CN114107156B - 高效生产戊二酸的重组大肠杆菌及其构建方法与应用 - Google Patents

高效生产戊二酸的重组大肠杆菌及其构建方法与应用 Download PDF

Info

Publication number
CN114107156B
CN114107156B CN202111433195.5A CN202111433195A CN114107156B CN 114107156 B CN114107156 B CN 114107156B CN 202111433195 A CN202111433195 A CN 202111433195A CN 114107156 B CN114107156 B CN 114107156B
Authority
CN
China
Prior art keywords
leu
recombinant
coli
val
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111433195.5A
Other languages
English (en)
Other versions
CN114107156A (zh
Inventor
刘立明
张芝兰
高聪
陈修来
郭亮
刘佳
宋伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202111433195.5A priority Critical patent/CN114107156B/zh
Priority to US17/640,807 priority patent/US20240043884A1/en
Priority to PCT/CN2021/135262 priority patent/WO2023092632A1/zh
Publication of CN114107156A publication Critical patent/CN114107156A/zh
Application granted granted Critical
Publication of CN114107156B publication Critical patent/CN114107156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01005Aldehyde dehydrogenase [NAD(P)+] (1.2.1.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y104/00Oxidoreductases acting on the CH-NH2 group of donors (1.4)
    • C12Y104/03Oxidoreductases acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • C12Y104/03004Monoamine oxidase (1.4.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01028Aromatic-L-amino-acid decarboxylase (4.1.1.28), i.e. tryptophane-decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种高效生产戊二酸的重组大肠杆菌及其构建方法与应用。本发明通过分子生物学手段构建了一株双质粒重组菌,共表达芳香醛合酶基因AAS、胺氧化酶基因Mao以及醛脱氢酶基因Glox,将构建好的表达质粒导入大肠杆菌中构建得到重组细胞。再通过氨苄青霉素抗性和卡那霉素抗性组合平板筛选获得高效生产戊二酸的重组菌株。并通过优化底物浓度、菌体浓度,以及转化温度,实现了戊二酸的高效生产。在菌体浓度为30g/L、pH为8,并额外添加6mM NAD+的转化条件下反应30h,可将30g/L的L‑赖氨酸转化为19.65g的戊二酸,转化率可达到65.3%。

Description

高效生产戊二酸的重组大肠杆菌及其构建方法与应用
技术领域
本发明涉及一种高效生产戊二酸的重组大肠杆菌及其构建方法与应用,属于代谢工程技术领域。
背景技术
戊二酸(Glutarate),俗名胶酸,是一种脂肪族二元羧酸,分子式是C5H8O4,分子量132.11,常温下为无色针状结晶固体,易溶于水、乙醇、乙醚等,在水中溶解度可达430 g/L。在所有二元羧酸中,戊二酸的熔点最低,为95-98℃,这一良好的特性使其更适合用于尼龙-4 ,5和尼龙-5 ,5等聚酯和聚酰胺的生产。此外,戊二酸也是1,5-戊二醇的前体,1,5-戊二醇是用作助焊剂、活化剂以及重要药物中间体的常用增塑剂。总之,戊二酸作为一种重要的C5平台化合物,在药物和化工合成等领域均具有重要的应用价值和发展潜力。
目前,戊二酸的主要合成方式是化学合成法,其中工业生产主要是在硝酸催化下,从氧化环己酮和环己醇的混合物中回收利用,在实验室水平也可完成较少剂量的制备工作,比如可以分别以γ-丁内酯、二氢吡喃、戊二腈、环己酮等物质作为底物,通过一系列化学反应制备而得到。然而通过传统化学法合成戊二酸具有成本高、污染严重、操作条件要求高等缺点,因此,寻找相对环保的生物法合成戊二酸,对环境保护和高效生产以及未来戊二酸的生产前景都具有深远的意义。
近年来,国内外研究人员从生化工程和代谢工程两个方面对微生物生产戊二酸进行了探索研究。到目前为止,文献报道过的戊二酸的生物合成途径主要有以下四种,分别是:戊烯二酸还原途径、碳链延长与脱羧途径、反己二酸降解途径以及赖氨酸降解途径(包括以戊二胺为中间体的降解途径和以5-氨基戊酸为中间体的降解途径)。上述所有路径涉及的路径酶过多,路径过于复杂。因此,进一步构建全新且最简路径并提高戊二酸产量成为亟待解决的问题,同时也是当前世界各国科研人员关注的焦点之一。
发明内容
为解决上述技术问题,本发明提供一种全新的生产戊二酸的路径,并通过构建单酶表达菌株验证了其有效性。并进一步提供了一种高效生产戊二酸的重组大肠杆菌工程菌,通过构建双质粒表达系统,将编码芳香醛合酶的基因AAS和编码胺氧化酶的基因Mao及编码醛脱氢酶的基因Glox共表达于大肠杆菌宿主中构建得到重组菌,以构建得到的重组菌为催化剂,以L-赖氨酸为底物,催化合成戊二酸,并对其中的反应条件进行了优化。
本发明的第一个目的是提供一种生产戊二酸的重组大肠杆菌,所述重组大肠杆菌是在大肠杆菌宿主中表达芳香醛合酶AAS、胺氧化酶Mao以及醛脱氢酶Glox。
在本发明中,构建的具体的代谢反应路径是通过芳香醛合酶AAS将L-赖氨酸转化为5-氨基戊醛,再通过胺氧化酶Mao将5-氨基戊醛转化为戊二醛,最后通过醛脱氢酶Glox将戊二醛转化为戊二酸。
进一步地,所述的芳香醛合酶基因AAS、胺氧化酶基因Mao以及醛脱氢酶基因Glox通过双质粒表达系统进行表达。
进一步地,芳香醛合酶基因和胺氧化酶基因通过同一质粒进行表达。
进一步地,所述的双质粒表达系统为pETM6R1质粒、pET28a质粒、PRSF质粒、pCOR质粒、pCDF质粒和PACYC质粒中的两种组合。
在本发明中,一种具体的实例是:pETM6R1质粒用于表达芳香醛合酶基因AAS、胺氧化酶基因Mao,pET28a质粒用于表达醛脱氢酶基因Glox。
进一步地,所述的芳香醛合酶的氨基酸序列如SEQ ID NO.1所示,所述的胺氧化酶Mao的氨基酸序列如SEQ ID NO.2所示,所述的醛脱氢酶Glox的氨基酸序列如SEQ ID NO.3所示。
进一步地,所述的大肠杆菌宿主为大肠杆菌E.coli BL21(DE3)、大肠杆菌E.coli JM109(DE3)或大肠杆菌E.coli MG1655(DE3)。
本发明的第二个目的是提供所述的重组大肠杆菌的构建方法,包括如下步骤:
S1、将芳香醛合酶基因和胺氧化酶基因连接到第一载体上,得到第一重组载体;
S2、将醛脱氢酶基因连接到第二载体上,得到第二重组载体;
S3、将第一重组载体和第二重组载体导入大肠杆菌宿主中,筛选能够表达芳香醛合酶AAS、胺氧化酶Mao以及醛脱氢酶Glox的重组菌,即为所述的重组大肠杆菌。
在本发明中,一种具体的实例是:以pETM6R1为载体,将氨基酸序列如SEQ ID NO.1所示的芳香醛合酶AAS的编码基因和氨基酸序列如SEQ ID NO .2所示的胺氧化酶Mao的编码基因扩增后通过酶切连接的方式连接到载体上,最终构建成质粒pETM6R1-AAS-Mao;以pET28a为载体,将氨基酸序列如SEQ ID NO .3所示的醛脱氢酶Glox扩增后并通过酶切连接的方式连接到载体上,最终构建成质粒pET28a-Glox;将两个质粒同时导入到大肠杆菌E.coliMG1655(DE3)中表达。
本发明的第三个目的是提供所述的重组大肠杆菌在生产戊二酸中的应用。
进一步地,所述的应用是以重组大肠杆菌的全细胞为催化剂,转化L-赖氨酸生产戊二酸。
进一步地,在转化体系中,L-赖氨酸的添加量为20~50g/L。
进一步地,在转化体系中还包括4~8mM NAD+
进一步地,转化的条件为:pH为7.5~8.5,转化温度为28~32℃,转速为150~250rpm。
进一步地,所述的重组大肠杆菌的全细胞通过将所述的重组大肠杆菌进行诱导发酵获得,具体是将所述的重组大肠杆菌单菌落接种于含有氨苄青霉素和卡那霉素抗性的种子培养基中,35~38℃、180~220 rpm过夜培养,获得种子液,将种子液以1~5%(v/v)的接种量转接到含有氨苄青霉素和卡那霉素抗性的发酵培养基中,35~38℃、180~220 rpm培养至OD600为0.6-0.8,加入终浓度0.5~1.5 mM的IPTG进行诱导,22~28℃、180~220 rpm下诱导10~15 h,获得发酵液,发酵液离心收集菌体,即为所述的重组大肠杆菌的全细胞。
进一步地,所述的种子培养基为:胰蛋白胨8~12 g/L、酵母粉4~6 g/L、氯化钠8~12g/L、pH 7.0~7.2。
进一步地,所述的发酵培养基为:胰蛋白胨10~15 g/L、酵母粉20~25 g/L、甘油3~5g/L、磷酸氢二钾12~13 g/L、磷酸二氢钾2~3 g/L。
本发明的有益效果是:
本发明通过分子生物学手段构建了一株双质粒重组菌,共表达芳香醛合酶基因AAS、胺氧化酶基因Mao以及醛脱氢酶基因Glox,将构建好的表达质粒导入大肠杆菌中构建得到重组细胞。再通过氨苄青霉素抗性和卡那霉素抗性组合平板筛选获得高效生产戊二酸的重组菌株。并通过优化底物浓度、菌体浓度,以及转化温度,实现了戊二酸的高效生产。在菌体浓度为30 g/L、pH为8,并额外添加6 mM NAD+的转化条件下反应30 h,可将30 g/L的L-赖氨酸转化为19.65 g的戊二酸,转化率可达到65.3%。
附图说明
图1为戊二酸生物合成路径示意图;
图2为底物浓度对戊二酸产量的影响;
图3为NAD+对戊二酸产量的影响;
图4为不同菌株全细胞转化的转化率。
实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
本发明代谢路径可行性验证:将构建的转化系统,即构建的重组菌,以L-赖氨酸为底物,并通过添加辅因子NAD+将L-赖氨酸转化为戊二酸的反应。具体反应流程见图1。
在本发明中,pETM6R1质粒、pET28a质粒、PRSF质粒、pCOR 质粒、pCDF质粒和PACYC质粒均可从商业途径获得。
在本发明中,大肠杆菌E.coli BL21(DE3)、大肠杆菌E.coli JM109(DE3)和大肠杆菌E.coli MG1655(DE3)均可从商业途径获得。
在本发明中,种子培养基为:胰蛋白胨:10 g/L、酵母粉:5 g/L、氯化钠:10 g/L、pH7.0~7.2。
发酵培养基为:胰蛋白胨:12 g/L、酵母粉:24 g/L、甘油:4 g/L、磷酸氢二钾:12.53 g/L、磷酸二氢钾:2.31 g/L。
在本发明中,戊二酸的检测方法为:戊二酸的分析采用HPLC系统,采用有机酸分析柱(Amine HPX-87H柱,300 mm 7.8 mm),紫外检测器(210 nm), 5 mm H2SO4为流动相。流动相流速为0.6 mL/min,整个操作过程中温度保持在60℃。
实施例1
将氨基酸序列如SEQ ID NO .1所示的芳香醛合酶AAS的编码基因和氨基酸序列如SEQ ID NO .2所示的胺氧化酶Mao的编码基因进行扩增,获得包含芳香醛合酶AAS的编码基因的DNA片段和包含胺氧化酶Mao的编码基因的DNA片段,选取限制性内切酶XhoI,将质粒pETM6R1过夜酶切,以获得线性化的载体并暴露出粘性末端,将纯化回收的包含芳香醛合酶AAS的编码基因的DNA片段和包含胺氧化酶Mao的编码基因的DNA片段通过酶切连接的方式连接到载体pETM6R1上,构建重组质粒pETM6R1-AAS-Mao,将构建得到的重组质粒pETM6R1-AAS-Mao经化学转化法转化至E.coliJM109感受态细胞,在含有氨苄青霉素的LB平板中培养12 h,将平板中长出的菌落进行PCR验证。挑选阳性转化子接种于LB培养基,37℃培养12 h后提取质粒。经测序验证,构建得重组质粒pETM6R1-AAS-Mao。
实施例2重组质粒pET28a-Glox的构建
将氨基酸序列如SEQ ID NO.3所示的醛脱氢酶Glox的编码基因进行扩增,获得包含醛脱氢酶Glox的编码基因的DNA片段,采用限制性内切酶BamHI和XhoI在37℃双酶切载体pET28a 3h,以获得线性化的载体并暴露出粘性末端,用T4连接酶将酶切并胶回收后的Glox编码基因和质粒pET28a 16℃连接10h,构建得到重组质粒pET28a-Glox,构建得到的重组质粒pET28a-Glox经化学转化法转化至E.coliJM109感受态细胞,在含有卡纳霉素的LB平板中培养12h,将平板中长出的菌落进行PCR验证。挑选阳性转化子接种于LB培养基,37℃培养12h后提取质粒。经测序验证,构建获得重组质粒pET28a-Glox。
实施例3双质粒重组大肠杆菌的构建和表达
将实施例1构建得到的重组质粒pETM6R1-AAS-Mao和实施例2构建得到的重组质粒pET28a-Glox经化学转化法同时转化至E.coliMG1655(DE3)感受态细胞,在含有氨苄青霉素和卡那霉素两种抗性的LB平板中培养12h,将平板中长出的单菌落,接种于含有氨苄青霉素和卡那霉素抗性的种子培养基中,37℃、200 rpm过夜培养。以2%(v/v)的接种量转接到100mL含有氨苄青霉素和卡那霉素抗性的发酵培养基中,37℃、200 rpm培养至OD600为0.6-0.8,加入终浓度1mM的IPTG进行诱导,25℃、200 rpm下诱导12h后,离心收集菌体用于全细胞转化。
实施例4双质粒重组大肠杆菌全细胞转化的验证
以PBS缓冲液作为全细胞转化的介质,转化的条件:
取实施例3中获得的重组大肠杆菌的湿菌体,离心收集得到菌体作为催化剂进行全细胞转化。在L-赖氨酸浓度为30 g/L,pH为8,摇床转速为220rpm,菌体浓度为30 g/L时,30℃转30 h获得反应液。将上述反应液12000 rpm离心5 min后,用0.22 μm的滤膜过滤后,稀释10倍,HPLC检测反应液,为了进一步验证结果的可靠性,并用LC-MS检测反应液中戊二酸的存在。
实施例5重组大肠杆菌全细胞转化的底物浓度的优化
在10mL的反应体系中加入30g/L的菌株,其中L-赖氨酸的浓度分别取20 g/L、30g/L、40g/L、50g/L,pH为8,摇床转速为220rpm,在30℃转化30 h,结果如图2所示,当L-赖氨酸浓度为30g/L,转化率最高,达到60.53%,产量达到18.59 g。
实施例6重组大肠杆菌全细胞转化辅因子的优化
在10mL的反应体系中加入菌株30g/L,L-赖氨酸的浓度为30 g/L,其中额外添加6mM NAD+,pH为8,摇床转速为220rpm,在30℃转化30 h,结果如图3所示,当额外添加NAD+时,转化率提高至65.3%,产量达到19.65 g。
实施例7重组表达载体pETM6R1-AAS-MAO、PRSF-AAS-MAO和pCOR-AAS-MAO的构建和表达
在构建成功的不同表达载体基础上,采用ePathBrick技术对路径酶进行组装。以重组表达载体pETM6R1-AAS-MAO的构建为例进行步骤介绍。选取限制性内切酶XhoI以获得线性化的载体并暴露出粘性末端;再获得带有粘性末端的目的基因;最后经T4连接酶16℃连接过夜,连接产物转化至JM109 感受态细胞,挑取单菌落进行PCR验证,条带大小正确,则表明重组表达载体pETM6R1-AAS-MAO成功构建,其余2种组合重组表达载体的构建方法均与上述保持一致。由此获得10个重组表达载体。分别为:pETM6R1-AAS-MAO、 PRSF-AAS-MAO、pCOR-AAS-MAO。
实施例8 重组表达载体pET28a-GLOX 、pCDF-GLOX和PACYC-GLOX的构建和表达
在构建成功的不同表达载体基础上,采用ePathBrick技术对路径酶进行组装。以重组表达载体pET28a-GLOX的构建为例进行步骤 介绍。选取限制性内切酶BamHI和XhoI双酶切载体pET28a以获得线性化的载体并暴露出粘性末端;再获得带有粘性末端的目的基因;最后经T4连接酶16℃连接过夜,连接产物转化至JM109 感受态细胞,挑取单菌落进行PCR验证,条带大小正确,则表明重组表达载体pET28a-GLOX成功构建,其余2种组合重组表达载体的构建方法均与上述保持一致。由此获得3个重组表达载体。分别为:pET28a-GLOX、pCDF-GLOX、PACYC-GLOX。
实施例9重组宿主的构建和表达
按照同时表达芳香醛合酶基因AAS、胺氧化酶基因Mao以及醛脱氢酶基因Glox的方案,将实施例8和实施例9构建得到的质粒经化学转化法,分别转化至感受态细胞,感受态细胞分别为大肠杆菌E.coli BL21(DE3)、大肠杆菌E.coli JM109(DE3)和大肠杆菌E.coli MG1655(DE3),具体重组表达载体与宿主菌的组合方式见表1。将构建好的重组菌株分别在含有抗性的LB平板中培养12h,将平板中长出的单菌落,接种于含有抗性的种子培养基中,37℃、200 rpm过夜培养。以2%(v/v)的接种量转接到100 mL含有氨苄青霉素和卡那霉素抗性的发酵培养基中,37℃、200 rpm培养至OD600为0.6-0.8,加入终浓度1mM的IPTG进行诱导,25℃、200 rpm下诱导12h后收集菌体用于全细胞转化。
表1
Figure SMS_1
Figure SMS_2
实施例10
以PBS缓冲液作为全细胞转化的介质,转化的条件:
分别取实施例9中获得的27种重组菌的湿菌体,将离心收集得到的菌体作为催化剂进行全细胞转化。在L-赖氨酸浓度为30 g/L,菌体浓度为30 g/L,并额外添加6 mM NAD+时,pH为8,摇床转速为220rpm,在30℃转30 h。将上述反应液12000 rpm离心5 min后,用0.22 μm的滤膜过滤后,稀释10倍,HPLC检测反应液,转化率如图4所示。采用上述重组菌株作为催化剂进行全细胞转化,都能够将L-赖氨酸转化为戊二酸,在转化率上,各菌株之间存在一定的差异,其中,本发明实施例3构建得到的重组菌的转化率最高,达到65.3%。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
序列表
<110> 江南大学
<120> 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 514
<212> PRT
<213> (人工序列)
<400> 1
Met Gly Ser Ile Asp Asn Leu Thr Glu Lys Leu Ala Ser Gln Phe Pro
1 5 10 15
Met Asn Thr Leu Glu Pro Glu Glu Phe Arg Arg Gln Gly His Met Met
20 25 30
Ile Asp Phe Leu Ala Asp Tyr Tyr Arg Lys Val Glu Asn Tyr Pro Val
35 40 45
Arg Ser Gln Val Ser Pro Gly Tyr Leu Arg Glu Ile Leu Pro Glu Ser
50 55 60
Ala Pro Tyr Asn Pro Glu Ser Leu Glu Thr Ile Leu Gln Asp Val Gln
65 70 75 80
Thr Lys Ile Ile Pro Gly Ile Thr His Trp Gln Ser Pro Asn Phe Phe
85 90 95
Ala Tyr Phe Pro Ser Ser Gly Ser Thr Ala Gly Phe Leu Gly Glu Met
100 105 110
Leu Ser Thr Gly Phe Asn Val Val Gly Phe Asn Trp Met Val Ser Pro
115 120 125
Ala Ala Thr Glu Leu Glu Asn Val Val Thr Asp Trp Phe Gly Lys Met
130 135 140
Leu Gln Leu Pro Lys Ser Phe Leu Phe Ser Gly Gly Gly Gly Gly Val
145 150 155 160
Leu Gln Gly Thr Thr Cys Glu Ala Ile Leu Cys Thr Leu Val Ala Ala
165 170 175
Arg Asp Lys Asn Leu Arg Gln His Gly Met Asp Asn Ile Gly Lys Leu
180 185 190
Val Val Tyr Cys Ser Asp Gln Thr His Ser Ala Leu Gln Lys Ala Ala
195 200 205
Lys Ile Ala Gly Ile Asp Pro Lys Asn Phe Arg Ala Ile Glu Thr Thr
210 215 220
Lys Ser Ser Asn Phe Gln Leu Cys Pro Lys Arg Leu Glu Ser Ala Ile
225 230 235 240
Leu His Asp Leu Gln Asn Gly Leu Ile Pro Leu Tyr Leu Cys Ala Thr
245 250 255
Val Gly Thr Thr Ser Ser Thr Thr Val Asp Pro Leu Pro Ala Leu Thr
260 265 270
Glu Val Ala Lys Lys Tyr Asp Leu Trp Val His Val Asp Ala Ala Tyr
275 280 285
Ala Gly Ser Ala Cys Ile Cys Pro Glu Phe Arg Gln Tyr Leu Asp Gly
290 295 300
Val Glu Asn Ala Asp Ser Phe Ser Leu Asn Ala His Lys Trp Phe Leu
305 310 315 320
Thr Thr Leu Asp Cys Cys Cys Leu Trp Val Arg Asn Pro Ser Ala Leu
325 330 335
Ile Lys Ser Leu Ser Thr Tyr Pro Glu Phe Leu Lys Asn Asn Ala Ser
340 345 350
Glu Thr Asn Lys Val Val Asp Tyr Lys Asp Trp Gln Ile Met Leu Ser
355 360 365
Arg Arg Phe Arg Ala Leu Lys Leu Trp Phe Val Leu Arg Ser Tyr Gly
370 375 380
Val Gly Gln Leu Arg Glu Phe Ile Arg Gly His Val Gly Met Ala Lys
385 390 395 400
Tyr Phe Glu Gly Leu Val Asn Met Asp Lys Arg Phe Glu Val Val Ala
405 410 415
Pro Arg Leu Phe Ser Met Val Cys Phe Arg Ile Lys Pro Ser Ala Met
420 425 430
Ile Gly Lys Asn Asp Glu Asp Glu Val Asn Glu Ile Asn Arg Lys Leu
435 440 445
Leu Glu Ser Val Asn Asp Ser Gly Arg Ile Tyr Val Ser His Thr Val
450 455 460
Leu Gly Gly Ile Tyr Val Ile Arg Phe Ala Ile Gly Gly Thr Leu Thr
465 470 475 480
Asp Ile Asn His Val Ser Ala Ala Trp Lys Val Leu Gln Asp His Ala
485 490 495
Gly Ala Leu Leu Asp Asp Thr Phe Thr Ser Asn Lys Leu Val Glu Val
500 505 510
Leu Ser
<210> 2
<211> 527
<212> PRT
<213> (人工序列)
<400> 2
Met Glu Asn Gln Glu Lys Ala Ser Ile Ala Gly His Met Phe Asp Val
1 5 10 15
Val Val Ile Gly Gly Gly Ile Ser Gly Leu Ser Ala Ala Lys Leu Leu
20 25 30
Thr Glu Tyr Gly Val Ser Val Leu Val Leu Glu Ala Arg Asp Arg Val
35 40 45
Gly Gly Arg Thr Tyr Thr Ile Arg Asn Glu His Val Asp Tyr Val Asp
50 55 60
Val Gly Gly Ala Tyr Val Gly Pro Thr Gln Asn Arg Ile Leu Arg Leu
65 70 75 80
Ser Lys Glu Leu Gly Ile Glu Thr Tyr Lys Val Asn Val Ser Glu Arg
85 90 95
Leu Val Gln Tyr Val Lys Gly Lys Thr Tyr Pro Phe Arg Gly Ala Phe
100 105 110
Pro Pro Val Trp Asn Pro Ile Ala Tyr Leu Asp Tyr Asn Asn Leu Trp
115 120 125
Arg Thr Ile Asp Asn Met Gly Lys Glu Ile Pro Thr Asp Ala Pro Trp
130 135 140
Glu Ala Gln His Ala Asp Lys Trp Asp Lys Met Thr Met Lys Glu Leu
145 150 155 160
Ile Asp Lys Ile Cys Trp Thr Lys Thr Ala Arg Arg Phe Ala Tyr Leu
165 170 175
Phe Val Asn Ile Asn Val Thr Ser Glu Pro His Glu Val Ser Ala Leu
180 185 190
Trp Phe Leu Trp Tyr Val Lys Gln Cys Gly Gly Thr Thr Arg Ile Phe
195 200 205
Ser Val Thr Asn Gly Gly Gln Glu Arg Lys Phe Val Gly Gly Ser Gly
210 215 220
Gln Val Ser Glu Arg Ile Met Asp Leu Leu Gly Asp Gln Val Lys Leu
225 230 235 240
Asn His Pro Val Thr His Val Asp Gln Ser Ser Asp Asn Ile Ile Ile
245 250 255
Glu Thr Leu Asn His Glu His Tyr Glu Cys Lys Tyr Val Ile Asn Ala
260 265 270
Ile Pro Pro Thr Leu Thr Ala Lys Ile His Phe Arg Pro Glu Leu Pro
275 280 285
Ala Glu Arg Asn Gln Leu Ile Gln Arg Leu Pro Met Gly Ala Val Ile
290 295 300
Lys Cys Met Met Tyr Tyr Lys Glu Ala Phe Trp Lys Lys Lys Asp Tyr
305 310 315 320
Cys Gly Cys Met Ile Ile Glu Asp Glu Asp Ala Pro Ile Ser Ile Thr
325 330 335
Leu Asp Asp Thr Lys Pro Asp Gly Ser Leu Pro Ala Ile Met Gly Phe
340 345 350
Ile Leu Ala Arg Lys Ala Asp Arg Leu Ala Lys Leu His Lys Glu Ile
355 360 365
Arg Lys Lys Lys Ile Cys Glu Leu Tyr Ala Lys Val Leu Gly Ser Gln
370 375 380
Glu Ala Leu His Pro Val His Tyr Glu Glu Lys Asn Trp Cys Glu Glu
385 390 395 400
Gln Tyr Ser Gly Gly Cys Tyr Thr Ala Tyr Phe Pro Pro Gly Ile Met
405 410 415
Thr Gln Tyr Gly Arg Val Ile Arg Gln Pro Val Gly Arg Ile Phe Phe
420 425 430
Ala Gly Thr Glu Thr Ala Thr Lys Trp Ser Gly Tyr Met Glu Gly Ala
435 440 445
Val Glu Ala Gly Glu Arg Ala Ala Arg Glu Val Leu Asn Gly Leu Gly
450 455 460
Lys Val Thr Glu Lys Asp Ile Trp Val Gln Glu Pro Glu Ser Lys Asp
465 470 475 480
Val Pro Ala Val Glu Ile Thr His Thr Phe Trp Glu Arg Asn Leu Pro
485 490 495
Ser Val Ser Gly Leu Leu Lys Ile Ile Gly Phe Ser Thr Ser Val Thr
500 505 510
Ala Leu Gly Phe Val Leu Tyr Lys Tyr Lys Leu Leu Pro Arg Ser
515 520 525
<210> 3
<211> 485
<212> PRT
<213> (人工序列)
<400> 3
Met Glu Leu Glu Val Arg Arg Val Arg Gln Ala Phe Leu Ser Gly Arg
1 5 10 15
Ser Arg Pro Leu Arg Phe Arg Leu Gln Gln Leu Glu Ala Leu Arg Arg
20 25 30
Met Val Gln Glu Arg Glu Lys Asp Ile Leu Thr Ala Ile Ala Ala Asp
35 40 45
Leu Cys Lys Ser Glu Phe Asn Val Tyr Ser Gln Glu Val Ile Thr Val
50 55 60
Leu Gly Glu Ile Asp Phe Met Leu Glu Asn Leu Pro Glu Trp Val Thr
65 70 75 80
Ala Lys Pro Val Lys Lys Asn Val Leu Thr Met Leu Asp Glu Ala Tyr
85 90 95
Ile Gln Pro Gln Pro Leu Gly Val Val Leu Ile Ile Gly Ala Trp Asn
100 105 110
Tyr Pro Phe Val Leu Thr Ile Gln Pro Leu Ile Gly Ala Ile Ala Ala
115 120 125
Gly Asn Ala Val Ile Ile Lys Pro Ser Glu Leu Ser Glu Asn Thr Ala
130 135 140
Lys Ile Leu Ala Lys Leu Leu Pro Gln Tyr Leu Asp Gln Asp Leu Tyr
145 150 155 160
Ile Val Ile Asn Gly Gly Val Glu Glu Thr Thr Glu Leu Leu Lys Gln
165 170 175
Arg Phe Asp His Ile Phe Tyr Thr Gly Asn Thr Ala Val Gly Lys Ile
180 185 190
Val Met Glu Ala Ala Ala Lys His Leu Thr Pro Val Thr Leu Glu Leu
195 200 205
Gly Gly Lys Ser Pro Cys Tyr Ile Asp Lys Asp Cys Asp Leu Asp Ile
210 215 220
Val Cys Arg Arg Ile Thr Trp Gly Lys Tyr Met Asn Cys Gly Gln Thr
225 230 235 240
Cys Ile Ala Pro Asp Tyr Ile Leu Cys Glu Ala Ser Leu Gln Asn Gln
245 250 255
Ile Val Trp Lys Ile Lys Glu Thr Val Lys Glu Phe Tyr Gly Glu Asn
260 265 270
Ile Lys Glu Ser Pro Asp Tyr Glu Arg Ile Ile Asn Leu Arg His Phe
275 280 285
Lys Arg Ile Leu Ser Leu Leu Glu Gly Gln Lys Ile Ala Phe Gly Gly
290 295 300
Glu Thr Asp Glu Ala Thr Arg Tyr Ile Ala Pro Thr Val Leu Thr Asp
305 310 315 320
Val Asp Pro Lys Thr Lys Val Met Gln Glu Glu Ile Phe Gly Pro Ile
325 330 335
Leu Pro Ile Val Pro Val Lys Asn Val Asp Glu Ala Ile Asn Phe Ile
340 345 350
Asn Glu Arg Glu Lys Pro Leu Ala Leu Tyr Val Phe Ser His Asn His
355 360 365
Lys Leu Ile Lys Arg Met Ile Asp Glu Thr Ser Ser Gly Gly Val Thr
370 375 380
Gly Asn Asp Val Ile Met His Phe Thr Leu Asn Ser Phe Pro Phe Gly
385 390 395 400
Gly Val Gly Ser Ser Gly Met Gly Ala Tyr His Gly Lys His Ser Phe
405 410 415
Asp Thr Phe Ser His Gln Arg Pro Cys Leu Leu Lys Ser Leu Lys Arg
420 425 430
Glu Gly Ala Asn Lys Leu Arg Tyr Pro Pro Asn Ser Gln Ser Lys Val
435 440 445
Asp Trp Gly Lys Phe Phe Leu Leu Lys Arg Phe Asn Lys Glu Lys Leu
450 455 460
Gly Leu Leu Leu Leu Thr Phe Leu Gly Ile Val Ala Ala Val Leu Val
465 470 475 480
Lys Ala Glu Tyr Tyr
485

Claims (9)

1.一种生产戊二酸的重组大肠杆菌,其特征在于,所述重组大肠杆菌是在大肠杆菌宿主中表达芳香醛合酶AAS、胺氧化酶Mao以及醛脱氢酶Glox;
所述的芳香醛合酶AAS的氨基酸序列如SEQ ID NO.1所示,所述的胺氧化酶Mao的氨基酸序列如SEQ ID NO.2所示,所述的醛脱氢酶Glox的氨基酸序列如SEQ ID NO.3所示。
2.根据权利要求1所述的重组大肠杆菌,其特征在于,所述的芳香醛合酶AAS基因、胺氧化酶Mao基因以及醛脱氢酶Glox基因通过双质粒表达系统进行表达,其中,芳香醛合酶AAS基因和胺氧化酶Mao基因通过同一质粒进行表达。
3.根据权利要求2所述的重组大肠杆菌,其特征在于,所述的双质粒表达系统为pETM6R1质粒、pET28a质粒、PRSF质粒、pCOR 质粒、pCDF质粒和PACYC质粒中的两种组合。
4.根据权利要求1所述的重组大肠杆菌,其特征在于,所述的大肠杆菌宿主为大肠杆菌E.coli BL21(DE3)、大肠杆菌E.coli JM109(DE3)或大肠杆菌E.coli MG1655(DE3)。
5.一种权利要求1~4任一项所述的重组大肠杆菌的构建方法,其特征在于,包括如下步骤:
S1、将芳香醛合酶基因和胺氧化酶基因连接到第一载体上,得到第一重组载体;
S2、将醛脱氢酶基因连接到第二载体上,得到第二重组载体;
S3、将第一重组载体和第二重组载体导入大肠杆菌宿主中,筛选能够表达芳香醛合酶AAS、胺氧化酶Mao以及醛脱氢酶Glox的重组菌,即为所述的重组大肠杆菌。
6.一种权利要求1~4任一项所述的重组大肠杆菌在生产戊二酸中的应用,其特征在于,所述的应用是以重组大肠杆菌的全细胞为催化剂,转化L-赖氨酸生产戊二酸。
7.根据权利要求6所述的应用,其特征在于,在催化体系中,L-赖氨酸的添加量为20~50g/L。
8.根据权利要求6所述的应用,其特征在于,在催化体系中,还包括4~8mM NAD+
9.根据权利要求6所述的应用,其特征在于,转化的条件为:pH为7.5~8.5,转化温度为28~32℃,转速为150~250rpm。
CN202111433195.5A 2021-11-29 2021-11-29 高效生产戊二酸的重组大肠杆菌及其构建方法与应用 Active CN114107156B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111433195.5A CN114107156B (zh) 2021-11-29 2021-11-29 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
US17/640,807 US20240043884A1 (en) 2021-11-29 2021-12-03 Recombinant escherichia coli for producing glutarate, construction method and use thereof
PCT/CN2021/135262 WO2023092632A1 (zh) 2021-11-29 2021-12-03 高效生产戊二酸的重组大肠杆菌及其构建方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111433195.5A CN114107156B (zh) 2021-11-29 2021-11-29 高效生产戊二酸的重组大肠杆菌及其构建方法与应用

Publications (2)

Publication Number Publication Date
CN114107156A CN114107156A (zh) 2022-03-01
CN114107156B true CN114107156B (zh) 2023-06-02

Family

ID=80371350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111433195.5A Active CN114107156B (zh) 2021-11-29 2021-11-29 高效生产戊二酸的重组大肠杆菌及其构建方法与应用

Country Status (3)

Country Link
US (1) US20240043884A1 (zh)
CN (1) CN114107156B (zh)
WO (1) WO2023092632A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849845A (zh) * 2019-04-26 2020-10-30 中国科学院微生物研究所 全细胞催化生产5-氨基戊酸的工程菌及5-氨基戊酸的制备方法
CN112226398A (zh) * 2020-10-30 2021-01-15 江南大学 一种高效生产戊二酸的重组大肠杆菌及其构建方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4773424B2 (ja) * 2004-03-19 2011-09-14 イエール ユニバーシティ レナラーゼ(モノアミンオキシダーゼc)の検出、単離及び使用
CN108753636B (zh) * 2018-06-12 2020-06-09 山东恒鲁生物科技有限公司 一种生产酪醇及羟基酪醇的酵母及构建方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849845A (zh) * 2019-04-26 2020-10-30 中国科学院微生物研究所 全细胞催化生产5-氨基戊酸的工程菌及5-氨基戊酸的制备方法
CN112226398A (zh) * 2020-10-30 2021-01-15 江南大学 一种高效生产戊二酸的重组大肠杆菌及其构建方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG,J.P. 等.Engineering the Cad pathway in Escherichia coli to produce glutarate from L-lysine..Applied Microbiology and Biotechnology..2021,第105卷(第9期),3587-3599. *
曾娇娇 等.代谢工程改造大肠杆菌增产酪醇.食品与发酵工业.2021,第47卷(第22期),8-15. *

Also Published As

Publication number Publication date
CN114107156A (zh) 2022-03-01
WO2023092632A1 (zh) 2023-06-01
US20240043884A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN109266595B (zh) 一种转化l-苏氨酸生产l-2-氨基丁酸的重组菌的构建及应用
CN104388373A (zh) 一种共表达羰基还原酶和葡萄糖脱氢酶的大肠杆菌系统的构建
CN114807265B (zh) 一种s-烟碱的合成方法
Zeng et al. Integrating enzyme evolution and high-throughput screening for efficient biosynthesis of l-DOPA
CN108103038A (zh) 一种高效合成l-苯甘氨酸的单细胞工厂及其构建与应用
CN113355299B (zh) 酮酸还原酶、基因、工程菌及在合成手性芳香2-羟酸中的应用
CN114107156B (zh) 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
CN111394289B (zh) 一种基因工程菌及其应用,生产前列腺素e2的方法
CN113322291A (zh) 一种手性氨基醇类化合物的合成方法
CN116814572A (zh) 一种羰基还原酶及其突变体及其在制备手性(r)-8-氯-6-羟基辛酸乙酯中的应用
CN114350631B (zh) 草铵膦脱氢酶突变体、工程菌、固定化细胞及应用
CN110982771B (zh) 一种合成对羟基扁桃酸的方法
CN111217744A (zh) 一种d-氨基酸基nad+类似物及其合成和应用
CN112280725B (zh) 一种高效生产琥珀酸的重组大肠杆菌及其构建方法
CN109836377B (zh) 一种烟酰胺腺嘌呤二核苷酸类似物及其合成方法与应用
CN113930457A (zh) 一种双酶偶联合成(s)-香茅醇的方法
CN113025546B (zh) 一种多酶级联转化l-酪氨酸生产酪醇的方法
CN112126614A (zh) 一种利用全细胞转化制备覆盆子酮的方法
CN113388627B (zh) 还原酶lx05基因,含有该基因的基因工程菌及其应用
CN114891710B (zh) 一种通过重构辅酶再生系统强化重组大肠杆菌催化合成胆绿素的方法
CN114891711A (zh) 一种通过强化电子传递提高重组大肠杆菌催化合成胆绿素的方法
CN107338263B (zh) 一种基于树干毕赤酵母合成菌株发酵木糖生产衣康酸的构建方法
CN118546918A (zh) 一种以EutM为蛋白支架的双酶自组装体及其构建方法与应用
CN117925551A (zh) 一种真菌漆酶突变体Lcc5-G及其表达菌株和应用
CN114686539A (zh) 一种利用固定化大肠杆菌细胞制备5-甲基吡嗪-2-羧酸的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant