成型的电致动膜;
将所述速冻成型的电致动膜置于微波真空干燥箱内,设定微波的输出功率900W、额定频率2450MHz、加热时间5min和真空度-0.095MPa,获得内部为多孔网络微观结构的强韧化电致动膜。
所述步骤二制备柔性电极膜的具体方法为,
将装有0.24g海藻酸钠和40mL蒸馏水的烧杯,置于50℃磁力搅拌器上,设置搅拌速度50%,待海藻酸钠完全溶解后,加入10mL多壁碳纳米管水性浆料,继续搅拌30min,滴入1mL甘油,恒温搅拌20min至充分混合;将该电极液倒入培养皿中,并放入远红外干燥箱内,设置干燥参数为温度80℃、时间10h、真空度-0.85MPa,获得无内应力的强韧柔性电极膜。
通过上述设计方案,本发明可以带来如下有益效果:一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法,采用碘化钙CaI2交联海藻酸钠以配制电致动液、并通过液氮超低温速冻和微波真空干燥而制得电致动膜,再与经过远红外干燥后的电极膜装配成型人工肌肉器件;其中,基于正交实验法来获得多工艺耦合方法下的最佳工艺参数,进而增强天然高分子水凝胶人工肌肉器件的强韧性能。同时该多工艺耦合方法操作简单、提升效果好且可广泛应用,这对于未来人工肌肉器件的多领域发展及工程实践应用,均具有重要的价值和意义。
本发明进一步的有益效果在于:
第一,采用碘化钙CaI2交联海藻酸钠以配制电致动液,可从根本上改善电致动膜的构筑原材料。当海藻酸钠分子链中的两个“G”嵌段遇到Ca2+离子时,会形成类似钻石形状的亲水空间;并与其羟基上的O原子发生螯合作用,导致海藻酸钠高分子链间的协同作用增强、分子链间的相互结合更加紧密,进而形成具有类鸡蛋盒式多孔网络微观结构的水凝胶;这提升了电致动膜内部阳离子的累积迁移量和迁移速度,使得Ca2+离子由内而外地全面交联水凝胶,大大增加了电致动膜的强韧性,同时提高了其电化学特性与电致动输出力学性能。
第二,经过液氮超低温速冻电致动液来构筑的电致动膜,因成型速度极快则既可以完好地保持水凝胶内部类鸡蛋盒式多孔网络微观结构在成膜过程中的整体性,赋予了成型电致动膜在寒冷环境下的良好使用性;又能够耦合微波真空干燥工艺以进一步构筑电致动膜内部匀质的、互穿贯通的三维多孔穴网络结构。同时,微波真空干燥工艺是从物质内部产生热量、能量利用效率高,使电致动膜在电磁场中因本身介质摩擦而引起整体加热并不依赖其导热性质,因而干燥过程迅速且干燥后的电致动膜不会出现过热、烧焦和内外层融化不均匀的现象。
第三,由于远红外线穿透力极强,致使在干燥过程中,电极膜的热扩散过程是由内部向外部传递,所以电极膜受热非常均匀、干燥质量很好;避免了一般的电热(鼓风)真空干燥箱内温度不均匀而导致电极膜内部产生较大内应力的问题。此外,正交实验法可实现以最少实验次数达到与全面大量实验等效的可靠结果,它具有高效、快速且经济的优点;基于正交实验法以筛选出多工艺耦合方法下的最佳工艺参数,可缩短人工肌肉器件的构筑周期、降低制备成本且成型质量好,进而提高了其自身强韧性能、电致动输出力学特性以及延长了工作使用寿命。
附图说明
以下结合附图和具体实施方式对本发明作进一步的说明:
图1为本发明一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法工艺流程框图。
图2为本发明一种天然高分子水凝胶人工肌肉器件三维宏观结构示意图。
图3为本发明一种天然高分子水凝胶人工肌肉器件电极膜结构示意图。
图4为本发明一种天然高分子水凝胶人工肌肉器件内部的多孔网络微观结构的电致动膜结构示意图。
图中,1-电致动膜、2-电极膜
具体实施方式
一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法,如图1所示,流程主要可分为三个阶段:基于碘化钙CaI2交联海藻酸钠、液氮超低温速冻及微波真空干燥三种工艺耦合,以构筑内部类“鸡蛋盒”式多孔网络微观结构的强韧化电致动膜1,如图4所示;采用远红外干燥技术来制备无内应力的强韧柔性电极膜2,如图3所示;通过正交实验法获得多工艺耦合下的最佳工艺参数,进而将构筑的电致动膜和电极膜装配成型兼具外部似“奥利奥”型三维宏观结构与极好强韧性能的人工肌肉器件,如图2所示。同时,整个多工艺耦合强韧方法操作简单、提升效果好且可广泛应用;所构筑的人工肌肉器件具有极好的强韧性能,因而表现出了优异的电致动输出力学性能、内部电化学特性以及工作寿命延长,促进了人工肌肉器件的多领域发展及应用。
具体包括以下步骤,
步骤一、基于碘化钙CaI2交联海藻酸钠、液氮超低温速冻及微波真空干燥三种工艺耦合,以构筑内部类“鸡蛋盒”式多孔网络微观结构的强韧化电致动膜。
结合图1与图4,将盛有40mL蒸馏水的烧杯置于磁力搅拌机,设置50℃水浴环境、搅拌速度为最大搅拌速度的50%;并向其中加入1.0g海藻酸钠粉末,待完全溶解后,逐滴加入10mL浓度为2g/L碘化钙溶液交联,恒温搅拌10min;再倒入2mL甘油,继续加热搅拌至混合均匀。随后将该配制好的电致动液缓慢倒入Φ9培养皿内,再放入液氮深冷箱中,设置温度-110℃、时间15min。最后将速冻成型的电致动膜揭下并夹取到已经50℃预热的Φ9培养皿中,再置于微波真空干燥箱内,设定干燥参数:微波输出功率900W、额定微波频率2450MHz、加热时间5min和真空度-0.095MPa。需注意的是,尽量避免干燥过程中随意地打开箱门,以避免微波泄露辐射人体而产生危害;同时留意观察电致动膜的成型状态,不要把干燥时间设置过长,因为欠干燥仍可继续而过度干燥则无法补救。
步骤二、采用远红外干燥技术制备无内应力的强韧柔性电极膜。
结合图1与图3,将装有0.24g海藻酸钠和40mL蒸馏水的烧杯,置于50℃磁力搅拌器上,设置搅拌速度为50%;待海藻酸钠完全溶解后,使用注射器抽取10mL多壁碳纳米管水性浆料加入其中,继续搅拌30min;再滴入1mL甘油,恒温搅拌20min直至充分混合。随后将该电极液倒入Φ9培养皿中,并将其放入远红外干燥箱内,关紧箱门、开启电源,设置干燥参数:温度80℃、时间10h、真空度-0.85MPa。待干燥结束后,使用小刀和镊子揭取电极膜。
步骤三、通过正交实验法来获得多工艺耦合方法下的最佳工艺参数,进而将膜装配成型兼具外部似“奥利奥”型三维宏观结构与极好强韧性能的人工肌肉器件。
结合图1与图2,依据正交实验法筛选出在多工艺(碘化钙交联海藻酸钠、液氮超低温速冻、微波真空干燥及远红外干燥技术)耦合方法下的最佳工艺参数,如上述步骤一和步骤二所述,以分别制得电致动膜1和电极膜2;随后拿取所构筑的二片电极膜2,来分别粘附到表面已均匀涂抹电致动液的电致动膜1两侧,注意其上下及四边对齐,进而装配成型兼具外部似“奥利奥”型三维宏观结构与极好强韧性能的人工肌肉器件,并裁剪成统一尺寸40mm×40mm×1.6mm。
本发明的具体工作原理为:
人工肌肉器件的强韧性是指在外加电场的作用下,它抵抗永久变形或断裂的能力;人工肌肉器件的内部电化学特性,指的是其电致动膜内部容纳带电离子的能力;人工肌肉器件的电致动输出力学性能指的是在外加电场激励下,它所产生响应输出力的大小及稳定性;人工肌肉器件的工作寿命是指在外加电场刺激下,它经历由开始工作到产生永久变形或断裂损坏的时间。
结合图1至图4可知,当人工肌肉器件在外加电场作用下,电致动膜内部的阳性带电离子将定向移动到它与电极膜层间的负极界面处,同时其阴性带电离子也会不断地富集到正极端;极短的时间后,人工肌肉器件会向其阳极侧产生大变形的弯曲偏转。因此,具有良好强韧性的人工肌肉器件能够容纳更多的带电离子,以实现在其正负两极侧充分聚集,而呈现出优异的内部电化学特性;同时人工肌肉器件能够完成很大程度的弯曲偏转变形,因而表现为极好的电致动输出力学性能以及较长的工作使用寿命,综上这些性能之间呈正相关性。

Claims (1)

1.一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法,其特征是:包括以下步骤,且以下步骤顺次进行,
步骤一、采用碘化钙CaI2交联海藻酸钠获得电致动液,采用液氮超低温速冻及微波真空干燥工艺,构筑内部为多孔网络微观结构的强韧化电致动膜;
步骤二、采用远红外干燥技术制备无内应力的强韧柔性电极膜;
步骤三、通过正交实验法来获得所述步骤一和步骤二方法下的最佳工艺参数,并取最佳工艺参数下所构筑的两片电极膜,分别粘附到表面已均匀涂抹电致动液的电致动膜两侧,获得具有三维宏观结构与强韧性能的人工肌肉器件;
所述步骤一获得电致动膜的具体方法为,
将盛有40 mL蒸馏水的烧杯置于磁力搅拌机,设置50 ℃水浴、搅拌速度50%,并加入1.0g海藻酸钠粉末,待其完全溶解后,滴入10 mL浓度为2 g/L碘化钙溶液,恒温搅拌10 min,再加入2 mL甘油,继续加热搅拌直至混合均匀,获得电致动液;
将所述电致动液倒入培养皿中并放入液氮深冷箱,设置温度-110 ℃、时间15 min,获得速冻成型的电致动膜;
将所述速冻成型的电致动膜置于微波真空干燥箱内,设定微波的输出功率900 W、额定频率2450 MHz、加热时间5 min和真空度-0.095 MPa,获得内部为多孔网络微观结构的强韧化电致动膜;
所述步骤二制备柔性电极膜的具体方法为,
将装有0.24 g海藻酸钠和40 mL蒸馏水的烧杯,置于50 ℃磁力搅拌器上,设置搅拌速度50%,待海藻酸钠完全溶解后,加入10 mL多壁碳纳米管水性浆料,继续搅拌30 min,滴入1mL甘油,恒温搅拌20 min至充分混合;将电极液倒入培养皿中,并放入远红外干燥箱内,设置干燥参数为温度80 ℃、时间10 h、真空度-0.85 MPa,获得无内应力的强韧柔性电极膜。
CN202111567904.9A 2021-12-21 2021-12-21 一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法 Active CN114227754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111567904.9A CN114227754B (zh) 2021-12-21 2021-12-21 一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111567904.9A CN114227754B (zh) 2021-12-21 2021-12-21 一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法

Publications (2)

Publication Number Publication Date
CN114227754A CN114227754A (zh) 2022-03-25
CN114227754B true CN114227754B (zh) 2024-07-12

Family

ID=80759933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111567904.9A Active CN114227754B (zh) 2021-12-21 2021-12-21 一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法

Country Status (1)

Country Link
CN (1) CN114227754B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116038665B (zh) * 2023-02-03 2023-08-15 东北电力大学 仿象鼻多关节结构的柔韧性变刚度人工肌肉器件构筑工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484955A (zh) * 2018-03-20 2018-09-04 哈尔滨工程大学 一种采用微波真空低温干燥技术的海藻酸钙电致动膜的制备方法
CN112644016A (zh) * 2020-12-11 2021-04-13 东北电力大学 一种天然双性生物质凝胶人工肌肉器件的构筑方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404675B (zh) * 2004-07-27 2013-08-11 Nat Inst Of Advanced Ind Scien 單層奈米碳管及定向單層奈米碳管/塊材構造體暨該等之製造方法/裝置及用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484955A (zh) * 2018-03-20 2018-09-04 哈尔滨工程大学 一种采用微波真空低温干燥技术的海藻酸钙电致动膜的制备方法
CN112644016A (zh) * 2020-12-11 2021-04-13 东北电力大学 一种天然双性生物质凝胶人工肌肉器件的构筑方法

Also Published As

Publication number Publication date
CN114227754A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Hou et al. Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks
CN114227754B (zh) 一种天然高分子水凝胶人工肌肉器件多工艺耦合强韧方法
WO2021031726A1 (zh) 一种可注射原位生孔水凝胶体系及其制备方法和用途
CN108976439B (zh) 一种互穿网络结构的智能响应型水凝胶制备方法
CN104140631A (zh) 一种氧化石墨烯/壳聚糖接枝型双网络水凝胶及其制备方法
CN105906823B (zh) 复合材料及其制造方法
CN113045716B (zh) 一种光驱动形状可编程MXene复合水凝胶驱动器及其制备方法
CN106486296B (zh) 一种氮/镍/钴共掺杂石墨毡电极材料的制备方法
CN103196965A (zh) 一种制备碳纳米管复合导电水凝胶涂层修饰电极的方法
CN102643375A (zh) 一种生物相容的光热响应自愈合导电水凝胶的制备方法
CN110482526B (zh) 一种以鸡蛋清为前驱体的生物质多孔碳电磁吸波材料的制备方法
CN109836596A (zh) 强氢键作用高强度与高粘附的支链淀粉复合水凝胶的制备方法
CN109265729A (zh) 一种自修复可降解多孔导电凝胶材料及其制备方法和应用
CN106866996A (zh) 一种蚕丝丝素蛋白质凝胶的快速制备方法
WO2023024055A1 (en) Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength
CN115636954A (zh) 一种具有高机械强度的超弹性双层光热水凝胶及其制备方法和应用
CN113929964A (zh) 一种5g波段气凝胶与聚合物互穿吸波材料的制备方法
CN105770983B (zh) 一种透明质酸生物粘合剂的制备方法
CN114133686B (zh) 一种二硫化钼/聚乙烯醇复合水凝胶及二硫化钼的制备方法
Xu et al. A photothermally antibacterial Au@ Halloysite nanotubes/lignin composite hydrogel for promoting wound healing
CN112979998B (zh) 一种各向异性导电水凝胶及其制备方法和应用
CN111012951B (zh) 具有光热效应的可注射复合骨水泥及其制备方法和应用
CN102558581B (zh) 一种高强度实心壳聚糖微载体的制备方法
WO2023178026A3 (en) Microwave-activated thermal curing for preparing a polymer composite containing dispersed inorganic particles
CN114069038B (zh) 一种交联型纤维素基凝胶聚合物电解质的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant