CN114122366A - 一种锗酸钴复合微球材料及其制备方法 - Google Patents

一种锗酸钴复合微球材料及其制备方法 Download PDF

Info

Publication number
CN114122366A
CN114122366A CN202111483082.6A CN202111483082A CN114122366A CN 114122366 A CN114122366 A CN 114122366A CN 202111483082 A CN202111483082 A CN 202111483082A CN 114122366 A CN114122366 A CN 114122366A
Authority
CN
China
Prior art keywords
cobalt
lithium
preparation
carbon nitride
germanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111483082.6A
Other languages
English (en)
Other versions
CN114122366B (zh
Inventor
张大鹏
贾冬梅
李长海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Binzhou University
Original Assignee
Binzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Binzhou University filed Critical Binzhou University
Priority to CN202111483082.6A priority Critical patent/CN114122366B/zh
Publication of CN114122366A publication Critical patent/CN114122366A/zh
Application granted granted Critical
Publication of CN114122366B publication Critical patent/CN114122366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种锗酸钴、石墨化氮化碳和包覆硅酸锂材料复合微球及其制备方法,所述材料为包埋型核壳结构,直径为1~20微米,主要应用于锂离子电池或锂离子电容器负极领域。制备方法包括以下步骤:1)含碳氮有机材料在碱液中经过水热反应后煅烧得到锂化石墨相氮化碳;2)将钴源与锗源加入分散好的石墨相氮化碳浆料中,得到生成的锗酸钴与石墨相氮化碳紧密复合形成内核材料;3)加入硅酸锂形成外壳包覆材料。利用本发明制备方法制备的复合微球有效克服了锗系材料膨胀率过高的弊病,兼顾了循环寿命长、倍率性能好等优势,且制备工艺简单、成本低廉、适用于工业化生产。

Description

一种锗酸钴复合微球材料及其制备方法
技术领域
本发明属于纳米材料及化学电源技术领域,具体涉及一种应用于锂离子电池或锂离子电容器负极领域的锗酸钴复合材料及其制备方法。
背景技术
锂离子电池因其比能量高、工作电压高、应用温度范围宽、循环寿命长等独特优势而倍受关注,成为应用最为广泛的二次电池体系。然而随着面对不断提高的需求,特别是电动汽车和可穿戴设备等领域的快速发展,锂离子电池的能量密度和充放电速度提升缓慢,无法满足越来越高的需求,乃至成为相关产业发展的瓶颈。根据我国动力电池发展路线2025年单体电池能量密度达到400Wh/kg,并明确提出高性能、低成本的新型锂离子电池材料是动力电池发展的主要方向之一。作为锂电池四大主材之一,负极对电池性能及安全性有非常重要的作用,但目前商业化的锂离子电池负极大多采用石墨材料,其比容量达到360mAh/g左右,已接近理论值,提升空间有限,无法满足锂离子电池未来发展的需求。
锗的理论比容量高到1600 mAh/g,为现有石墨负极材料的4倍以上,且具有较高的锂离子迁移率和电导率,是一种具有可兼顾高比能和高倍率充放电潜能的新型电极材料。但是由于锗在锂化合金化过程中存在巨大的体积膨胀,材料粉化导致电池容量急剧下降。因此,通过合理的设计,开发一种高性能且可规模化生产的新型锗基负极材料对于锂离子电池或电容器产业的发展具有重要的现实意义。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足的基础上,提供一种适用于锂离子电池或电容器的新型锗基负极材料及其制备方法,该材料是将纳米化的锗酸钴与石墨化氮化碳片和硅酸锂材料复合制备具有多核型结构微球,有效解决了充放电过程体积膨胀问题,同时兼顾较高的导电率.进而使其具有优异的电化学性能,且制备方法工艺简单、生产成本低、适用于工业化生产。
本发明采用以下技术方案:
一种锂离子电池或电容器负极复合材料,其特征在于:该复合材料为多核型核壳结构,主要由内核纳米锗酸钴和锂化的石墨相氮化碳复合组成,外层为包覆的硅酸锂材料。复合材料直径为1~20微米,其中锗酸钴锂占所述复合材料的比重为40%~90%,石墨相氮化碳比重为5%~40%,硅酸锂包覆材料比重为1%~40%。
本发明还公开一种锗酸钴与石墨化氮化碳片和硅酸锂复合材料的制备方法,包括以下步骤:
S1:将石墨相氮化碳前驱体分散于含锂的碱液中经过溶剂热反应、高温煅烧后得到锂化的高比表面积石墨相氮化碳片;
S2:将步骤S1合成石墨相氮化碳的分散于含有分散剂的溶剂中,所需计量比加入钴源和锗源使其紧密得到复合材料内核;
S3:将S2中得到的内核材料与硅酸锂复合,经干燥成型完成包覆,物料进行破碎筛分后,得到具有核壳结构的复合材料。
优选地,步骤S1中石墨相氮化碳前驱体为三聚氰胺、二氰二胺、腈胺、乙二胺和四氯化碳中的一种或其组合,锂源为氢氧化锂、碳酸锂、氯化锂、草酸锂中的一种或其组合,溶剂为为去离子水、乙醇、N-甲基吡咯烷酮、丙酮、乙二醇中的一种或其组合。
优选地,步骤S1中溶解热反应温度为100~240℃,反应时间为6-72h。
优选地,步骤S2中所述分散剂为十六烷基三甲基溴化铵、木质素磺酸类、聚乙二醇、海藻酸类、聚丙烯酸类、聚乙烯吡咯烷酮、硬脂酸、腐植酸钠中的一种或多种的组合。
优选地,钴源为乙酸钴、氯化钴、硝酸钴、硫酸钴中的一种或其组合,锗源为二氧化锗、锗酸钠、氯化锗中的一种或其组合,钴源和锗源的摩尔比为(0.50~3):1,锗酸钴合成方式为离子交换、溶剂热反应、固相反应。
优选地,步骤S3中包覆材料为硅酸锂,包覆方式为蒸发干燥,喷雾干燥,冷冻干燥中的一种或其组合。
本发明的有益效果是:
本发明提供一种用于锂离子电池的高性能负极材料及其制备方法,通过简便易行的方法将锗酸钴与石墨化氮化碳片复合制备微球内核材料,并在此基础上进行硅酸锂包覆,制备了具有核壳结构的复合负极材料,兼顾了长循环寿命和高充放电倍率,具有优异的电化学性能,同时工艺简单、生产成本低、适用于工业化生产。
进一步的,本发明通过锗酸钴在锂离子电池活化过程中分解为颗粒分布均匀的金属锗、钴和氧化锂等,其中作为锂离子嵌入/脱嵌过程中活性物质,金属锗颗粒达到纳米级别且均匀分散在惰性的金属钴与氧化锂中,有效的缓解了金属锗锂合金化过程中体积膨胀,同时避免了在后续充放电过程中纳米颗粒的“电化学团聚”现象,这对高容量负极材料的循环稳定性的提高意义重大。
进一步的,锗酸钴分解产生的金属钴具有较高的电导率,在充放电过程中有利于电子的迁移,进而提高了复合微球的倍率性能。
进一步的,在石墨化氮化碳制备过程中造成存在大量的N空位缺陷,且空位的边缘是以双键合氮原子的形式存在,十分有利于锂离子的吸附与扩散,可作为锂离子快速传输的通道,并通过合理的微纳结构设计两者紧密复合,充分发挥协同效应,进一步缓解体积膨胀问题的同时,有效提高了锂离子和电子的迁移速率,获得优异的倍率性能。
进一步的,本发明通过硅酸锂包覆形成核壳结构,预留膨胀空间,避免了材料在循环过程中的粉化,并有助于形成稳定的电解液固体电解质界面膜。
进一步的,硅酸锂作为包覆材料,具有导电率高,稳定性好、原料来源广泛,价格低廉等优势,同时包覆工艺简单,可有效避免碳包覆材料后续高温煅烧带来的成本和环保问题。
综上所述,与现有技术相比,本发明具有明显有益效果,性能优良且适用于工业化生产。
附图说明
对专利申请中涉及到的所有附图及图中的附图标记进行描述如:
图1为本发明实施例1中的复合材料结构示意图;
图2为本发明实施例1中的复合材料扫描电镜测试结果;
图3为本发明实施例1中100mAh/g电流密度下的充放电曲线;
表1为本发明实施例1~4和对比例1中的复合材料电化学测试结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例对本发明的技术方案进行清楚、完整地描述。以下本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。
实施例1
高性能复合负极材料的制备
(1)在烧杯内加入8g三聚氰胺、1.25g LiOH·H2O和 60g去离子水搅拌1h,转移至四氟乙烯内衬的不锈钢高压釜内160℃反应24h,产物用去离子水洗涤5次后在氮气下550℃煅烧得到含锂的石墨化氮化碳;
(2)取步骤1中的石墨化氮化碳0.05g、0. 1g十六烷基三甲基溴化铵加入20ml水中搅拌1h后超声分散1h,加入20mmol Co(Ac)2·4H2O搅拌30min,缓慢滴加10mmol Na2GeO3水溶液,继续搅拌24h;
(3)取步骤3中浆液加入0.05g质量分数为23%的硅酸锂水溶液搅拌30min后喷雾干燥,得到负极微球材料;
(4)取步骤3物料进行破碎,筛分,得到具有核壳结构的新型负极材料。
复合负极材料的物化性质表征:
上述条件下得到的微球材料的微观形貌见图2,可以看到材料呈较好的球形结构,表面凹陷,形成具有多核型的核壳结构复合材料。
将复合材料、导电剂(Super P)与粘合剂(CMC)按质量比8:1:1的比例充分研磨成浆料,再将混匀后的电极材料涂敷在铜箔上制成极片。极片在60℃下于真空干燥箱中干燥12小时后裁剪为直径为1.5cm的圆片备用。以裁剪好尺寸的极片为正极,以金属锂片做负极,组装成CR2025型扣式电池。充放电截止电压分别为2.5V和0.005V,100mAh/g下充放电循环2次活化电池后, 在500mAh/g电流密度下进行循环稳定性测试,并测试其倍率性能。充放电曲线见图3,比容量、首次效率、容量保持率结果见表1。
实施例2
(1)在烧杯内加入8g三聚氰胺、1.25g LiOH·H2O和 60g去离子水搅拌1h,转移至四氟乙烯内衬的不锈钢高压釜内160℃反应24h,产物用去离子水洗涤5次后在氮气下550℃煅烧得到含锂的石墨化氮化碳;
(2)取步骤1中的0.05g石墨化氮化碳、0.01g硬脂酸加20ml水中搅拌1h后超声分散1h,加入20mmol Co(Ac)2·4H2O搅拌30min,加入10mmol GeO2后加入NaOH水溶液调节pH值为12,加入0.05g质量分数为23%的硅酸锂水溶液继续搅拌30min;
(3)取步骤2中溶液转移至四氟乙烯内衬的不锈钢高压釜内160℃反应24h,离心洗涤后干燥;
(4)取步骤3物料进行破碎,筛分,得到具有核壳结构的新型负极材料。
电化学测试方法与实施例1相同,测试结果见表1中。
实施例3
(1)在烧杯内加入8g三聚氰胺、1.25g LiOH·H2O和 60g去离子水搅拌1h,转移至四氟乙烯内衬的不锈钢高压釜内160℃反应24h,产物用去离子水洗涤5次后在氮气下550℃煅烧得到锂化的石墨化氮化碳;
(2)取60ml去离子水加入20mmol Co(Ac)2·4H2O搅拌30min,加入10mmol GeO2后加入NaOH水溶液调节pH值为12,转移至四氟乙烯内衬的不锈钢高压釜内160℃反应24h,离心洗涤后干燥;
(3)取步骤2中产物加入20ml水中并加入0.05g石墨化氮化碳、0.01g硬脂酸,超声1h后加入0.05g质量分数为23%的硅酸锂水溶液,继续搅拌30min后冷冻干燥;
(4)取步骤3物料进行破碎,筛分,得到具有核壳结构的新型负极材料。
电化学测试方法与实施例1相同,测试结果见表1中。
实施例4
1)在烧杯内加入8g三聚氰胺、1.25g LiOH·H2O和 60g去离子水搅拌1h,转移至四氟乙烯内衬的不锈钢高压釜内160℃反应24h,产物用去离子水洗涤5次后在氮气下550℃煅烧得到锂化的石墨化氮化碳;
(2)取2.5mmol Co(Ac)2·4H2O与 2.5mmol GeO2充分研磨转移至马弗炉内1000℃反应12h后自然冷却至室温;
(3)取步骤2中产物研磨后加入20ml水中并加入0.05g石墨化氮化碳,0.01g硬脂酸超声1h,加入0.05g质量分数为23%的硅酸锂水溶液继续搅拌30min后冷冻干燥;
(4)取步骤3物料进行破碎,筛分,得到具有核壳结构的新型负极材料。
电化学测试方法与实施例1相同,测试结果见表1中。
对比例1
(1)在烧杯中加入20ml去离子水和20mmol Co(Ac)2·4H2O搅拌30min,缓慢滴加10mmol Na2GeO3水溶液,继续搅拌24h;
(2)取步骤1中浆液喷雾干燥;
(3)取步骤2物料进行破碎,筛分。
电化学测试方法与实施例1相同,测试结果见表1中。
表1
序号 充电比容量(mAh/g) 放电比容量(mAh/g) 首次效率/% 500mA/g充放电电流下50次循环容量保持率/%
实施例1 947 1402 67.5 95.5
实施例2 921 1351 68.2 92.1
实施例3 846 1389 61.0 86.7
实施例4 808 1226 65.9 83.4
对比例1 405 996 40.6 20.4

Claims (6)

1.一种锂离子电池或电容器负极复合材料,其特征在于:该复合材料为多核型核壳结构,主要由锗酸钴和石墨相氮化碳组成的内核包覆硅酸锂外壳组成,所述的。
2.根据权利要求1所述的锂离子电容器负极复合材料,其特征在于:锗酸钴占复合微球材料的比重为40%~90%,石墨相氮化碳比重为5%~40%,硅酸锂包覆材料比重为1%~40%。
3.一种锗酸钴复合微球材料制备方法,其特征在于,包括以下步骤:
1)将石墨相氮化碳前驱体分散于含锂的碱液中经过溶剂热反应、高温煅烧后得到锂化的高比表面积石墨相氮化碳片;
2)将步骤1)合成石墨相氮化碳的分散于含有分散剂的溶剂中,所需计量比加入钴源和锗源使其紧密得到复合材料内核;
3)将步骤2)中得到的内核材料与硅酸锂复合,经干燥成型完成包覆,破碎筛分后得到具有核壳结构的复合材料。
4.根据权利要求3所述的锗酸钴复合微球材料的制备方法,其特征在于:所述步骤1)中石墨相氮化碳前驱体为三聚氰胺、二氰二胺、腈胺、乙二胺和四氯化碳中的一种或其组合,锂源为氢氧化锂、碳酸锂、氯化锂、草酸锂中的一种或其组合,溶剂为为去离子水、乙醇、N-甲基吡咯烷酮、丙酮、乙二醇中的一种或其组合;所述溶解热反应温度为100~240℃,反应时间为6~72h。
5.根据权利要求3所述的锗酸钴复合微球材料的制备方法,其特征在于:所述步骤2)中钴源为乙酸钴、氯化钴、硝酸钴、硫酸钴中的一种或其组合,锗源为二氧化锗、锗酸钠、氯化锗中的一种或其组合;钴源和锗源的摩尔比为(0.50~3):1;合成方式为离子交换、溶剂热反应、固相反应的一种或其组合。
6.根据权利要求3所述的锗酸钴复合微球材料的制备方法,其特征在于:所述步骤3)中包覆材料为硅酸锂,包覆方式为蒸发干燥,喷雾干燥,冷冻干燥中的一种或其组合。
CN202111483082.6A 2021-12-07 2021-12-07 一种锗酸钴复合微球材料及其制备方法 Active CN114122366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111483082.6A CN114122366B (zh) 2021-12-07 2021-12-07 一种锗酸钴复合微球材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111483082.6A CN114122366B (zh) 2021-12-07 2021-12-07 一种锗酸钴复合微球材料及其制备方法

Publications (2)

Publication Number Publication Date
CN114122366A true CN114122366A (zh) 2022-03-01
CN114122366B CN114122366B (zh) 2023-09-22

Family

ID=80367533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111483082.6A Active CN114122366B (zh) 2021-12-07 2021-12-07 一种锗酸钴复合微球材料及其制备方法

Country Status (1)

Country Link
CN (1) CN114122366B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230769A1 (en) * 2012-02-01 2013-09-05 Electrochemical Materials Silicon and lithium silicate composite anodes for lithium rechargeable batteries
DE102014118669A1 (de) * 2013-12-19 2015-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium-Cobalt-Germanat umfassender Wasseroxidationskatalysator
CN105609321A (zh) * 2016-03-25 2016-05-25 陕西煤业化工技术研究院有限责任公司 一种锂离子电容器负极复合材料及其制备方法
CN106629866A (zh) * 2016-11-16 2017-05-10 南京大学 一种钴锗氢氧化物制备方法
CN107195956A (zh) * 2017-05-12 2017-09-22 西安交通大学 导电基底负载双金属锗酸盐纳米片的储能材料制备方法
CN107634207A (zh) * 2017-09-19 2018-01-26 大连海事大学 一种硅镶嵌氧化还原石墨烯/石墨相氮化碳复合材料及其制备和应用
CN109037643A (zh) * 2018-08-07 2018-12-18 内蒙古三信实业有限公司 一种高容量高压实石墨复合材料及其制备方法
CN109103449A (zh) * 2018-07-24 2018-12-28 复旦大学 一种锗基过渡金属氧化物CoGeO3介孔球的制备方法
US20190027778A1 (en) * 2017-07-19 2019-01-24 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material containing carbon and boron, and nitrogen or phosphorus, and battery including the same
CN109841817A (zh) * 2019-03-01 2019-06-04 同济大学 用于固态电池的改性锂基复合负极材料及其制备与应用
CN113328084A (zh) * 2021-07-01 2021-08-31 山东理工大学 一种石墨相氮化碳锂硫电池正极材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130230769A1 (en) * 2012-02-01 2013-09-05 Electrochemical Materials Silicon and lithium silicate composite anodes for lithium rechargeable batteries
DE102014118669A1 (de) * 2013-12-19 2015-06-25 Toyota Motor Engineering & Manufacturing North America, Inc. Lithium-Cobalt-Germanat umfassender Wasseroxidationskatalysator
CN105609321A (zh) * 2016-03-25 2016-05-25 陕西煤业化工技术研究院有限责任公司 一种锂离子电容器负极复合材料及其制备方法
CN106629866A (zh) * 2016-11-16 2017-05-10 南京大学 一种钴锗氢氧化物制备方法
CN107195956A (zh) * 2017-05-12 2017-09-22 西安交通大学 导电基底负载双金属锗酸盐纳米片的储能材料制备方法
US20190027778A1 (en) * 2017-07-19 2019-01-24 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material containing carbon and boron, and nitrogen or phosphorus, and battery including the same
CN107634207A (zh) * 2017-09-19 2018-01-26 大连海事大学 一种硅镶嵌氧化还原石墨烯/石墨相氮化碳复合材料及其制备和应用
CN109103449A (zh) * 2018-07-24 2018-12-28 复旦大学 一种锗基过渡金属氧化物CoGeO3介孔球的制备方法
CN109037643A (zh) * 2018-08-07 2018-12-18 内蒙古三信实业有限公司 一种高容量高压实石墨复合材料及其制备方法
CN109841817A (zh) * 2019-03-01 2019-06-04 同济大学 用于固态电池的改性锂基复合负极材料及其制备与应用
CN113328084A (zh) * 2021-07-01 2021-08-31 山东理工大学 一种石墨相氮化碳锂硫电池正极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAHIRO KAWASAKI等: "Scanning transmission electron microscopy analysis of Ge(O)/(graphitic carbon nitride) nanocomposite powder", vol. 110, pages 60 - 67, XP029313931, DOI: 10.1016/j.matchar.2015.10.015 *
SHUAIXING JIN等: "Ultrathin Hexagonal 2D Co2GeO4 Nanosheets: Excellent Li-Storage Performance and ex Situ Investigation of Electrochemical Mechanism", vol. 7, no. 44, pages 24932 - 24943 *

Also Published As

Publication number Publication date
CN114122366B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN111244422B (zh) 一种水系锌离子电池用有机离子掺杂钒氧化物正极材料及其制备方法与应用
CN108258224B (zh) 一种表面包覆金属氧化物的三元正极材料及其制备方法
CN108269982B (zh) 一种复合材料、其制备方法及在锂离子电池中的应用
CN112421048A (zh) 一种低成本制备石墨包覆纳米硅锂电池负极材料的方法
EP4286341A1 (en) Cobalt-free high-nickel positive electrode material, preparation method therefor and use thereof
CN109037552B (zh) 一种用于钠硫电池的隔膜材料的制备方法
EP4187648A1 (en) Preparation method for high-rate lithium iron phosphate positive electrode material
CN106252592B (zh) 一种微纳结构的锂离子电池碳复合五氧化二铌材料的制备方法
CN111554912A (zh) 一种锡@碳@二硫化钼卵黄-壳结构锂离子电池负极复合材料及其制备方法
WO2019096012A1 (zh) 一种钛酸锂复合材料及其制备方法、负极片及锂离子电池
CN111342020B (zh) 一种硅基负极材料及其制备方法以及一种锂离子电池
CN110504424A (zh) 一种多孔球状磷化二铁锂离子电池负极材料及其制备方法
CN105047919A (zh) 一种磷酸铁锂电池正极材料的制备方法
CN114171717B (zh) 一种锂离子电池用硅烯复合材料及其制备方法
CN113991112A (zh) 一种掺杂纳米二氧化钛磷酸铁锂正极材料的制备方法
CN106450186B (zh) 一种锂离子电池正极材料硅酸锰锂/碳复合材料的制备方法、正极浆料及应用
CN103531789A (zh) 一种铁氧化物-碳纳米管三元复合材料及其制备方法
CN110620217A (zh) 一种锌掺杂磷酸铁锂/碳复合材料及制备方法
CN108281620B (zh) 一种钠离子电池负极材料二氧化钛的制备方法
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
CN116936771A (zh) 一种中空球壳结构硫酸铁钠复合正极材料、制备方法及钠离子电池
CN110190277A (zh) 一种锂离子电池正极材料LiMnO2@C及其制备方法
CN113206250B (zh) 一种半导体负极材料及其制备方法
CN109616637A (zh) 一种高库仑效率和循环寿命的锂离子电池负极材料
CN114122366B (zh) 一种锗酸钴复合微球材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant