WO2023024055A1 - Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength - Google Patents

Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength Download PDF

Info

Publication number
WO2023024055A1
WO2023024055A1 PCT/CN2021/114907 CN2021114907W WO2023024055A1 WO 2023024055 A1 WO2023024055 A1 WO 2023024055A1 CN 2021114907 W CN2021114907 W CN 2021114907W WO 2023024055 A1 WO2023024055 A1 WO 2023024055A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
agarose
acrylamide
polyvinyl alcohol
mixture solution
Prior art date
Application number
PCT/CN2021/114907
Other languages
French (fr)
Inventor
Wei Zhang
Jinming LI
Heng Li
Chengwei WU
Original Assignee
Dalian University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University Of Technology filed Critical Dalian University Of Technology
Priority to PCT/CN2021/114907 priority Critical patent/WO2023024055A1/en
Publication of WO2023024055A1 publication Critical patent/WO2023024055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0039Agar; Agarose, i.e. D-galactose, 3,6-anhydro-D-galactose, methylated, sulfated, e.g. from the red algae Gelidium and Gracilaria; Agaropectin; Derivatives thereof, e.g. Sepharose, i.e. crosslinked agarose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/12Agar or agar-agar, i.e. mixture of agarose and agaropectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/12Agar-agar; Derivatives thereof

Definitions

  • the present invention belongs to the field of biological materials, especially to the field of articular cartilage replacement materials, in particular to a preparation method of polyvinyl alcohol-acrylamide-agarose hydrogelwith high mechanical strength.
  • Hydrogels have the characteristics of high water content, low friction coefficient and good chemical stability, and are expected to be used in articular cartilage replacement materials.
  • traditional hydrogels which are usually composed of a single network of hydrophilic polymers, have poor mechanical properties and are difficult to meet the requirements of high mechanical strength of articular cartilage, which limits the application of hydrogels in the field of replacement materials of articular cartilage.
  • the hydrogel must have good biocompatibility.
  • the addition of a large amount of bioactive components (such as gelatin, collagen, growth factors, etc. ) into hydrogel can effectively improve the biocompatibility of hydrogel materials, but the introduction of these materials usually leads to the significant reduction in the mechanical properties of hydrogel. It is still a challenge to develop hydrogels with excellent mechanical properties and good biocompatibilitysimultaneously.
  • the present invention introduces agarose (AG) into the PVA-AAm hydrogel system, and the function of AG includes two aspects: (1) Agarose can generate strong hydrogen bonds with polyvinyl alcohol and acrylamide molecular chains in hydrogel, enhancing the mechanical properties of hydrogel. (2) Agarose has good biocompatibility, and the introduction of agarose can improve the adhesion ability of hydrogel to cell, promoting the biocompatibility of implanted hydrogel.
  • AG agarose
  • the hydrogel of the present invention shows excellent mechanical properties in both compression and tension, with a compression modulus of 0.9 MPa and a compression limit of 8.17 MPa, and a Young's modulus of 0.97 MPa and a tensile limit of 2.45 MPa, meeting the performance requirements of the replacement material for articular cartilage.
  • cell experiments show that the developed hydrogelsdemonstrate good chondrocyte adhesion andpromote cell proliferation.
  • the hydrogel is expected to be used as articular cartilage replacement materials.
  • the present invention provides a preparation method of polyvinyl alcohol-acrylamide-agarose (PVA-AAm-AG) hydrogel.
  • the polyvinyl alcohol and acrylamide are used as the matrix materials.
  • the hydrogel-formation method combinesthe chemical crosslinking withphysical freeze-thawing method.
  • the preparation method has the advantages of simple operation, high gelation speed and the resultant hydrogel also demonstrates excellent mechanical strength. Agarose can generate strong hydrogen bonds with the molecular chains of polyvinyl alcohol and acrylamide, which can improve the mechanical properties of hydrogel.
  • the prepared hydrogels show good biocompatibility and are expected to be usedas articular cartilage replacement materials.
  • a preparation method for PVA-AAm-AG hydrogel with high mechanical strength comprises steps of:
  • polyvinyl alcohol, acrylamide, agarose, chemical crosslinking agentN, N'-methylene bisacrylamide (NNMBA) are added to the deionized water in proportion, heated inwater bath at 90-99°C, and continuously stirred until polyvinyl alcohol is completely dissolved and other substances are uniformly mixed to obtain mixture solution A.
  • mixture solution A the mass fraction of polyvinyl alcohol is 10 -20 wt. %
  • the mass fractionof acrylamide is 10 -20 wt. %
  • the mass fraction of N, N'-methylene bisacrylamide is 0.1 -0.5 wt. %
  • the mass fractionof agarose is 0.5 -5 wt. %.
  • the mixture solution A is kept stirring at room temperature and the temperature is reduced to 20 -50°C.
  • Tetramethyl ethylenediamine (TEMED) is addedto the above mixture solution A, andin ice water bath environment, saturated ammonium persulfate aqueous solution (APS) is addedto obtain mixture solution B.
  • TEMED Tetramethyl ethylenediamine
  • APS saturated ammonium persulfate aqueous solution
  • 100 -400 ⁇ L tetramethylenediamine is added and 3 -6mL saturated ammonium persulfate solutionis added.
  • the mixture solution B is poured into the mold and thefreeze-thawing cycle is performed to obtain the PVA-AAm hydrogel.
  • One freeze-thawingcycle refers to the process where the mixture solution B is frozen once and subsequently thawed out once. The process can berepeated for many times to form PVA-AAm-AG hydrogel.
  • the freezing temperature is -18 --25°C
  • the freezing time is 12 -20 h
  • the thawing temperature is 15 -25°C
  • the thawing time is 6 -12h. More than two cycles are conducted.
  • the gelation mechanism of PVA-AAm-AG hydrogel provided by the present invention:
  • the polyvinyl alcohol and acrylamide was mixed and heated until dissolution.
  • the acrylamide forms the first network on the application of achemical crosslinking agent.
  • the polyvinyl alcoholmolecules physically crosslink in with each otherfreeze-thawing cycle and formsthe second network.
  • the two matrixes form an interpenetrating network after gelation, which has advantages over single network hydrogel.
  • the molecular chains of the two matrixes will react with one another to generate covalent bond crosslinking, strengthening the mechanical properties of hydrogel.
  • Agarose is a natural polysaccharide and can form hydrogen bonds with the molecular chains of polyvinyl alcohol and acrylamide.
  • hydrogel The formation of hydrogen bonding promotes the aggregation of molecular chains in hydrogel, makes the structure more compact and improves the mechanical strength of materials. Through multiple freeze-thawing cycles, the structure of hydrogel was further optimized, and the mechanical properties of hydrogel were greatly improved.
  • the present invention proposes a preparation method for PVA-AAm-AG hydrogel.
  • the mechanical properties of the hydrogel are enhanced and the biocompatibility of the hydrogel is improved by introducing agarose.
  • the method proposed by the present invention is simple in operation and has obvious effect on improving the mechanical properties of PVA-AAm-AG hydrogel.
  • the hydrogel prepared by this method can adhere chondrocyte and promote chondrocyte proliferation, which is beneficial to the application in articular cartilage replacement.
  • Figure 1 shows the preparation flow chart of PVA-AAm-AG hydrogel.
  • Figure 2 shows the scanning electron microscope morphology of PVA-AAm-AG hydrogel.
  • Figure. 3 shows the compression modulus diagram of PVA-AAm-AG hydrogel.
  • Figure 4 showsthe adhesion rate of PVA-AAm-AG hydrogel to chondrocytes.
  • Figure 5 shows the proliferation rate of chondrocytes inoculated with PVA-AAm-AG hydrogel.
  • Figure 1 is the preparation flow chart of PVA-AAm-AG hydrogel, and PVA-AAm-AG hydrogel can be prepared according to the flow chart.
  • Figure 2 is the micro-morphology of the prepared hydrogel. The cross-sectional structure of the hydrogel was observed after slicing and freeze-vacuum drying.
  • Figure 3 is the compression performance diagram of the prepared hydrogel.
  • a cylindrical hydrogel sample (diameter: 15.3mm) was subjected to unconfined uniaxial compression at a strain rate of 30%/min. The thickness of each sample was measured with a vernier caliper before testing. Prior to testing, the top and bottom platforms were lubricated with physiological saline to approximate a pure sliding state. The secant modulus of compression was calculated at the strain of 0.1-0.2.
  • Figure 4 shows the adhesion rate of chondrocytes, where the adhesion of agarose-free hydrogel after 4 h is taken as a normalized standard.
  • the articular chondrocytes of rats were resuspended in culture medium and inoculated on hydrogel. After 4 h of culture, the hydrogel was taken out and the surface was washed. The amount of cell adhered to the hydrogel was detected by CCK-8 method.
  • FIG. 4 is a graph of chondrocyte proliferation rate.
  • the proliferation of chondrocytes co-cultured with agarose-free hydrogel after 1 day was taken as the normalized standard. It can be found that the proliferation rate of chondrocytes in hydrogel is significantly improved after adding agarose.
  • mixture solution A wascontinuously stirred at room temperature, and the temperature was lowered to 20°C. 100 ⁇ L tetramethyl ethylenediamine was added dropwise to the mixture solution A. 3mL saturated solution of ammonium persulfate was added to A in an ice water bath, and the resulting mixture was stirred to obtain mixture solution B.
  • the PVA-AAm-AG hydrogel was prepared, themorphologyobservation, the mechanical properties and biocompatibility experiments were carried out.
  • the specific steps are as follows:
  • mixture solution A wascontinuously stirred at room temperature, and the temperature was lowered to50°C. 200 ⁇ L tetramethyl ethylenediamine was added dropwise to the mixture solution A. 6mL saturated solution of ammonium persulfate was added to A in an ice water bath, and the resulting mixture was stirred to obtain mixture solution B.
  • mixture solution A wascontinuously stirred at room temperature, and the temperature was lowered to35°C. 450 ⁇ L tetramethyl ethylenediamine was added dropwise to the mixture solution A. 4.5mL saturated solution of ammonium persulfate was added to A in an ice water bath, and the resulting mixture was stirred to obtain mixture solution B.

Abstract

Provided is a method for preparing polyvinyl alcohol-acrylamide-agarose hydrogel with high mechanical strength. Polyvinyl alcohol and acrylamide are used as matrix materials, and a small amount of agarose is added. The acrylamide molecules form the first network on the application of a chemical cross linking agent. The polyvinyl alcohol molecules physically crosslink with each other in freeze-thawing cycle and form the second network. Agarose can form hydrogen bonds with the molecular chains of polyvinyl alcohol and acrylamide, which further improves the mechanical strength of the hydrogel. Additionally, the introduction of agarose enables the hydrogel to adhere chondrocyte and promote chondrocyte proliferation. The hydrogel prepared by this method has the potential to be applied in articular cartilage replacement.

Description

PREPARATION METHOD OF POLYVINYL ALCOHOL-ACRYLAMIDE -AGAROSE HYDROGELWITH HIGH MECHANICAL STRENGTH Technical field
The present invention belongs to the field of biological materials, especially to the field of articular cartilage replacement materials, in particular to a preparation method of polyvinyl alcohol-acrylamide-agarose hydrogelwith high mechanical strength.
Background
Hydrogels have the characteristics of high water content, low friction coefficient and good chemical stability, and are expected to be used in articular cartilage replacement materials. However, traditional hydrogels, which are usually composed of a single network of hydrophilic polymers, have poor mechanical properties and are difficult to meet the requirements of high mechanical strength of articular cartilage, which limits the application of hydrogels in the field of replacement materials of articular cartilage. At the same time, as a substitute for articular cartilage, the hydrogel must have good biocompatibility. The addition of a large amount of bioactive components (such as gelatin, collagen, growth factors, etc. ) into hydrogel can effectively improve the biocompatibility of hydrogel materials, but the introduction of these materials usually leads to the significant reduction in the mechanical properties of hydrogel. It is still a challenge to develop hydrogels with excellent mechanical properties and good biocompatibilitysimultaneously.
Previous studies have shown that the double network structure can effectively improve the mechanical properties of hydrogels. Polyvinyl alcohol hydrogel has  relatively high mechanical strength, while acrylamide is suitable as the component of covalent cross-linkingnetwork, since the amide groups in its structure can form hydrogen bonding with many functional groups. Therefore, polyvinyl alcohol-acrylamide (PVA-AAm) double network hydrogels have become a hot spot in the field of research and development of hydrogels with high mechanical strength. Although the double network structure can improve the mechanical properties of hydrogels, there is still a gap between the mechanical properties of existing PVA-AAmdouble network hydrogels and articular cartilage. (Journal of Materials Science, 2019, 54, 3368-3382; Journal of Materials Chemistry A, 2020, 8, 6776-6784; Materials Letters, 2018, 207, 53-56) . As a replacement material for articular cartilage, the mechanical properties should meet the following conditions: compression modulus is greater than 0.53 MPa, compression strength is greater than 4MPa, and tensile strength is greater than 0.8 MPa. In addition, the biocompatibility of these PVA-AAm hydrogels is still unclear.
The present invention introduces agarose (AG) into the PVA-AAm hydrogel system, and the function of AG includes two aspects: (1) Agarose can generate strong hydrogen bonds with polyvinyl alcohol and acrylamide molecular chains in hydrogel, enhancing the mechanical properties of hydrogel. (2) Agarose has good biocompatibility, and the introduction of agarose can improve the adhesion ability of hydrogel to cell, promoting the biocompatibility of implanted hydrogel. The hydrogel of the present invention shows excellent mechanical properties in both compression and tension, with a compression modulus of 0.9 MPa and a compression limit of 8.17 MPa, and a Young's modulus of 0.97 MPa and a tensile limit of 2.45 MPa, meeting  the performance requirements of the replacement material for articular cartilage. In addition, cell experiments show that the developed hydrogelsdemonstrate good chondrocyte adhesion andpromote cell proliferation. The hydrogel is expected to be used as articular cartilage replacement materials.
Summary
Aiming at the problems of poor mechanical properties and poor biocompatibility of PVA-AAm hydrogel, the present invention provides a preparation method of polyvinyl alcohol-acrylamide-agarose (PVA-AAm-AG) hydrogel. The polyvinyl alcohol and acrylamideare used as the matrix materials. The hydrogel-formation methodcombinesthe chemical crosslinking withphysical freeze-thawing method. The preparation method has the advantages of simple operation, high gelation speed and the resultant hydrogel also demonstrates excellent mechanical strength. Agarose can generate strong hydrogen bonds with the molecular chains of polyvinyl alcohol and acrylamide, which can improve the mechanical properties of hydrogel. Moreover, due to the introduction of natural polysaccharides into the hydrogels, the prepared hydrogels show good biocompatibility and are expected to be usedas articular cartilage replacement materials.
To realize the above purposes, the technical soluion of the present invention is:
A preparation method for PVA-AAm-AG hydrogel with high mechanical strength comprises steps of:
In the first step, polyvinyl alcohol, acrylamide, agarose, chemical crosslinking agentN, N'-methylene bisacrylamide (NNMBA) are added to the deionized water in proportion, heated inwater bath at 90-99℃, and continuously stirred until polyvinyl  alcohol is completely dissolved and other substances are uniformly mixed to obtain mixture solution A. In mixture solution A, the mass fraction of polyvinyl alcohol is 10 -20 wt. %, the mass fractionof acrylamide is 10 -20 wt. %, the mass fraction of N, N'-methylene bisacrylamide is 0.1 -0.5 wt. %, and the mass fractionof agarose is 0.5 -5 wt. %.
In the second step, the mixture solution A is kept stirring at room temperature and the temperature is reduced to 20 -50℃. Tetramethyl ethylenediamine (TEMED) is addedto the above mixture solution A, andin ice water bath environment, saturated ammonium persulfate aqueous solution (APS) is addedto obtain mixture solution B. For 100 mL of the mixture solution A, 100 -400μL tetramethylenediamine is added and 3 -6mL saturated ammonium persulfate solutionis added.
In the third step, the mixture solution B is poured into the mold and thefreeze-thawing cycle is performed to obtain the PVA-AAm hydrogel. One freeze-thawingcycle refers to the process where the mixture solution B is frozen once and subsequently thawed out once. The process can berepeated for many times to form PVA-AAm-AG hydrogel. The freezing temperature is -18 --25℃, the freezing time is 12 -20 h, the thawing temperature is 15 -25℃, and the thawing time is 6 -12h. More than two cycles are conducted.
The gelation mechanism of PVA-AAm-AG hydrogel provided by the present invention: The polyvinyl alcohol and acrylamide was mixed and heated until dissolution. The acrylamide forms the first network on the application of achemical crosslinking agent. The polyvinyl alcoholmolecules physically crosslink in with each otherfreeze-thawing cycle and formsthe second network. The two matrixes form an  interpenetrating network after gelation, which has advantages over single network hydrogel. Furthermore, the molecular chains of the two matrixes will react with one another to generate covalent bond crosslinking, strengthening the mechanical properties of hydrogel. Agarose is a natural polysaccharide and can form hydrogen bonds with the molecular chains of polyvinyl alcohol and acrylamide. The formation of hydrogen bonding promotes the aggregation of molecular chains in hydrogel, makes the structure more compact and improves the mechanical strength of materials. Through multiple freeze-thawing cycles, the structure of hydrogel was further optimized, and the mechanical properties of hydrogel were greatly improved.
Compared with prior art, the beneficial effects of the present invention are:
The present invention proposes a preparation method for PVA-AAm-AG hydrogel. The mechanical properties of the hydrogel are enhanced and the biocompatibility of the hydrogel is improved by introducing agarose. The method proposed by the present invention is simple in operation and has obvious effect on improving the mechanical properties of PVA-AAm-AG hydrogel. The hydrogel prepared by this method can adhere chondrocyte and promote chondrocyte proliferation, which is beneficial to the application in articular cartilage replacement.
Description of the drawings
Figure 1 shows the preparation flow chart of PVA-AAm-AG hydrogel.
Figure 2 shows the scanning electron microscope morphology of PVA-AAm-AG hydrogel.
Figure. 3 shows the compression modulus diagram of PVA-AAm-AG hydrogel.
Figure 4 showsthe adhesion rate of PVA-AAm-AG hydrogel to chondrocytes.
Figure 5 shows the proliferation rate of chondrocytes inoculated with PVA-AAm-AG hydrogel.
Detailed Description
The specific embodiments of the present invention will be described in detail following the technical implementation scheme and Figure 1, Figure 2 and Figure 3 in the attached drawings.
Figure 1 is the preparation flow chart of PVA-AAm-AG hydrogel, and PVA-AAm-AG hydrogel can be prepared according to the flow chart. Figure 2 is the micro-morphology of the prepared hydrogel. The cross-sectional structure of the hydrogel was observed after slicing and freeze-vacuum drying. Figure 3 is the compression performance diagram of the prepared hydrogel. A cylindrical hydrogel sample (diameter: 15.3mm) was subjected to unconfined uniaxial compression at a strain rate of 30%/min. The thickness of each sample was measured with a vernier caliper before testing. Prior to testing, the top and bottom platforms were lubricated with physiological saline to approximate a pure sliding state. The secant modulus of compression was calculated at the strain of 0.1-0.2. As can be seen from the Figure 3, compared with pure PVA hydrogels and pure acrylamide hydrogels of the same concentration, the compression modulus of PVA-AAm-AG hydrogels prepared by this method is greatly improved, which can meet the mechanical properties required for articular cartilage replacement materials. Figure 4shows the adhesion rate of chondrocytes, where the adhesion of agarose-free hydrogel after 4 h is taken as a normalized standard. The articular chondrocytes of rats were resuspended in culture medium and inoculated on hydrogel. After 4 h of culture, the hydrogel was taken out  and the surface was washed. The amount of cell adhered to the hydrogel was detected by CCK-8 method. The hydrogel inoculated with rat chondrocytes was cultured in a carbon dioxide incubator for 7 days. The hydrogel was taken out at different time intervals, and the proliferation of cells in hydrogel was detected by CCK-8 method. It can be seen from the Figure 4 that the ability of hydrogel to adhere cells is greatly increased after adding agarose. Figure 5 is a graph of chondrocyte proliferation rate. The proliferation of chondrocytes co-cultured with agarose-free hydrogel after 1 day was taken as the normalized standard. It can be found that the proliferation rate of chondrocytes in hydrogel is significantly improved after adding agarose.
Embodiment 1
a) 10g PVA, 10 gAAm, 0.5g agarose, and 0.1gN, N'-methylene bisacrylamide were added into 79 mL deionized water. The resulting mixture was heated at 90℃ and stirred until PVA was completely dissolved to obtain the mixture solution A.
b) The mixture solution Awascontinuously stirred at room temperature, and the temperature was lowered to 20℃. 100μL tetramethyl ethylenediamine was added dropwise to the mixture solution A. 3mL saturated solution of ammonium persulfate was added to A in an ice water bath, and the resulting mixture was stirred to obtain mixture solution B.
c) The mixture solution B was poured into the mold and then was frozen at -18℃ for 12 h and thawed at 15℃ for 6 h. The PVA-AAm-AG hydrogel was obtained by two cycles.
Based on the above steps, the PVA-AAm-AG hydrogel was prepared, themorphologyobservation, the mechanical properties and biocompatibility  experiments were carried out. The specific steps are as follows:
1) Morphology observation: The prepared hydrogel was frozen with liquid nitrogen, then quenched, and vacuum dried. The morphology of the quenched section was observed by scanning electron microscope.
2) Mechanical property test: The prepared cylindrical hydrogel sample (diameter: 15.3mm) was subjected to unconfined uniaxial compression test, and the strain rate was 30%/min. Before testing, the thickness of each sample was measured with vernier caliper.
3) Biocompatibility test: The articular chondrocytes of rats were resuspended in culture medium and inoculated with hydrogel. After 4 h of culture, the hydrogel was taken out and the surface was washed. The cell content adhered to the hydrogel surface was detected by CCK-8 method. The hydrogel inoculated with rat chondrocytes was cultured in a carbon dioxide incubator for 7 days. The hydrogel was taken out at different time intervals, and the proliferation of cells in hydrogel was detected by CCK-8 method.
Embodiment 2
a) 20g PVA, 20 g AAm, 5g agarose, and 0.5g N, N'-methylene bisacrylamide were added into 55 mL deionized water. The resulting mixture was heated at 99℃and stirred until PVA was completely dissolved to obtain the mixture solution A.
b) The mixture solution Awascontinuously stirred at room temperature, and the temperature was lowered to50℃. 200μL tetramethyl ethylenediamine was added dropwise to the mixture solution A. 6mL saturated solution of ammonium persulfate was added to A in an ice water bath, and the resulting mixture was stirred to obtain  mixture solution B.
c) The mixture solution B was poured into the mold and then was frozen at -25℃ for 20 h and thawed at 25℃ for 12 h. The PVA-AAm-AG hydrogel was obtained by two cycles.
Based on the PVA-AAm-AG hydrogel prepared by the above steps, morphology observation, mechanical properties and biocompatibility experiments were performed on it, as shown in Example 1.
Embodiment3
a) 15g PVA, 15gAAm, 2.5g agarose, and 0.25gN, N'-methylene bisacrylamide were added into 67 mL deionized water. The resulting mixture was heated at 95℃ and stirred until PVA was completely dissolved to obtain the mixture solution A.
b) The mixture solution Awascontinuously stirred at room temperature, and the temperature was lowered to35℃. 450μL tetramethyl ethylenediamine was added dropwise to the mixture solution A. 4.5mL saturated solution of ammonium persulfate was added to A in an ice water bath, and the resulting mixture was stirred to obtain mixture solution B.
c) The mixture solution B was poured into the mold and then was frozen at -22℃ for 16 h and thawed at 20℃ for 9 h. The PVA-AAm-AG hydrogel was obtained by two cycles.
Based on the PVA-AAm-AG hydrogel prepared by the above steps, morphology observation, mechanical properties and biocompatibility experiments were performed on it, as shown in Example 1.
The above embodiment only expresses the embodiment of the present invention,  but cannot therefore be understood as the limitation of the scope of the patent for the invention. It should be pointed out that for technical personnel in this field, on the premise of not breaking away from the idea of the invention, several deformation and improvement can also be made, which belong to the protection scope of the invention.

Claims (2)

  1. A method for preparing polyvinyl alcohol-acrylamide -agarose hydrogel with high mechanical strength, comprisingsteps of:
    first step, addingpolyvinyl alcohol, acrylamide, agarose, chemical cross linking agent N, N'-methylene bisacrylamide to deionized water in proportion, heating in water bath at 90-99℃, and continuously stirring until polyvinyl alcohol is completely dissolved and other substances are uniformly mixed to obtain mixture solution A; in mixture solution A, mass fraction of polyvinyl alcohol is 10 -20 wt. %, mass fraction of acrylamide is 10 -20 wt. %, mass fraction of N, N'-methylene bisacrylamide is 0.1 -0.5 wt. %, and mass fraction of agarose is 0.5 -5 wt. %;
    second step, keeping the mixture solution A stirring at room temperature and reducing the temperature to 20 -50℃; adding tetramethyl ethylenediamine to the above mixture solution A, and in ice water bath environment, adding saturated ammonium persulfate aqueous solution to obtain mixture solution B; for 100 mL of the mixturesolution A, adding 100 -400μL tetramethylenediamine and adding 3 -6mL saturated ammonium persulfate solution;
    third step, pouring the mixture solution B into mold and performing freeze-thawing cycle to obtain the polyvinyl alcohol-acrylamide -agarose (PVA-AAm-AG) hydrogel.
  2. The method for preparing polyvinyl alcohol-acrylamide -agarose hydrogel with high mechanical strengthaccording to claim 1, wherein the freeze-thawing cycle refers to aprocess where the mixture solution B is frozen once and subsequently thawed out once; the process is repeated for many times to form PVA-AAm-AG hydrogel; freezing temperature is -18 --25℃, freezing time is 12 -20 h, thawing  temperature is 15 -25℃, and thawing time is 6 -12h; more than two cycles are conducted.
PCT/CN2021/114907 2021-08-27 2021-08-27 Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength WO2023024055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114907 WO2023024055A1 (en) 2021-08-27 2021-08-27 Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/114907 WO2023024055A1 (en) 2021-08-27 2021-08-27 Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength

Publications (1)

Publication Number Publication Date
WO2023024055A1 true WO2023024055A1 (en) 2023-03-02

Family

ID=85322392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114907 WO2023024055A1 (en) 2021-08-27 2021-08-27 Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength

Country Status (1)

Country Link
WO (1) WO2023024055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116474158A (en) * 2023-03-09 2023-07-25 天津大学 Hemostatic gel, preparation method thereof and application thereof in dynamic hemostasis
CN116870241A (en) * 2023-08-03 2023-10-13 海南大学 In-situ formed double-network hydrogel dressing and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920429A (en) * 2021-01-29 2021-06-08 青岛大学 Polyvinyl alcohol/inorganic salt/polyacrylamide hydrogel and preparation method and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112920429A (en) * 2021-01-29 2021-06-08 青岛大学 Polyvinyl alcohol/inorganic salt/polyacrylamide hydrogel and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AZAR, M. G. ET AL.: "Tough and Flexible Conductive Triple Network Hydrogels Based on Agarose/polyacrylamide/polyvinyl alcolhol and Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate", POLYMER INTERNATIONAL, vol. 70, no. 10, 21 April 2021 (2021-04-21), pages 1523 - 1533, ISSN: 0959-8103 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116474158A (en) * 2023-03-09 2023-07-25 天津大学 Hemostatic gel, preparation method thereof and application thereof in dynamic hemostasis
CN116474158B (en) * 2023-03-09 2024-03-22 天津大学 Hemostatic gel, preparation method thereof and application thereof in dynamic hemostasis
CN116870241A (en) * 2023-08-03 2023-10-13 海南大学 In-situ formed double-network hydrogel dressing and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2023024055A1 (en) Preparation method of polyvinyl alcohol-acrylamide -agarose hydrogelwith high mechanical strength
CN113788960A (en) Preparation method of polyvinyl alcohol-acrylamide-agarose hydrogel with high mechanical strength
CN109575318B (en) Dopamine-mediated polypyrrole conductive hydrogel and preparation method thereof
CN109762182B (en) Preparation method and application of high-strength porous polyvinyl alcohol-tannic acid hydrogel
CN112759774B (en) Mechanically-enhanced gelatin frozen hydrogel and preparation method and application thereof
CN110760152B (en) Anti-freezing hydrogel and preparation method and application thereof
CN112778543B (en) Preparation method and application of crosslinked hydrogel for muscle stem cell culture
CN109836596B (en) Preparation method of amylopectin composite hydrogel with strong hydrogen bonding effect, high strength and high adhesion
CN109651623A (en) Improve the method and gained polyacrylamide hydrogel of polyacrylamide hydrogel adhesion property
CN112957525B (en) Nano-hydroxyapatite/silk fibroin/cellulose composite aerogel and preparation method thereof
CN114752077B (en) Preparation method of two-component anisotropic hydrogel
CN110157012A (en) A kind of preparation method of high-intensity and high-tenacity gelatin based aquagel
Deng et al. Chondroitin sulfate hydrogels based on electrostatic interactions with enhanced adhesive properties: exploring the bulk and interfacial contributions
CN113248778B (en) Preparation method and application of surface modified cellulose-based porous membrane
CN112940294A (en) PVA/HA double-network hydrogel and preparation method and application thereof
CN109402106B (en) Method for fixing Klebsiella through polyvinyl alcohol-cellulose and application of method
WO2023143540A1 (en) Unidirectional nanopore dehydration-based functional polymer film/hydrogel film, and method and apparatus for preparing same
CN112267168A (en) Preparation method of high-strength photoluminescent hydrogel fiber
CN114437373B (en) Amino acid composite free radical polymerization type hydrogel and preparation method and application thereof
CN114736332B (en) Preparation method and application of enzymatic biogenic salt gel
CN113980294B (en) Sodium alginate-based conductive self-healing hydrogel and preparation method and application thereof
CN112646203B (en) Self-lubricating high-strength interpenetrating network hydrogel bionic articular cartilage and preparation method thereof
CN110272548B (en) Method for improving hydrogel conductivity
CN110951016B (en) Preparation method of high-strength carbon nanotube/TiAl composite material
CN110092920B (en) PNAGA-enhanced aldehyde hydrazine cross-linked injectable hydrogel and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE