CN1141536A - 使用旋转电路的接地电感电路 - Google Patents
使用旋转电路的接地电感电路 Download PDFInfo
- Publication number
- CN1141536A CN1141536A CN96110096A CN96110096A CN1141536A CN 1141536 A CN1141536 A CN 1141536A CN 96110096 A CN96110096 A CN 96110096A CN 96110096 A CN96110096 A CN 96110096A CN 1141536 A CN1141536 A CN 1141536A
- Authority
- CN
- China
- Prior art keywords
- transistor
- transconductance amplifier
- circuit
- operation transconductance
- base stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03J—TUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
- H03J3/00—Continuous tuning
- H03J3/02—Details
- H03J3/04—Arrangements for compensating for variations of physical values, e.g. temperature
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H11/00—Networks using active elements
- H03H11/46—One-port networks
- H03H11/48—One-port networks simulating reactances
- H03H11/50—One-port networks simulating reactances using gyrators
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
- H03F1/3211—Modifications of amplifiers to reduce non-linear distortion in differential amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
- H03F3/4508—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using bipolar transistors as the active amplifying circuit
- H03F3/45085—Long tailed pairs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45371—Indexing scheme relating to differential amplifiers the AAC comprising parallel coupled multiple transistors at their source and gate and drain or at their base and emitter and collector, e.g. in a cascode dif amp, only those forming the composite common source transistor or the composite common emitter transistor respectively
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45508—Indexing scheme relating to differential amplifiers the CSC comprising a voltage generating circuit as bias circuit for the CSC
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45648—Indexing scheme relating to differential amplifiers the LC comprising two current sources, which are not cascode current sources
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/45—Indexing scheme relating to differential amplifiers
- H03F2203/45732—Indexing scheme relating to differential amplifiers the LC comprising a voltage generating circuit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Networks Using Active Elements (AREA)
- Amplifiers (AREA)
Abstract
一种利用旋转电路的接地电感电路包括,第一和第二运算跨导放大器和第一电容器。第一运算跨导放大器的第一输出端连接于第二运算跨导放大器的第一输入端,其第二输出端被连接于后者的第二输入端。后者的第一输出端被连接于前者的第二输入端且后者的第二输出端被连接于前者的第一输入端。前者的第二输入端和后者的第一输入端相互连接,和,这两个输入端的接点设置一相对于地电势的预定直流偏置电压。电容器连接在该接点和后者的第二输入端之间。一交流信号设置在前者的第一输入端和该地电势之间。
Description
本发明涉及利用一旋转电路的接地电感电路和LC谐振电路,特别是抗温度变化的稳频LC谐振电路。
包括集成电路(ICs)的电子电路领域中,最新企图是结合到IC电子部件的各种类型,这种电子部件通常配置在IC的外围电路。
特别是,它被认是在IC内部提供电感元件是便利的,这是由于LC谐振电路的主要区域由电感元件所占据,并且由于自由度规定了电感元件的特性受到限制。
作为在IC内部提供电感的方法,该方法披露了在其中利用一旋转电路形成一等价电感。
图1是描述普通旋转电路原理的电路图。
如图所示,该旋转电路由第一和第二运算跨导放大器组成,OTA1和OTA2同OTA1的差动输出端C、D分别连接于OTA2的差动输入端S,T,和OTA2差动输出端E,F分别交叉连接于OTA1的差动输入端B,A。另外,电容器C1被连接在OTA1的差动输出端C,D之间。
图2是图1所示旋转电路的一交流等价电路的方框图。
图1和图2中的I′和V′分别表示电流I和电压V的交流分量。
交流I1′通过OTA2的电流通路流动,其中的电感由跨越电容器C1产生的OTA2的基极电压V2′所控制。
相应地,它依下述公式
I1′=G2V2′ (1)其中,G2是用于OTA2的跨导类似,
-I2′=G1V1′ (2)其中,G1是用于OTA1的跨导,用-I2′/(JC1ω)替换V2′,并从等式(1)和(2)中低消掉I2′
V1′/I1′=Jω[C1/(G1G2)] (3)将L=C1/(G1G2) (4)代入得
Zinput=V1/I1=JLω (5)
如果OTA1的跨导等于OTA2的跨导,即G1=G2,那么,
L=C1Rg2 (6)其中Rg表示每个OTAs的阻抗。
图3是实际使用在一旋转电路中的OTA的电路图。
如图所示,每个差动输入被连接到耦合NPN晶体管(Q1,Q2)(Q3,Q4)的基极,其中晶体管Q1和Q4构成一差动放大器,晶体管Q2和Q3构成另一差动放大器。
在图3中,符号Xn表示发射极面积是没有用该符号表示的晶体管的发射极面积的n倍大,没有用该符号表示的晶体管彼此具有相同的发射极面积。n值最好是4。
由S3表示的恒流源给第一差动放大器的Q1、Q4晶体管的发射极提供Ig载流,恒流源S4给第二差动放大器的Q2、Q3晶体管的发射极提供相同强度Ig的载流。通过负载L1和L2的电流是相同强度的恒流流过。
该OTA的电路结构在于扩展OTA的动态范围。
现在,今晶体管Q1、Q2、Q3和Q4的集电极电流分别是I1、I2、I3、I4,那么,
I1+I2=Ig+Io′ (7)
I3+I4=Ig-Io′ (7′)
Ig=I1+I4 (8)
=I2+I3′ (8′)
I1=n·Isexp[VBE1/VT] (9)
I2=Isexp[VBE2/VT] (9′)
I3=n·Isexp[VBE3/VT] (10)
I4=n·Isexp[VBE4/VT] (10′)这样,
I1/I4=n·exp[Vd/VT] (11)
I2/I3=n-1·exp[Vd/VT](11′)这里Vd表示差动输入电压,VBE1和VBE2,VBE3和VBE4分别表示晶体管Q1、Q2、Q3、Q4的基—射电压,Is表示反相饱和电流,和VT表示热电压,即KT/q。
除Io、Ig和Vd外,从等式(7)至(11′)消去变量,导出等式 现在,我们用Vd的幂次序列的形式表达公式(12)并忽略较高次项,然后,
Io=[Io]Vd=0+[δIo/δVd]Vd=0Vd· (13)由于[δIo/δVd]Vd=0是定义的跨导G,和[Io]Vd=0=0,它依下述公式
Io=GVd′ (14)其中,G=[n/(1+n)2]·[Ig/VT] (15)在每两个OTAs中保持的上述自变量组成一旋转电路。
图4是图3中所示的利用由OTAs构成的旋转电路的谐振电路的电路图。
类似图1所示的旋转电路,OTA1的第一输出端C和第二输出端D分别连接于OTA2的连接于OTA2的晶体管Q13和Q14的基极的第一输入端和连接于晶体管Q15和Q16的基极的第二输入端,而OTA2的第一输出端E和第二输出端F分别连接于OTA1的连接于晶体管Q7和Q8的基极的第二输入端和连接于晶体管Q5和Q6的基极的第一输入端。另外,稳定的直流电压VS1设置在OTA1的第二输入端Q和地电势之间,以便于该旋转电感的一端被交流接地,使OTA2的第一输出端E保持在恒定电压US1上。
在图中,如上所述,符号X4表示晶体管的发射极面积具有没有该符号的晶体管的发射极面积4倍大。
用于并联谐振的电容器C3被连接在交流信号源和地电势之间,另一用于串联谐振的电容C2,通过电阻器R1连接在信号源和OTA1的输入端之间。电阻器R1被设置成降低该谐振电路的Q。
一稳定的电流源SCS通过电流镜电路提供恒定电流Ig给由OTA1的NPN晶体管Q9、Q10和OTA2的NPN晶体管Q17、Q18构成的恒流源并用于提供恒定电流Ig给OTA1的PNP晶体管Q11、Q12和OTA2的Q19、Q20。
稳定的电流源分别由串联连接的PNP和NPN晶体管Q3、Q1,串联连接的PNP和NPN晶体管Q4、Q2,直流电压源VS2和一电流调节定位器R2构成。
晶体管Q3的发射极连接到直流电压源VS2的正极,和晶体管Q1的发射极连接到接地的该直流电压源VS2的负端,从而构成一电流产生电路。晶体管Q1是二极管接法,它的基极被连接到晶体管Q2的基极,以便构成一电流镜电路。
串联连接的晶体管Q2和Q4和作为负载晶体管的二极管接法的晶体管Q4构成电流镜电路的输出电路。负载晶体管Q4的集电极连接到晶体管Q3的基极,以便形成一负反馈信号通路,以稳定通过晶体管Q2和Q4集电极流动的电流Ic。电流密度的确定取决于电阻器R2的值。
同晶体管Q1和Q2的基极相连接的基线被连接到晶体管Q9、Q10、Q17和Q18的基极,以形成传输电流到OTA1和OTA2的电流源晶体管(Q9、Q10、Q17、Q18)的电流镜电路。
同晶体管Q3和Q4的基极相连接的基线被连接到晶体管Q11、Q12、Q19和Q20的基极,以形成传输电流到OTA1和OTA2的电流负载晶体管(Q11、Q12、Q19、Q20)的另一电流镜电路。
下面将描述同图4所示旋转电路的操作。
如等式(14)所示,OTA1和OTA2的输出电流由下式给出。
Io1=G1Vd1′ (16)
Io2=G2Vd2′ (17)其中下标1和2分别是涉及OTA1和OTA2的数值,和
Vd1=Vp-Vq′ (18)
Vd2=Vr-Vs′ (19)Vp和Vq分别表示OTA1的第一和第二输入端P和Q的电势,和Vr和Vs分别表示OTA2的第一和第二输入端R和S的电势。
应注意。如图3所示,输出电流Io的正号对应于从第二输出端到第一输出端的电流流动的方向。
令电容器C1的阻抗为Z,那么,
Vd2=(Io1·Z)
=G1Vd1·Z (20)代换等式(20)到等式(17)得出
Io2=G1G2Z·Vd1 (21)在此情况,Z=1/(Jcω)
Zin=Vd1/Io2
=JCω/(G1G2) (22)同等式(3)相一致。
图5是如图4所示的旋转电路依频率绘制的输入阻抗的温度曲线。
该图表示从-10℃到50℃的温度变化所导致的在与450KHZ为中心频率的30KHZ即±15KHZ的条件下的阻抗特性的偏移。
这种不希望的输入阻抗的偏移使得在同样温度变化下导致谐振频率的±15KHZ的波动。
在以陶瓷元件作为电容器元件的普通谐振电路中依温度变化为转移的频率变化大约是如上所述温度变化范围的±15KHZ。
由于这一理由,利用现有技术旋转电路的谐振电路的温度函数是普通谐振电路的温度函数的10倍那样大。
在图4中,借助于电路模拟器等手段模拟的输入主直流偏置,该模拟是在下述条件下实现的:温度25℃;串联谐振频率410KHZ;并联谐振频率490KHZ;中心频率450KHZ;在450KHZ时输入阻抗11KΩ;直流电压源VS2的强度1.05V;和交流接地电势860mv。另外,进行该模拟是假设直流电压源VS2的温度特性和交流接地电势特性与晶体管VBE的温度特性相同,该晶体管VBE的温度特性是便于取得的客观因素。
依据上述模拟结果可知,OTAs的输入和输出端的偏置从它们的正常值大大偏离,导致晶体管饱和并从而中断了晶体管正常运行,此外,还可知,图4谐振电路的输入阻抗的相位,与90度的正常值比较偏离约37度。
本发明的一个目的就是提供一种利用稳定频率特性的旋转电路的接地电感电路和LC谐振电路,在该电路中,直流偏置将不会从正常值偏离,串联和并联谐振频率将不受温度变化的影响。
本发明的目的通过利用一旋转电路的接地电感电路能够实现,该旋转电路包括第一运算跨导放大器,第二运算跨导放大器,和第一电容器;
第一运算跨导放大器的第一输出端;连接于第二运算跨导放大器的第一输入端;
第一运算跨导放大器的第二输出端连接于第二运算跨导放大器的第二输入端;
所述第二运算跨导放大器的第一输出端连接于第一运算跨导放大器的第二输入端;
第二运算跨导放大器的第二输出端连接于第一运算跨导放大器的第一输入端;
第一运算跨导放大器的第二输入端和第二运算跨导放大器的第一输入端彼此互连,和该两个输入端的接点设置有相关于地电势的一予定偏置电压;
所说第一电容联接在所说接点和所说第二运算跨导放大器的所说第二输入端之间。
在所述第一运算跨导放大器的所述第一输入端和地电势之间设置一交流信号电压;
在该电路中,由于对第一运算跨导放大器(以后称OTA1)的第二输入端和第二运算跨导放大器(以后称OTA2)的第一输入端设置有相同的直流电势,和,相对应地,由于相同的直流电势提供给OTA1和OTA2的第一输出端,这两个OTAs运算类似,从而,这两个OTAs中的一个被置于饱和状态的情况能够避免。
基于上述理由,相应于本发明的两个OTAs G1和G2的跨导变得相等。将G1=G2代入公式(22),从而有
Zin=Vd1/Io2
=JCω/G2 (22′)
每个运算跨导放大器最好具有至少一个具有第一传导型发射极的增益晶体管,该增益晶体管的发射极被连接在一起到第一传导型的一电流源晶体管的集电极,所述增益晶体管的集电被连接到第二传导型的单独的负载晶体管。
所述接地感应电路进一步包括:用于给所述运算跨导放大器的所述电流源晶体管提供一恒定电流的稳定电流源;用于通过一电流镜电路传输由所述稳定电流源提供的所述恒定电流给所述运算跨导放大器的所述电流源晶体管的传输电路;
所述稳定电流源包括:串联连接到所述第一晶体管的所述第一传导型的第一晶体管和第二传导型的第二晶体管;和串联连接到所述第三晶体管的所述第一传导型的第三晶体管和所述第二传导型的第四晶体管,所述第三晶体管的发射极连接到一电流调节电阻器的一端,该电阻器的电阻值是由运算跨导放大器中的一个任意选定的,它使该运算跨导放大器具有一最佳的跨导,以便于实现该旋转电路的最佳的电感;和
所述传输电路包括;串联连接于所述第五晶体管的所述第一传导型的第五晶体管和所述第二传导型的第六晶体管,其中第一晶体管是二极管接法,该二极管接法的第一晶体管是二极管接法,该二极管接法的第一晶体管的基极连接到所述第三晶体管的基极;所述第四晶体管是二极管接法,该二极管接法的第四晶体管的基极连接到所述第二晶体管的基极;第六晶体管的基极被连接到所述第四晶体管的基极;所述第五晶体管是二极管接法,该第五晶体管的基极连接到所述运算跨导放大器的所述电流源晶体管的基极;和所述第一、第五晶体管的发射极和所述电阻器的另一端被连接到工作直流电压源的地电极,和所述第二、第四和第六晶体管的发射极被连接到所述工作直流电压源的另一极。
如上所述的稳定电流源是已知电路,它由于下面将描述的理由,它能相对于温度的变化稳定每个OTAs的跨导。
假设,第三晶体管的发射极面积(连接有电阻器R的发射极)对OTAs的电流源晶体管的发射极面积的比率是m,和稳定电流源的输出电流是Ig,那么Ig由下式给出:
Ig=(VT/R)·m-11nm。 (23)相对应
(1/Ig)(δIg/δT)=(1/VT)(δVT/δT)。 (24)另外,从等式(15)(1/G)(δG/δT)=(1/Ig)(δIg/δT)-(1/VT)(δVT/δT)(25)
替换等式(24)为等式(25),得
δG/δT=0 (26)它表示,由于稳定电流源的优点,在同一时刻,两个OTAs的跨导的热变化得到补偿。
应注意到,在本发明中,由于两个OTAs具有相同的跨导,在同一时刻通过单个稳定电流源能够补偿两个OTAs的跨导的热变化。但它不是图4所示的先有技术的旋转电路的情况,因为它的两个OTAs具有不同的跨导。
通过下面随同附图及本发明最佳实施例的描述,本发明的上述和其它目的,特点和优点将变得极为明显。
图1是通常旋转电路的原理电路图;
图2是图2所示旋转电路的一交流等效电路的方框图;
图3是实际用于旋转电路中的OTA的电路图;
图4是利用如图3所示OTAs构成的旋转电路的一谐振电路的电路图;
图5是依据频率绘制的如图4所示旋转电路的输入阻抗的温度曲线;
图6是根据本发明的利用旋转电路的LC谐振电路的电路图;
图7是依据频率绘制的如图6所示的旋转电路的输入阻抗的温度曲线;
图6根据本发明的利用旋转电路的LC谐振电路的电路图;在图中,与图4所示的相同部分由相同的序号表示。
根据本发明的旋转电路与图4所示先有技术的旋转电路的差别基本在于:OTA1的第二输入端Q和OTA2的第一输入端R相对于地电势被偏置在同一直流电压VS1处,和稳定电流源SCS通过传输电路TC提供一稳定电流。
这些特征对于在温度变化下稳定旋转电路的等效电感是极为重要的。
在本实施例中,Q、R两端随着电压源VS2的工作电压1.05V被偏置在862mV。该偏置依次导致OTA1和OTA2的第一输出端C、E被置于同一电势VS1。由于OTA1的一个输入端被偏置在如OTA2那样的同一电势,所以两个OTAs具有相同的跨导特性。
其结果就是避免了由于不平衡的偏置而出现的OTAs中的一个处于饱和状态的情况。
另外,由于如上所述,两个OTAs被偏置在同一直流电压,提供给所有电流源晶体管Q9、Q10、Q17和Q18的发射极的载流,能够通过经由传输电路TC(下面将解释)从稳定电流源SCS提供的单个基极偏置在同一时刻受到控制。
稳定电流源SCS的电路和运行类似于图4所示的稳定电流源SCS,除了图4的稳定电流源向OTA1和OTA2提供具有不同特征的基极偏置之外。
传输电路由相互串联连接的NPN晶体管Q22和PNP晶体管Q21构成。晶体管Q22是二极管接法,它的基极被连接运算跨导放大器的基线。晶体管Q21的基极被连接到晶体管Q3、Q4的基极,以构成电流镜电路。
在传输电路TC运行中,晶体管Q4、Q2的校正器电流经由晶体管Q2、Q4和Q21构成的电流镜电路被传输到传输电路TC。Q21、Q22的校正器电流经由晶体管Q21、Q22构成的电流镜电路传输到OTA1和OTA2的电流源晶体管的基线。
该种设置的传输电路的优点在于能防止晶体管Q2的基极电流流向电流源晶体管的基线。如果晶体管Q2的基极电流流到该基线,那么,该基极电流的流失将导致在稳定电流源SCS中的控制误差。
本实施例的旋转电路具有一电流放大器电路,它能稳定通过负载晶体管Q11、Q12、Q19和Q20流动的电流。
该电流放大器电路CA包括:由NPN晶体管Q25、Q26和电阻器R3、R4构成的电流源电路;由NPN晶体管Q28、Q29、Q27和PNP晶体管Q30、Q31构成的差动放大器;和由NPN晶体管Q23、PNP晶体管Q24和由调节器R5和电容器C4构成的反馈通路构成的输出缓冲器电路。
二极管接法的晶体管Q25,它的基极连接到晶体管Q26的基极。在晶体管Q25中产生的电流经由调节器R3、晶体管Q25和晶体管Q26构成的电流镜电路被传输到差动放大器的电流源晶体管Q27。
电流镜电路的输出端(在调节器R4和晶体管Q26的接点处的电势)提供给差动增益晶体管中的一个(Q28)的基极。该差动增益晶体管的另一个(Q29)的基极同输出缓冲器电路的输出端(晶体管Q23和Q24的集电极的接点)相连接。晶体管Q30、Q31作为差动放大器的负载晶体管。差动输出端的一个(晶体管Q28和Q30的接点)被连接到晶体管Q24的基极和连接该OTA1和OTA2的负载晶体管Q11、Q12、Q19。和Q20的基极的基线。
由于通过连接晶体管Q29的基极和晶体管Q23和Q24的集电极的接点之间的信号通路,负反馈起到作用,则提供给负载晶体管Q11、Q12、Q19和Q20提供稳定的电流。
另外,晶体管Q23的基极同连接传输电路TCR的晶体管Q22的基极和OTAs的电流源晶体管Q9、Q10、Q17和Q18的基极的基线相连接,使得保证提供给OTA的每个电流源晶体管Q9、Q10、Q17和Q18的电流都等于通过每个负载晶体管Q11、Q12、Q19和Q20中流动的电流相等。
在图6中,利用相应的电路模拟器进行模拟引入主直流偏置。在下述条件下实现模拟:温度25℃;串联谐振频率410KHZ;并联谐振频率490KHZ;中心频率450KHZ;直流电压源VS2的强度1.05V;和交流接地电势860mV。另外,所进行的模拟是假设直流电压源VS2和交流接地电势的温度特性同所使用晶体管的VBE温度特性相一致,以便于不用再考虑晶体管VBE的温度特征。
从上述模拟结果可知,该OTAs的输入和输出端的偏置电压差仅有3mV那么小,它是相关于交流地偏置VS的±0.35%的差别率。
用3比较,在图4所示先有技术的LC谐振电路中,OTAs的输入和输出端的偏置差是137mV那么大,或者说是超过差别率16%那么大。通过模拟结果可清楚看出,本发明的电路相对温度变化有重大的稳定性。
另外,图6的谐振电路的输入阻抗的相位约为65°,同现有技术谐振电路的37°相比较得到显著改进。
图7表示是依据频率绘制的图6所示旋转电路的输入阻抗的温度曲线。
图中表示从-10℃到50℃的温度变化引起2KHZ,即相对450KHZ的中心频率±1KHZ的条件下阻抗特性的偏移。为了比较,图4所示利用旋转电路的先有技术的LC谐振电路中,输入阻抗特性的偏移是30KHZ。即±15KHZ。
相应地,从图7可知,本发明的谐振电路受温度变化的影响很小,能保证其稳定特性。
由于相对于使用陶瓷元件作为电容器元件的普通谐振电路的温度变化的频率变化对于上述温度变化范围大约是±1.5KHZ,相对于使用本发明的LC谐振电路实际不存在问题。
非常清楚,虽然已经描述了本发明的特征和优点。但仅只是披露了己描述的部分。它的相应改变应不脱离所附权利要求所覆盖的范围。
Claims (4)
1.利用旋转电路的接地电感电路,包括:
一第一运算跨导放大器,一第二运算跨导放大器,和一第一电容器;
所述第一运算跨导放大器的第一输出端连接于所述第二运算跨导放大器的第一输入端;
所述第一运算跨导放大器的第二输出端连接于所第二运算跨导放大器的第二输入端;
所述第二运算跨导放大器的第一输出端连接于所述第一运算跨导放大器的第二输出端;
所述第二运算跨导放大器的第二输出端连接于所述第一运算跨导放大器的第一输入端;
所述第一运算跨导放大器的所述第二输入端和所述第二运算跨导放大器的所述第一输入端相互连接,和这两个输入端的接点被设置一相对于地电势的予定直流偏置电压;
所述第一电容器连接在所述接点和所述第二运算跨导放大器的所述第二输入端之间;和
在所述第一运算跨导放大器的所述第一输入端和地电势之间设置一交流信号电压。
2.根据权利要求1的接地电感电路,其中
每个运算跨导放大器具有至少一个具有第一传导型发射极的增益晶体管的差动放大器,该第一传导型发射极被一起连接到该第一传导型的一电流源晶体管的一集电极,所述增益晶体管的集电极连接到第二传导型的单独的负载晶体管上;
所述接地电感电路进一步包括:用于提供一恒定电流给所述运算跨导放大器的所述电流源晶体管的一稳定电流源;用于通过一电流镜电路传输由所述稳定电流源提供的所述恒定电流给所述运算跨导放大器的所述电流源晶体管的传输电路;
所述稳定电流源包括;以串联形式连接到所述第一晶体管的所述第一传导型的一第一晶体管和该第二传导型的一第二晶体管;和,以串联形式连接到所述第三晶体管的所述第一传导型的一第三晶体管和所述第二传导型的一第四晶体管,该所述第三晶体管的发射极连接到一电流调节电阻器的一端,该电阻器的电阻值这样来确定:该运算跨导放大器任意选定使之能实现该旋转电路的予定电感的最佳跨导的一个值;
所述传输电路包括:以串联形式连接到所述第五晶体管的所述第一传导型的一第五晶体管和所述第二传导型的第六晶体管,其中,所述第一晶体管是二极管接法,二极管接法的第一晶体管的基极连接到所述第三晶体管的基极;所述第四晶体管是二极管接法,二极管接法的第四晶体管的基极连接到所述第二晶体管的基极;第六晶体管的基极连到所述第四晶体管的基极;所述第五晶体管是二极管接法,该第五晶体管的基极连接到所述运算跨导放大器的所述电流源晶体管;和,所述第一、第五晶体管的发射极和所述电阻器的另一端被连接到工作直流电压源的接地电极,和所述第二、第四和第六晶体管的发射极被连接到所述工作直流电压源的另一电极。
3.一LC谐振电路,包括以并联形式连接到一交流信号源被接地的一输出端的一第二电容器和根据权利要求1的该旋转电路。
4.一LC谐振电路,包括以串联形式连接到一交流信号源被接地的一输出端的一第三电容器和根据权利要求1的该旋转电路。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP159868/95 | 1995-06-03 | ||
JP7159868A JP2800721B2 (ja) | 1995-06-03 | 1995-06-03 | ジャイレータ回路を用いたlc共振回路 |
JP159868/1995 | 1995-06-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1141536A true CN1141536A (zh) | 1997-01-29 |
CN1066873C CN1066873C (zh) | 2001-06-06 |
Family
ID=15702977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN96110096A Expired - Fee Related CN1066873C (zh) | 1995-06-03 | 1996-06-03 | 使用回转器电路的接地电感电路 |
Country Status (5)
Country | Link |
---|---|
US (1) | US5635884A (zh) |
EP (1) | EP0746096A1 (zh) |
JP (1) | JP2800721B2 (zh) |
KR (1) | KR0166002B1 (zh) |
CN (1) | CN1066873C (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101257252B (zh) * | 2007-03-01 | 2010-09-08 | 富士通半导体股份有限公司 | 电压控制电路 |
CN107493072A (zh) * | 2016-06-09 | 2017-12-19 | 亚德诺半导体集团 | 具有增强的净空的缓冲器 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990057175A (ko) * | 1997-12-29 | 1999-07-15 | 김영환 | 자이레이터를 이용한 임피던스 정합장치 |
US6472908B1 (en) * | 2000-02-03 | 2002-10-29 | Applied Micro Circuits Corporation | Differential output driver circuit and method for same |
US7019586B2 (en) * | 2004-03-23 | 2006-03-28 | Silicon Laboratories Inc. | High-speed Gm-C tuning |
US7215227B2 (en) * | 2004-03-31 | 2007-05-08 | Silicon Laboratories Inc. | Gm-C filter compensation |
EP1637486B1 (de) * | 2004-09-20 | 2007-11-14 | Müller Martini Holding AG | Verfahren und Einrichtung zum Messen der Dicke von in einem Förderstrom in bestimmten Abständen eine Messeinrichtung durchlaufenden Druckprodukten |
EP1997223A1 (en) * | 2006-03-09 | 2008-12-03 | Nxp B.V. | Amplification stage |
JP2009033643A (ja) * | 2007-07-30 | 2009-02-12 | Renesas Technology Corp | 半導体集積回路 |
US9385671B2 (en) * | 2014-05-14 | 2016-07-05 | Stmicroelectronics S.R.L. | Control circuit for low noise amplifier and related differential and single-ended amplification devices |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5075382A (zh) * | 1973-11-05 | 1975-06-20 | ||
JPH0821832B2 (ja) * | 1988-02-15 | 1996-03-04 | 松下電器産業株式会社 | ジャイレータ回路を用いたリアクタンス回路 |
US5117205A (en) * | 1990-05-01 | 1992-05-26 | U.S. Philips Corporation | Electrically controllable oscillator circuit, and electrically controllable filter arrangement comprising said circuits |
JPH0575382A (ja) * | 1991-09-12 | 1993-03-26 | Matsushita Electric Ind Co Ltd | バンドパスフイルタ |
JP2757799B2 (ja) * | 1994-12-05 | 1998-05-25 | 日本電気株式会社 | ジャイレータ回路を用いた接地インダクタンス回路 |
-
1995
- 1995-06-03 JP JP7159868A patent/JP2800721B2/ja not_active Expired - Lifetime
-
1996
- 1996-06-03 US US08/660,175 patent/US5635884A/en not_active Expired - Fee Related
- 1996-06-03 EP EP96304007A patent/EP0746096A1/en not_active Withdrawn
- 1996-06-03 CN CN96110096A patent/CN1066873C/zh not_active Expired - Fee Related
- 1996-06-03 KR KR1019960019614A patent/KR0166002B1/ko not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101257252B (zh) * | 2007-03-01 | 2010-09-08 | 富士通半导体股份有限公司 | 电压控制电路 |
CN107493072A (zh) * | 2016-06-09 | 2017-12-19 | 亚德诺半导体集团 | 具有增强的净空的缓冲器 |
Also Published As
Publication number | Publication date |
---|---|
EP0746096A1 (en) | 1996-12-04 |
JPH08330903A (ja) | 1996-12-13 |
KR970004311A (ko) | 1997-01-29 |
KR0166002B1 (ko) | 1999-03-20 |
JP2800721B2 (ja) | 1998-09-21 |
CN1066873C (zh) | 2001-06-06 |
US5635884A (en) | 1997-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1066873C (zh) | 使用回转器电路的接地电感电路 | |
CN1576857A (zh) | 电流传感器 | |
CN1233987C (zh) | 力学量传感器 | |
JP2800213B2 (ja) | 集積ジャイレータ発振器 | |
CN1704733A (zh) | 发热电阻器式空气流量计 | |
CN1257619A (zh) | 近似3次函数发生装置以及使用了该装置的温度补偿晶体振荡电路及其温度补偿方法 | |
JP2002157030A (ja) | 安定化直流電源装置 | |
CN1300937C (zh) | 低噪声完全差分放大的电路布置 | |
CN1076143C (zh) | 利用跨导稳定截止频率的装置 | |
CN1229752C (zh) | 改进的用于信号处理的方法和电路装置 | |
KR0181328B1 (ko) | 자이레이터 회로를 사용한 복조 회로 | |
CN105955395B (zh) | 自动功率控制系统、方法与偏压电流控制电路 | |
CN1088940C (zh) | 增益特性补偿电路 | |
JP3600187B2 (ja) | エミッタフォロワ回路 | |
JPH05121953A (ja) | 増幅器 | |
CN1599975A (zh) | 带温度补偿功能的差动放大器 | |
JP2004064283A (ja) | 同調回路 | |
JP2003218634A (ja) | 発振回路 | |
CN1162868A (zh) | 使用回转电路的解调电路 | |
JPH08328672A (ja) | 安定化直流電圧回路および該回路を付随したスイッチング電源 | |
JPH0575387A (ja) | 可変遅延回路 | |
JPH1197954A (ja) | 増幅回路 | |
US5903190A (en) | Amplifier feedforward arrangement and method for enhanced frequency response | |
EP0665638A1 (en) | Voltage controlled oscillator with low operating supply voltage | |
JP4808047B2 (ja) | 電流源回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |