CN112226398A - 一种高效生产戊二酸的重组大肠杆菌及其构建方法 - Google Patents

一种高效生产戊二酸的重组大肠杆菌及其构建方法 Download PDF

Info

Publication number
CN112226398A
CN112226398A CN202011191668.0A CN202011191668A CN112226398A CN 112226398 A CN112226398 A CN 112226398A CN 202011191668 A CN202011191668 A CN 202011191668A CN 112226398 A CN112226398 A CN 112226398A
Authority
CN
China
Prior art keywords
ala
leu
gly
glu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011191668.0A
Other languages
English (en)
Other versions
CN112226398B (zh
Inventor
刘立明
王镓萍
丁爽
高聪
陈修来
刘佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN202011191668.0A priority Critical patent/CN112226398B/zh
Publication of CN112226398A publication Critical patent/CN112226398A/zh
Application granted granted Critical
Publication of CN112226398B publication Critical patent/CN112226398B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1096Transferases (2.) transferring nitrogenous groups (2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01016Succinate-semialdehyde dehydrogenase [NAD(P)+] (1.2.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01019Aminobutyraldehyde dehydrogenase (1.2.1.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/010194-Aminobutyrate—2-oxoglutarate transaminase (2.6.1.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y206/00Transferases transferring nitrogenous groups (2.6)
    • C12Y206/01Transaminases (2.6.1)
    • C12Y206/01029Diamine transaminase (2.6.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01018Lysine decarboxylase (4.1.1.18)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种高效生产戊二酸的重组大肠杆菌及其构建方法,属于代谢工程技术领域。本发明通过分子生物学手段从大肠杆菌Escherichia coli MG1655基因组中克隆获得赖氨酸脱羧酶基因cadA、丁二胺转氨酶基因patA以及γ‑氨基丁醛脱氢酶基因patD,从荧光假单胞菌Pseudomonas fluorescens基因组中克隆获得4‑氨基丁酸转氨酶基因gabT和琥珀酸半醛脱氢酶基因gabD。将构建好的重组表达载体pETM6R1‑cadA‑RBS01‑patA‑RBS02‑patD‑gabT‑gabD导入大肠杆菌E.coli W3110后,通过氨苄青霉素抗性平板筛选获得高效生产戊二酸的重组菌株Glu‑02。该重组菌株在5‑L发酵罐下采用补料分批发酵策略,发酵60h,戊二酸产量达到56.2g/L,转化率为62.2%。

Description

一种高效生产戊二酸的重组大肠杆菌及其构建方法
技术领域
本发明涉及一种高效生产戊二酸的重组大肠杆菌及其构建方法,属于代谢工程技术领域。
背景技术
戊二酸(Glutarate),俗名胶酸,是一种脂肪族二元羧酸,分子式是C5H8O4,分子量132.11,常温下为无色针状结晶固体,易溶于水、乙醇、乙醚等,在水中溶解度可达430g/L。在所有二元羧酸中,戊二酸的熔点最低,为95-98℃,这一良好的特性使其更适合用于尼龙-4,5和尼龙-5,5等聚酯和聚酰胺的生产。此外,戊二酸也是1,5-戊二醇的前体,1,5-戊二醇是用作助焊剂、活化剂以及重要药物中间体的常用增塑剂。总之,戊二酸作为一种重要的C5平台化合物,在药物和化工合成等领域均具有重要的应用价值和发展潜力。
目前,戊二酸的主要合成方式是化学合成法,其中工业生产主要是在硝酸催化下从氧化环己酮和环己醇的混合物中回收利用,在实验室水平也可完成较少剂量的制备工作,比如可分别以γ-丁内酯、二氢吡喃、戊二腈、环己酮等作为底物,通过一系列化学反应制备而得。然而通过传统化学法合成戊二酸具有成本高、污染严重、操作条件要求高等缺点,因此寻找相对环保的生物法合成戊二酸对环境保护和高效生产以及未来戊二酸的生产前景都具有深远的意义。
近年来,国内外研究人员从生化工程和代谢工程两个方面对微生物生产戊二酸进行了探索研究。到目前为止,文献报道过的戊二酸的生物合成途径有以下四种,分别是:戊烯二酸还原途径、碳链延长与脱羧途径、反己二酸降解途径以及赖氨酸降解途径(包括以戊二胺为中间体的降解途径和以5-氨基戊酸为中间体的降解途径)。其中,赖氨酸降解途径的理论产率最高,达到0.75mol/mol葡萄糖。尤其是以戊二胺为中间体的赖氨酸降解途径由于不需要额外的氧气供应,具有更大的改造和生产潜力。进一步提高戊二酸产量成为亟待解决的问题,同时也是当前世界各国科研人员关注的焦点之一。
发明内容
为解决上述问题,本发明的目的是提供一株高产戊二酸的大肠杆菌工程菌,以及应用该工程菌生产戊二酸的方法。本发明通过在大肠杆菌细胞中过量表达合成戊二酸的路径酶赖氨酸脱羧酶、丁二胺转氨酶、γ-氨基丁醛脱氢酶、4-氨基丁酸转氨酶和琥珀酸半醛脱氢酶,随后通过改变RBS的强度精细化调控关键路径酶丁二胺转氨酶和γ-氨基丁醛脱氢酶的表达水平,进而实现了戊二酸的高效生产,为戊二酸的工业化生产奠定了基础。
本发明的第一个目的是提供一种高效生产戊二酸的重组大肠杆菌,所述重组大肠杆菌是在大肠杆菌宿主菌中过表达了赖氨酸脱羧酶cadA、丁二胺转氨酶patA、γ-氨基丁醛脱氢酶patD、4-氨基丁酸转氨酶gabT和琥珀酸半醛脱氢酶gabD;所述丁二胺转氨酶通过核苷酸序列如SEQ ID NO.6所示的核糖体结合位点与表达载体相连。
进一步地,所述赖氨酸脱羧酶的氨基酸序列如SEQ ID NO.1所示;丁二胺转氨酶的氨基酸序列如SEQ ID NO.2所示;γ-氨基丁醛脱氢酶的氨基酸序列如SEQ ID NO.3所示;4-氨基丁酸转氨酶的氨基酸序列如SEQ ID NO.4所示;琥珀酸半醛脱氢酶的氨基酸序列如SEQID NO.5所示。
进一步地,所述γ-氨基丁醛脱氢酶是通过核苷酸序列如SEQ ID NO.7所示的核糖体结合位点与表达载体相连。
进一步地,所述大肠杆菌宿主菌为大肠杆菌E.coli W3110、E.coli MG1655、E.coli B0013或E.coli ATCC 8739。
进一步地,所述表达载体为pETM6R1、pCDR或pCOR。
本发明的第二个目的是提供一种所述重组大肠杆菌的构建方法,包括如下步骤:
(1)获得赖氨酸脱羧酶cadA、丁二胺转氨酶patA、γ-氨基丁醛脱氢酶patD、4-氨基丁酸转氨酶gabT和琥珀酸半醛脱氢酶gabD的单基因表达载体;
(2)将步骤(1)得到的单基因表达载体采用ePathBrick技术对路径酶进行组装,得到重组质粒;
(3)将步骤(2)所得的重组质粒转化到大肠杆菌宿主中,得到大肠杆菌重组菌。
本发明的第三个目的是提供所述重组大肠杆菌在生产戊二酸中的应用。
进一步地,所述应用具体是将所述重组大肠杆菌按照5-10%的接种量接种至发酵培养基中进行培养,培养4-8h,添加0.1-0.4mmol/L的IPTG进行诱导,诱导温度为25-30℃;在发酵过程中,当溶氧急剧上升,开始进行葡萄糖补料,并每隔10-20h补加L-赖氨酸持续至发酵结束。
进一步地,所述发酵培养基包括如下组分:葡萄糖40-60g/L,蛋白胨15-25g/L,酵母提取物5-15g/L,十二水磷酸氢二铵2-3g/L,磷酸二氢铵0.5-1.5g/L,氯化钾0.1-0.2g/L,七水硫酸镁0.2-0.4g/L,和0.5-1.5mL微量金属溶液。
进一步地,所述微量金属溶液包括如下组分:六水氯化铁2-3g/L,六水氯化钴0.2-0.4g/L,氯化铜0.2-0.4g/L,四水氯化锌0.2-0.4g/L,高锰酸钠0.2-0.4g/L,硼酸0.07-0.08g/L,和四水氯化锰0.4-0.6g/L。
本发明的有益效果:
本发明通过改变RBS的强度精细化调控戊二酸合成途径中的关键路径酶丁二胺转氨酶patA和γ-氨基丁醛脱氢酶patD的表达水平,实现了该合成路径的代谢流平衡;最优重组菌株Glu-02在5-L发酵罐水平下发酵60h可产生56.2g/L戊二酸,转化率为62.2%。本发明方法在工业上用于提高戊二酸的产量具有极大的潜力和广泛的价值。
附图说明
图1所示为戊二酸生物合成路径示意图;
图2所示为不同强度RBS的基因表达载体构建示意图;
图3所示为10种重组菌株在摇瓶发酵中的5-氨基戊酸产量及转化率比较;
图4所示为最优重组菌株Glu-02在摇瓶水平补料分批发酵的戊二酸产量;
图5所示为最优重组菌株Glu-02在5-L发酵罐补料分批发酵的戊二酸产量。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:路径酶相关的单基因表达载体的构建
本发明所用的赖氨酸脱羧酶cadA(NCBI:NP_418555)、丁二胺转氨酶patA(NCBI:NP_417544)和γ-氨基丁醛脱氢酶patD(NCBI:NP_415961)基因来源于大肠杆菌MG1655,4-氨基丁酸转氨酶gabT(NCBI:AEV60208)和琥珀酸半醛脱氢酶gabD(NCBI:AEV60207)基因来源于荧光假单胞菌,如图1所示。大肠杆菌MG1655和荧光假单胞菌接种于25mL的LB液体培养基,在37℃,200rpm培养10h,收集菌体,并利用细菌基因组提取试剂盒提取大肠杆菌菌株和荧光假单胞菌菌株的基因组DNA。
根据已公布的基因组信息序列,分别设计各个路径酶相对应的引物,以上述提取的基因组DNA为模板,利用标准的PCR扩增体系和程序,扩增获得相应的cadA、patA、patD、gabT、gabD基因片段。质粒pETM6R1经过BamHI和XhoI双酶切后,采用琼脂糖核酸电泳进行胶回收,回收获得线性化的质粒pETM6R1。将上述PCR扩增获得的基因片段分别与双酶切后的质粒采用一步同源重组酶进行连接,体系为20μL,条件为37℃,30min。连接产物转化至JM109感受态细胞,挑取单菌落进行PCR验证,阳性转化子进行测序,测序结果与理论序列一致,则证明单基因表达载体构建成功,由此获得5个表达载体,分别为:pETM6R1-cadA、pETM6R1-patA、pETM6R1-patD、pETM6R1-gabT、pETM6R1-gabD。
实施例2:关键路径酶相关的不同强度基因表达载体的构建
将实施例1获得的质粒pETM6R1-patA和pETM6R1-patD经XbaI和BamHI双酶切,获得切除质粒pETM6R1上的原RBS序列的线性化质粒。分别设计RBS01-RBS03的扩增引物共3对,利用PCR仪扩增获得相应的RBS片段,条件为95℃,5min。扩增获得的RBS片段经磷酸化之后与线性化质粒通过T4DNA连接酶相连接,体系为10μL:7.5μL扩增片段,1μL双酶切载体,1μLbuffer,0.5μL T4DNAligase,16℃连接过夜,连接产物转化至JM109感受态细胞,挑取单菌落进行PCR验证,阳性转化子进行测序,测序结果与理论序列一致,则证明不同强度RBS的基因表达载体构建成功,由此获得6个表达载体,分别为:pETM6R1-RBS01-patA、pETM6R1-RBS02-patA、pETM6R1-RBS03-patA、pETM6R1-RBS01-patD、pETM6R1-RBS02-patD、pETM6R1-RBS03-patD。
实施例3:重组表达载体(pETM6R1-RBS01/RBS02/RBS03-patA-RBS01/RBS02/RBS03-patD)的构建
在实施例2构建成功的不同强度单基因表达载体基础上,采用ePathBrick技术对路径酶进行组装。以重组表达载体pETM6R1-RBS01-patA-RBS02-patD的构建为例进行步骤介绍。选取限制性内切酶SpeI和SalI双酶切载体pETM6R1-RBS01-patA以获得线性化的载体并暴露出粘性末端;再选取AvrII和SalI双酶切载体pETM6R1-RBS02-patD,随后进行胶回收,获得带有粘性末端的目的基因;最后经T4连接酶16℃连接过夜,连接产物转化至JM109感受态细胞,挑取单菌落进行PCR验证,条带大小正确,则表明重组表达载体pETM6R1-RBS01-patA-RBS02-patD成功构建,其余9种组合重组表达载体的构建方法均与上述保持一致。由此获得10个重组表达载体,如图2所示,分别为:pETM6R1-原RBS-patA-原RBS-patD、pETM6R1-RBS01-patA-RBS01-patD、pETM6R1-RBS01-patA-RBS02-patD、pETM6R1-RBS01-patA-RBS03-patD、pETM6R1-RB S02-patA-RBS01-patD、pETM6R2-RBS01-patA-RBS02-patD、pETM6R1-RBS02-patA-RBS03-patD、pETM6R1-RBS03-patA-RBS01-patD、pETM6R1-RBS03-patA-RBS02-patD和pETM6R1-RBS03-patA-RBS03-patD。将获得的10种质粒分别转化入大肠杆菌W3110内,获得重组大肠杆菌PW00-PW09。
实施例4:重组菌株PW00-PW09摇瓶发酵
挑取PW00-PW09共10株重组菌株进行摇瓶发酵。单克隆接种于50mL(250mL摇瓶)含有10mg/mL Amp的LB培养基作为摇瓶发酵的种子液,于37℃,200rpm培养10h。摇瓶发酵的接种量为5%,发酵条件为,温度30℃,转速200rpm,初始pH控制在7.0左右。发酵培养基为:葡萄糖50g/L,蛋白胨20g/L,酵母提取物10g/L,十二水磷酸氢二铵2.63g/L,磷酸二氢铵0.87g/L,氯化钾0.15g/L,七水硫酸镁0.37g/L,和1mL微量金属溶液(六水氯化铁2.4g/L,六水氯化钴0.3g/L,氯化铜0.3g/L,四水氯化锌0.3g/L,高锰酸钠0.3g/L,硼酸0.075g/L,四水氯化锰0.5g/L,溶于0.12M盐酸)。培养4h添加0.4mmol/L的IPTG进行诱导,诱导温度为30℃。同时添加30g/L L-赖氨酸作为底物。每隔7.5h取样一次测定OD600、残糖量、L-赖氨酸含量以及5-氨基戊酸产量。
根据5-氨基戊酸的产量测定,结果如图3所示,发酵72h,最优重组菌株PW02可产生18.6g/L 5-氨基戊酸,转化率为68.5%,较对照菌株产量提高了52.2%。
实施例5:重组表达载体(pETM6R1-cadA-RBS01-patA-RBS02-patD-gabT-gabD)的构建
在实施例1和实施例3构建成功的不同强度单基因表达载体的基础上,采用ePathBrick技术对路径酶进行组装。选取限制性内切酶SpeI和SalI双酶切载体pETM6R1-cadA以获得线性化的载体并暴露出粘性末端;再选取AvrII和SalI双酶切载体pETM6R1-RBS01-patA-RBS02-patD,随后进行胶回收,获得带有粘性末端的目的基因;最后经T4连接酶16℃连接过夜,连接产物转化至JM109感受态细胞,挑取单菌落进行PCR验证,条带大小正确,则表明重组表达载体pETM6R1-cadA-RBS01-patA-RBS02-patD成功构建。随后,再采用限制性内切酶SpeI和SalI双酶切上述重组表达载体载体;选取AvrII和SalI双酶切载体pETM6R1-gabT回收片段,同样经过T4连接构建表达载体pETM6R1-cadA-RBS01-patA-RBS02-patD-gabT。同理,最终可获得重组表达载体pETM6R1-cadA-RBS01-patA-RBS02-patD-gabT-gabD。将获得的载体转化入大肠杆菌W3110内,获得重组大肠杆菌Glu-02。
实施例6:最优重组菌株Glu-02在摇瓶水平进行补料分批发酵
挑取Glu-02重组菌株进行摇瓶发酵。单克隆接种于50mL(250mL摇瓶)含有10mg/mLAmp的LB培养基作为摇瓶发酵的种子液,于37℃,200rpm培养10h。摇瓶发酵的接种量为5%,发酵条件为,温度30℃,转速200rpm,初始pH控制在7.0左右。发酵培养基为:葡萄糖50g/L,蛋白胨20g/L,酵母提取物10g/L,十二水磷酸氢二铵2.63g/L,磷酸二氢铵0.87g/L,氯化钾0.15g/L,七水硫酸镁0.37g/L,和1mL微量金属溶液(六水氯化铁2.4g/L,六水氯化钴0.3g/L,氯化铜0.3g/L,四水氯化锌0.3g/L,高锰酸钠0.3g/L,硼酸0.075g/L,四水氯化锰0.5g/L,溶于0.12M盐酸);培养4h添加0.4mmol/L的IPTG进行诱导,诱导温度为30℃。每隔15h补加20g/L L-赖氨酸持续至发酵结束。每隔7.5h取样一次测定OD600、残糖量、L-赖氨酸含量以及戊二酸产量。
根据戊二酸的产量测定,结果如图4所示,发酵72h,重组菌株Glu-02可产生43.2g/L戊二酸,转化率为47.8%。
实施例7:最优重组菌株Glu-02在5L发酵罐进行补料分批发酵
挑取Glu-02重组菌株进行上罐发酵。单克隆接种于50mL(250mL摇瓶)含有10mg/mLAmp的LB培养基作为上罐的种子液,于37℃,200rpm培养10h。发酵罐装液量为2L,发酵培养基为:葡萄糖50g/L,蛋白胨20g/L,酵母提取物10g/L,十二水磷酸氢二铵2.63g/L,磷酸二氢铵0.87g/L,氯化钾0.15g/L,七水硫酸镁0.37g/L,和1mL微量金属溶液(六水氯化铁2.4g/L,六水氯化钴0.3g/L,氯化铜0.3g/L,四水氯化锌0.3g/L,高锰酸钠0.3g/L,硼酸0.075g/L,四水氯化锰0.5g/L,溶于0.12M盐酸);补料培养基为:L-赖氨酸和葡萄糖母液(800g/L);30℃下补料分批发酵。整个发酵过程中的pH控制在7.0左右。按照10%的接种量接种至发酵罐中,培养6-8h,添加0.4mmol/L的IPTG进行诱导,诱导温度为30℃。发酵过程中,当溶氧急剧上升,开始进行葡萄糖补料。每隔12h流加20g/L L-赖氨酸持续至发酵结束。每隔6h取样一次测定OD600、残糖量、L-赖氨酸含量以及戊二酸产量。
根据戊二酸的产量测定,结果如图5所示,发酵60h,重组菌株Glu-02可产生56.2g/L戊二酸,转化率为62.2%。
以上结果说明,本发明技术采用基因工程技术,改变RBS的强度精细化调控戊二酸合成路径中的关键酶丁二胺转氨酶patA和γ-氨基丁醛脱氢酶patD的表达水平能够有效提高戊二酸的产量。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
序列表
<110> 江南大学
<120> 一种高效生产戊二酸的重组大肠杆菌及其构建方法
<160> 8
<170> PatentIn version 3.3
<210> 1
<211> 715
<212> PRT
<213> (人工序列)
<400> 1
Met Asn Val Ile Ala Ile Leu Asn His Met Gly Val Tyr Phe Lys Glu
1 5 10 15
Glu Pro Ile Arg Glu Leu His Arg Ala Leu Glu Arg Leu Asn Phe Gln
20 25 30
Ile Val Tyr Pro Asn Asp Arg Asp Asp Leu Leu Lys Leu Ile Glu Asn
35 40 45
Asn Ala Arg Leu Cys Gly Val Ile Phe Asp Trp Asp Lys Tyr Asn Leu
50 55 60
Glu Leu Cys Glu Glu Ile Ser Lys Met Asn Glu Asn Leu Pro Leu Tyr
65 70 75 80
Ala Phe Ala Asn Thr Tyr Ser Thr Leu Asp Val Ser Leu Asn Asp Leu
85 90 95
Arg Leu Gln Ile Ser Phe Phe Glu Tyr Ala Leu Gly Ala Ala Glu Asp
100 105 110
Ile Ala Asn Lys Ile Lys Gln Thr Thr Asp Glu Tyr Ile Asn Thr Ile
115 120 125
Leu Pro Pro Leu Thr Lys Ala Leu Phe Lys Tyr Val Arg Glu Gly Lys
130 135 140
Tyr Thr Phe Cys Thr Pro Gly His Met Gly Gly Thr Ala Phe Gln Lys
145 150 155 160
Ser Pro Val Gly Ser Leu Phe Tyr Asp Phe Phe Gly Pro Asn Thr Met
165 170 175
Lys Ser Asp Ile Ser Ile Ser Val Ser Glu Leu Gly Ser Leu Leu Asp
180 185 190
His Ser Gly Pro His Lys Glu Ala Glu Gln Tyr Ile Ala Arg Val Phe
195 200 205
Asn Ala Asp Arg Ser Tyr Met Val Thr Asn Gly Thr Ser Thr Ala Asn
210 215 220
Lys Ile Val Gly Met Tyr Ser Ala Pro Ala Gly Ser Thr Ile Leu Ile
225 230 235 240
Asp Arg Asn Cys His Lys Ser Leu Thr His Leu Met Met Met Ser Asp
245 250 255
Val Thr Pro Ile Tyr Phe Arg Pro Thr Arg Asn Ala Tyr Gly Ile Leu
260 265 270
Gly Gly Ile Pro Gln Ser Glu Phe Gln His Ala Thr Ile Ala Lys Arg
275 280 285
Val Lys Glu Thr Pro Asn Ala Thr Trp Pro Val His Ala Val Ile Thr
290 295 300
Asn Ser Thr Tyr Asp Gly Leu Leu Tyr Asn Thr Asp Phe Ile Lys Lys
305 310 315 320
Thr Leu Asp Val Lys Ser Ile His Phe Asp Ser Ala Trp Val Pro Tyr
325 330 335
Thr Asn Phe Ser Pro Ile Tyr Glu Gly Lys Cys Gly Met Ser Gly Gly
340 345 350
Arg Val Glu Gly Lys Val Ile Tyr Glu Thr Gln Ser Thr His Lys Leu
355 360 365
Leu Ala Ala Phe Ser Gln Ala Ser Met Ile His Val Lys Gly Asp Val
370 375 380
Asn Glu Glu Thr Phe Asn Glu Ala Tyr Met Met His Thr Thr Thr Ser
385 390 395 400
Pro His Tyr Gly Ile Val Ala Ser Thr Glu Thr Ala Ala Ala Met Met
405 410 415
Lys Gly Asn Ala Gly Lys Arg Leu Ile Asn Gly Ser Ile Glu Arg Ala
420 425 430
Ile Lys Phe Arg Lys Glu Ile Lys Arg Leu Arg Thr Glu Ser Asp Gly
435 440 445
Trp Phe Phe Asp Val Trp Gln Pro Asp His Ile Asp Thr Thr Glu Cys
450 455 460
Trp Pro Leu Arg Ser Asp Ser Thr Trp His Gly Phe Lys Asn Ile Asp
465 470 475 480
Asn Glu His Met Tyr Leu Asp Pro Ile Lys Val Thr Leu Leu Thr Pro
485 490 495
Gly Met Glu Lys Asp Gly Thr Met Ser Asp Phe Gly Ile Pro Ala Ser
500 505 510
Ile Val Ala Lys Tyr Leu Asp Glu His Gly Ile Val Val Glu Lys Thr
515 520 525
Gly Pro Tyr Asn Leu Leu Phe Leu Phe Ser Ile Gly Ile Asp Lys Thr
530 535 540
Lys Ala Leu Ser Leu Leu Arg Ala Leu Thr Asp Phe Lys Arg Ala Phe
545 550 555 560
Asp Leu Asn Leu Arg Val Lys Asn Met Leu Pro Ser Leu Tyr Arg Glu
565 570 575
Asp Pro Glu Phe Tyr Glu Asn Met Arg Ile Gln Glu Leu Ala Gln Asn
580 585 590
Ile His Lys Leu Ile Val His His Asn Leu Pro Asp Leu Met Tyr Arg
595 600 605
Ala Phe Glu Val Leu Pro Thr Met Val Met Thr Pro Tyr Ala Ala Phe
610 615 620
Gln Lys Glu Leu His Gly Met Thr Glu Glu Val Tyr Leu Asp Glu Met
625 630 635 640
Val Gly Arg Ile Asn Ala Asn Met Ile Leu Pro Tyr Pro Pro Gly Val
645 650 655
Pro Leu Val Met Pro Gly Glu Met Ile Thr Glu Glu Ser Arg Pro Val
660 665 670
Leu Glu Phe Leu Gln Met Leu Cys Glu Ile Gly Ala His Tyr Pro Gly
675 680 685
Phe Glu Thr Asp Ile His Gly Ala Tyr Arg Gln Ala Asp Gly Arg Tyr
690 695 700
Thr Val Lys Val Leu Lys Glu Glu Ser Lys Lys
705 710 715
<210> 2
<211> 459
<212> PRT
<213> (人工序列)
<400> 2
Met Asn Arg Leu Pro Ser Ser Ala Ser Ala Leu Ala Cys Ser Ala His
1 5 10 15
Ala Leu Asn Leu Ile Glu Lys Arg Thr Leu Asp His Glu Glu Met Lys
20 25 30
Ala Leu Asn Arg Glu Val Ile Glu Tyr Phe Lys Glu His Val Asn Pro
35 40 45
Gly Phe Leu Glu Tyr Arg Lys Ser Val Thr Ala Gly Gly Asp Tyr Gly
50 55 60
Ala Val Glu Trp Gln Ala Gly Ser Leu Asn Thr Leu Val Asp Thr Gln
65 70 75 80
Gly Gln Glu Phe Ile Asp Cys Leu Gly Gly Phe Gly Ile Phe Asn Val
85 90 95
Gly His Arg Asn Pro Val Val Val Ser Ala Val Gln Asn Gln Leu Ala
100 105 110
Lys Gln Pro Leu His Ser Gln Glu Leu Leu Asp Pro Leu Arg Ala Met
115 120 125
Leu Ala Lys Thr Leu Ala Ala Leu Thr Pro Gly Lys Leu Lys Tyr Ser
130 135 140
Phe Phe Cys Asn Ser Gly Thr Glu Ser Val Glu Ala Ala Leu Lys Leu
145 150 155 160
Ala Lys Ala Tyr Gln Ser Pro Arg Gly Lys Phe Thr Phe Ile Ala Thr
165 170 175
Ser Gly Ala Phe His Gly Lys Ser Leu Gly Ala Leu Ser Ala Thr Ala
180 185 190
Lys Ser Thr Phe Arg Lys Pro Phe Met Pro Leu Leu Pro Gly Phe Arg
195 200 205
His Val Pro Phe Gly Asn Ile Glu Ala Met Arg Thr Ala Leu Asn Glu
210 215 220
Cys Lys Lys Thr Gly Asp Asp Val Ala Ala Val Ile Leu Glu Pro Ile
225 230 235 240
Gln Gly Glu Gly Gly Val Ile Leu Pro Pro Pro Gly Tyr Leu Thr Ala
245 250 255
Val Arg Lys Leu Cys Asp Glu Phe Gly Ala Leu Met Ile Leu Asp Glu
260 265 270
Val Gln Thr Gly Met Gly Arg Thr Gly Lys Met Phe Ala Cys Glu His
275 280 285
Glu Asn Val Gln Pro Asp Ile Leu Cys Leu Ala Lys Ala Leu Gly Gly
290 295 300
Gly Val Met Pro Ile Gly Ala Thr Ile Ala Thr Glu Glu Val Phe Ser
305 310 315 320
Val Leu Phe Asp Asn Pro Phe Leu His Thr Thr Thr Phe Gly Gly Asn
325 330 335
Pro Leu Ala Cys Ala Ala Ala Leu Ala Thr Ile Asn Val Leu Leu Glu
340 345 350
Gln Asn Leu Pro Ala Gln Ala Glu Gln Lys Gly Asp Met Leu Leu Asp
355 360 365
Gly Phe Arg Gln Leu Ala Arg Glu Tyr Pro Asp Leu Val Gln Glu Ala
370 375 380
Arg Gly Lys Gly Met Leu Met Ala Ile Glu Phe Val Asp Asn Glu Ile
385 390 395 400
Gly Tyr Asn Phe Ala Ser Glu Met Phe Arg Gln Arg Val Leu Val Ala
405 410 415
Gly Thr Leu Asn Asn Ala Lys Thr Ile Arg Ile Glu Pro Pro Leu Thr
420 425 430
Leu Thr Ile Glu Gln Cys Glu Leu Val Ile Lys Ala Ala Arg Lys Ala
435 440 445
Leu Ala Ala Met Arg Val Ser Val Glu Glu Ala
450 455
<210> 3
<211> 474
<212> PRT
<213> (人工序列)
<400> 3
Met Gln His Lys Leu Leu Ile Asn Gly Glu Leu Val Ser Gly Glu Gly
1 5 10 15
Glu Lys Gln Pro Val Tyr Asn Pro Ala Thr Gly Asp Val Leu Leu Glu
20 25 30
Ile Ala Glu Ala Ser Ala Glu Gln Val Asp Ala Ala Val Arg Ala Ala
35 40 45
Asp Ala Ala Phe Ala Glu Trp Gly Gln Thr Thr Pro Lys Val Arg Ala
50 55 60
Glu Cys Leu Leu Lys Leu Ala Asp Val Ile Glu Glu Asn Gly Gln Val
65 70 75 80
Phe Ala Glu Leu Glu Ser Arg Asn Cys Gly Lys Pro Leu His Ser Ala
85 90 95
Phe Asn Asp Glu Ile Pro Ala Ile Val Asp Val Phe Arg Phe Phe Ala
100 105 110
Gly Ala Ala Arg Cys Leu Asn Gly Leu Ala Ala Gly Glu Tyr Leu Glu
115 120 125
Gly His Thr Ser Met Ile Arg Arg Asp Pro Leu Gly Val Val Ala Ser
130 135 140
Ile Ala Pro Trp Asn Tyr Pro Leu Met Met Ala Ala Trp Lys Leu Ala
145 150 155 160
Pro Ala Leu Ala Ala Gly Asn Cys Val Val Leu Lys Pro Ser Glu Ile
165 170 175
Thr Pro Leu Thr Ala Leu Lys Leu Ala Glu Leu Ala Lys Asp Ile Phe
180 185 190
Pro Ala Gly Val Ile Asn Ile Leu Phe Gly Arg Gly Lys Thr Val Gly
195 200 205
Asp Pro Leu Thr Gly His Pro Lys Val Arg Met Val Ser Leu Thr Gly
210 215 220
Ser Ile Ala Thr Gly Glu His Ile Ile Ser His Thr Ala Ser Ser Ile
225 230 235 240
Lys Arg Thr His Met Glu Leu Gly Gly Lys Ala Pro Val Ile Val Phe
245 250 255
Asp Asp Ala Asp Ile Glu Ala Val Val Glu Gly Val Arg Thr Phe Gly
260 265 270
Tyr Tyr Asn Ala Gly Gln Asp Cys Thr Ala Ala Cys Arg Ile Tyr Ala
275 280 285
Gln Lys Gly Ile Tyr Asp Thr Leu Val Glu Lys Leu Gly Ala Ala Val
290 295 300
Ala Thr Leu Lys Ser Gly Ala Pro Asp Asp Glu Ser Thr Glu Leu Gly
305 310 315 320
Pro Leu Ser Ser Leu Ala His Leu Glu Arg Val Gly Lys Ala Val Glu
325 330 335
Glu Ala Lys Ala Thr Gly His Ile Lys Val Ile Thr Gly Gly Glu Lys
340 345 350
Arg Lys Gly Asn Gly Tyr Tyr Tyr Ala Pro Thr Leu Leu Ala Gly Ala
355 360 365
Leu Gln Asp Asp Ala Ile Val Gln Lys Glu Val Phe Gly Pro Val Val
370 375 380
Ser Val Thr Pro Phe Asp Asn Glu Glu Gln Val Val Asn Trp Ala Asn
385 390 395 400
Asp Ser Gln Tyr Gly Leu Ala Ser Ser Val Trp Thr Lys Asp Val Gly
405 410 415
Arg Ala His Arg Val Ser Ala Arg Leu Gln Tyr Gly Cys Thr Trp Val
420 425 430
Asn Thr His Phe Met Leu Val Ser Glu Met Pro His Gly Gly Gln Lys
435 440 445
Leu Ser Gly Tyr Gly Lys Asp Met Ser Leu Tyr Gly Leu Glu Asp Tyr
450 455 460
Thr Val Val Arg His Val Met Val Lys His
465 470
<210> 4
<211> 425
<212> PRT
<213> (人工序列)
<400> 4
Met Ser Lys Thr Asn Ala Asp Leu Met Ala Arg Arg Ile Ala Ala Val
1 5 10 15
Pro Arg Gly Val Gly Gln Ile His Pro Ile Phe Ala Glu Ser Ala Lys
20 25 30
Asn Ala Thr Val Thr Asp Val Glu Gly Arg Glu Phe Ile Asp Phe Ala
35 40 45
Gly Gly Ile Ala Val Leu Asn Thr Gly His Val His Pro Lys Ile Ile
50 55 60
Ala Ala Val Thr Ala Gln Leu Asn Lys Leu Thr His Thr Cys Phe Gln
65 70 75 80
Val Leu Ala Tyr Glu Pro Tyr Val Glu Leu Cys Glu Lys Ile Asn Ala
85 90 95
Lys Val Pro Gly Asp Phe Ala Lys Lys Thr Leu Leu Val Thr Thr Gly
100 105 110
Ser Glu Ala Val Glu Asn Ala Val Lys Ile Ala Arg Ala Ala Thr Gly
115 120 125
Arg Ala Gly Val Ile Ala Phe Thr Gly Ala Tyr His Gly Arg Thr Met
130 135 140
Met Thr Leu Gly Leu Thr Gly Lys Val Val Pro Tyr Ser Ala Gly Met
145 150 155 160
Gly Leu Met Pro Gly Gly Ile Phe Arg Ala Leu Tyr Pro Asn Glu Leu
165 170 175
His Gly Val Ser Ile Asp Asp Ser Ile Ala Ser Ile Glu Arg Ile Phe
180 185 190
Lys Asn Asp Ala Glu Pro Arg Asp Ile Ala Ala Ile Ile Ile Glu Pro
195 200 205
Val Gln Gly Glu Gly Gly Phe Tyr Val Ala Pro Lys Glu Phe Met Lys
210 215 220
Arg Leu Arg Ala Leu Cys Asp Gln His Gly Ile Leu Leu Ile Ala Asp
225 230 235 240
Glu Val Gln Thr Gly Ala Gly Arg Thr Gly Thr Phe Phe Ala Met Glu
245 250 255
Gln Met Gly Val Ala Ala Asp Leu Thr Thr Phe Ala Lys Ser Ile Ala
260 265 270
Gly Gly Phe Pro Leu Ala Gly Val Cys Gly Lys Ala Glu Tyr Met Asp
275 280 285
Ala Ile Ala Pro Gly Gly Leu Gly Gly Thr Tyr Ala Gly Ser Pro Ile
290 295 300
Ala Cys Ala Ala Ala Leu Ala Val Met Glu Val Phe Glu Glu Glu His
305 310 315 320
Leu Leu Asp Arg Cys Lys Ala Val Gly Glu Arg Leu Val Thr Gly Leu
325 330 335
Lys Ala Ile Gln Lys Lys Tyr Pro Val Ile Gly Glu Val Arg Ala Leu
340 345 350
Gly Ala Met Ile Ala Leu Glu Leu Phe Glu Asn Gly Asp Thr His Lys
355 360 365
Pro Asn Ala Ala Ala Val Ala Gln Val Val Ala Lys Ala Arg Asp Lys
370 375 380
Gly Leu Ile Leu Leu Ser Cys Gly Thr Tyr Gly Asn Val Leu Arg Val
385 390 395 400
Leu Val Pro Leu Thr Ala Pro Asp Glu Gln Leu Asp Lys Gly Leu Ala
405 410 415
Ile Leu Glu Glu Cys Phe Ser Glu Leu
420 425
<210> 5
<211> 480
<212> PRT
<213> (人工序列)
<400> 5
Met Gln Leu Lys Asp Thr Gln Leu Phe Arg Gln Gln Ala Phe Ile Asp
1 5 10 15
Gly Ala Trp Val Asp Ala Asp Asn Gly Gln Thr Ile Lys Val Thr Asn
20 25 30
Pro Ala Thr Gly Glu Val Leu Gly Thr Val Pro Lys Met Gly Ala Ala
35 40 45
Glu Thr Arg Arg Ala Ile Glu Ala Ala Asp Lys Ala Leu Pro Ala Trp
50 55 60
Arg Ala Leu Thr Ala Lys Glu Arg Ala Asn Lys Leu Arg Arg Trp Tyr
65 70 75 80
Glu Leu Leu Ile Glu Asn Gln Asp Asp Leu Gly Arg Leu Met Thr Leu
85 90 95
Glu Gln Gly Lys Pro Leu Ala Glu Ala Lys Gly Glu Ile Val Tyr Ala
100 105 110
Ala Ser Phe Ile Glu Trp Phe Ala Glu Glu Ala Lys Arg Ile Tyr Gly
115 120 125
Asp Val Ile Pro Gly His Gln Pro Asp Lys Arg Leu Ile Val Ile Lys
130 135 140
Gln Pro Ile Gly Val Thr Ala Ala Ile Thr Pro Trp Asn Phe Pro Ala
145 150 155 160
Ala Met Ile Thr Arg Lys Ala Gly Pro Ala Leu Ala Ala Gly Cys Thr
165 170 175
Met Val Ile Lys Pro Ala Ser Gln Thr Pro Phe Ser Ala Leu Ala Leu
180 185 190
Val Glu Leu Ala His Arg Ala Gly Ile Pro Gln Gly Val Leu Ser Val
195 200 205
Val Thr Gly Ser Ala Gly Asp Ile Gly Gly Glu Leu Thr Ser Asn Pro
210 215 220
Ile Val Arg Lys Leu Ser Phe Thr Gly Ser Thr Glu Ile Gly Arg Gln
225 230 235 240
Leu Met Ala Glu Cys Ala Lys Asp Ile Lys Lys Val Ser Leu Glu Leu
245 250 255
Gly Gly Asn Ala Pro Phe Ile Val Phe Asp Asp Ala Asp Leu Asp Lys
260 265 270
Ala Val Glu Gly Ala Ile Ile Ser Lys Tyr Arg Asn Asn Gly Gln Thr
275 280 285
Cys Val Cys Ala Asn Arg Leu Tyr Ile Gln Asp Ser Val Tyr Asp Ala
290 295 300
Phe Ala Glu Lys Leu Lys Val Ala Val Ala Lys Leu Lys Ile Gly Asn
305 310 315 320
Gly Leu Asp Asp Gly Thr Thr Thr Gly Pro Leu Ile Asp Gly Lys Ala
325 330 335
Val Ala Lys Val Gln Glu His Ile Ala Asp Ala Val Ser Lys Gly Ala
340 345 350
Thr Val Leu Ser Gly Gly Lys Ala Met Glu Gly Asn Phe Phe Glu Pro
355 360 365
Thr Ile Leu Thr Asn Val Pro Lys Asn Ala Ala Val Ala Lys Glu Glu
370 375 380
Thr Phe Gly Pro Leu Ala Pro Leu Phe Arg Phe Lys Asp Glu Ala Glu
385 390 395 400
Val Ile Ala Met Ser Asn Asp Thr Glu Phe Gly Leu Ala Ser Tyr Phe
405 410 415
Tyr Ala Arg Asp Leu Gly Arg Val Phe Arg Val Ala Glu Ala Leu Glu
420 425 430
Tyr Gly Met Val Gly Val Asn Thr Gly Leu Ile Ser Asn Glu Val Ala
435 440 445
Pro Phe Gly Gly Ile Lys Ala Ser Gly Leu Gly Arg Glu Gly Ser Lys
450 455 460
Tyr Gly Ile Glu Asp Tyr Leu Glu Ile Lys Tyr Leu Cys Leu Gly Ile
465 470 475 480
<210> 6
<211> 12
<212> DNA
<213> (人工序列)
<400> 6
aaagaggaga aa 12
<210> 7
<211> 13
<212> DNA
<213> (人工序列)
<400> 7
tcacacagga aag 13
<210> 8
<211> 10
<212> DNA
<213> (人工序列)
<400> 8
agggacagga 10

Claims (10)

1.一种高效生产戊二酸的重组大肠杆菌,其特征在于,所述重组大肠杆菌是在大肠杆菌宿主菌中过表达了赖氨酸脱羧酶cadA、丁二胺转氨酶patA、γ-氨基丁醛脱氢酶patD、4-氨基丁酸转氨酶gabT和琥珀酸半醛脱氢酶gabD。
2.根据权利要求1所述的重组大肠杆菌,其特征在于,所述赖氨酸脱羧酶的氨基酸序列如SEQ ID NO.1所示;丁二胺转氨酶的氨基酸序列如SEQ ID NO.2所示;γ-氨基丁醛脱氢酶的氨基酸序列如SEQ ID NO.3所示;4-氨基丁酸转氨酶的氨基酸序列如SEQ ID NO.4所示;琥珀酸半醛脱氢酶的氨基酸序列如SEQ ID NO.5所示。
3.根据权利要求2所述的重组大肠杆菌,其特征在于,所述丁二胺转氨酶通过核苷酸序列如SEQ ID NO.6所示的核糖体结合位点与表达载体相连,所述γ-氨基丁醛脱氢酶是通过核苷酸序列如SEQ ID NO.7所示的核糖体结合位点与表达载体相连。
4.根据权利要求3所述的重组大肠杆菌,其特征在于,所述大肠杆菌宿主菌为大肠杆菌E.coli W3110、E.coli MG1655、E.coli B0013或E.coli ATCC 8739。
5.根据权利要求3所述的重组大肠杆菌,其特征在于,所述表达载体为pETM6R1、pCDR或pCOR。
6.一种权利要求1-5任一项所述重组大肠杆菌的构建方法,其特征在于,包括如下步骤:
(1)获得赖氨酸脱羧酶cadA、丁二胺转氨酶patA、γ-氨基丁醛脱氢酶patD、4-氨基丁酸转氨酶gabT和琥珀酸半醛脱氢酶gabD的单基因表达载体;
(2)将步骤(1)得到的单基因表达载体采用ePathBrick技术对路径酶进行组装,得到重组质粒;
(3)将步骤(2)所得的重组质粒转化到大肠杆菌宿主中,得到大肠杆菌重组菌。
7.权利要求1-5任一项所述重组大肠杆菌在生产戊二酸中的应用。
8.根据权利要求7所述的应用,其特征在于,所述应用具体是将所述重组大肠杆菌按照5-10%的接种量接种至发酵培养基中进行培养,培养4-8h,添加0.1-0.4mmol/L的IPTG进行诱导,诱导温度为25-30℃;在发酵过程中,当溶氧急剧上升,开始进行葡萄糖补料,并每隔10-20h补加L-赖氨酸持续至发酵结束。
9.根据权利要求8所述的应用,其特征在于,所述发酵培养基包括如下组分:葡萄糖40-60g/L,蛋白胨15-25g/L,酵母提取物5-15g/L,十二水磷酸氢二铵2-3g/L,磷酸二氢铵0.5-1.5g/L,氯化钾0.1-0.2g/L,七水硫酸镁0.2-0.4g/L,和0.5-1.5mL微量金属溶液。
10.根据权利要求9所述的应用,其特征在于,所述微量金属溶液包括如下组分:六水氯化铁2-3g/L,六水氯化钴0.2-0.4g/L,氯化铜0.2-0.4g/L,四水氯化锌0.2-0.4g/L,高锰酸钠0.2-0.4g/L,硼酸0.07-0.08g/L,和四水氯化锰0.4-0.6g/L。
CN202011191668.0A 2020-10-30 2020-10-30 一种高效生产戊二酸的重组大肠杆菌及其构建方法 Active CN112226398B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011191668.0A CN112226398B (zh) 2020-10-30 2020-10-30 一种高效生产戊二酸的重组大肠杆菌及其构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011191668.0A CN112226398B (zh) 2020-10-30 2020-10-30 一种高效生产戊二酸的重组大肠杆菌及其构建方法

Publications (2)

Publication Number Publication Date
CN112226398A true CN112226398A (zh) 2021-01-15
CN112226398B CN112226398B (zh) 2022-08-30

Family

ID=74121552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011191668.0A Active CN112226398B (zh) 2020-10-30 2020-10-30 一种高效生产戊二酸的重组大肠杆菌及其构建方法

Country Status (1)

Country Link
CN (1) CN112226398B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107156A (zh) * 2021-11-29 2022-03-01 江南大学 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
CN114540318A (zh) * 2021-11-01 2022-05-27 北京化工大学 具有催化乙醇醛合成乙醇酸功能的酶及其应用
CN114921502A (zh) * 2022-04-21 2022-08-19 东华大学 一种基于微生物生理参数进行反馈调控氮源流加的戊二酸生产方法
CN115109805A (zh) * 2022-03-29 2022-09-27 东华大学 一种微生物制备5-氨基-1-戊醇的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136295A (zh) * 2018-08-17 2019-01-04 北京化工大学 一种生物合成戊二酸的方法
US20200263211A1 (en) * 2018-08-23 2020-08-20 Korea Research Institute Of Chemical Technology RECOMBINANT Corynebacterium glutamicum STRAIN FOR PRODUCING GLUTARIC ACID AND METHOD OF PRODUCING GLUTARIC ACID BY USING SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136295A (zh) * 2018-08-17 2019-01-04 北京化工大学 一种生物合成戊二酸的方法
US20200263211A1 (en) * 2018-08-23 2020-08-20 Korea Research Institute Of Chemical Technology RECOMBINANT Corynebacterium glutamicum STRAIN FOR PRODUCING GLUTARIC ACID AND METHOD OF PRODUCING GLUTARIC ACID BY USING SAME

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540318A (zh) * 2021-11-01 2022-05-27 北京化工大学 具有催化乙醇醛合成乙醇酸功能的酶及其应用
CN114540318B (zh) * 2021-11-01 2024-02-02 北京化工大学 具有催化乙醇醛合成乙醇酸功能的酶及其应用
CN114107156A (zh) * 2021-11-29 2022-03-01 江南大学 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
WO2023092632A1 (zh) * 2021-11-29 2023-06-01 江南大学 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
CN114107156B (zh) * 2021-11-29 2023-06-02 江南大学 高效生产戊二酸的重组大肠杆菌及其构建方法与应用
CN115109805A (zh) * 2022-03-29 2022-09-27 东华大学 一种微生物制备5-氨基-1-戊醇的方法
CN114921502A (zh) * 2022-04-21 2022-08-19 东华大学 一种基于微生物生理参数进行反馈调控氮源流加的戊二酸生产方法
CN114921502B (zh) * 2022-04-21 2023-10-20 东华大学 一种基于微生物生理参数进行反馈调控氮源流加的戊二酸生产方法

Also Published As

Publication number Publication date
CN112226398B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN112226398B (zh) 一种高效生产戊二酸的重组大肠杆菌及其构建方法
CN110699394B (zh) 一种生产1,5-戊二胺的生物转化法
CN113186147B (zh) 一种提高毕赤酵母工程菌生产猪肌红蛋白的发酵方法
CN102367432A (zh) 一种高产γ-氨基丁酸重组大肠杆菌/pET-28a-lpgad的构建方法及其应用
KR101087760B1 (ko) 신규한 재조합 효모 균주 및 이를 이용한 에탄올 및 목적단백질의 동시 생산 방법
CN115820527A (zh) 一种生产甲羟戊酸的重组盐单胞菌及构建方法与应用
CN107227286B (zh) 一株高产琥珀酸的基因工程菌及其构建方法与应用
CN100392075C (zh) 谷氨酰胺合成酶及其专用表达工程菌与应用
CN113025548B (zh) 基于kosakonia sp.菌株生产2’-岩藻糖基乳糖的重组菌及其方法和应用
CN114807206A (zh) 合成聚(3-羟基丁酸酯-co-4-羟基丁酸酯)的菌株及其构建方法和应用
CN108359626A (zh) 一种工程菌及其在制备(r)-3-羟基-5-己烯酸酯中的应用
CN108004275B (zh) 一种产己二酸的大肠杆菌重组菌及其应用
CN114134092A (zh) 一种可高效利用甲醇的重组微生物及其应用
WO2022088263A1 (zh) 一种高效生产琥珀酸的重组大肠杆菌及其构建方法
CN114134127A (zh) 用于合成依克多因的二氨基丁酸乙酰转移酶突变体
CN116262928A (zh) 一种产3-羟基丙酸的工程菌及其构建方法与应用
CN112646738A (zh) 一种高产谷胱甘肽毕赤酵母菌株g3-sa及其应用
CN111378587A (zh) 一种合成β-法尼烯的基因工程菌及其应用
CN117965473B (zh) 一种脱氢酶系统及其在制备p34hb中的应用
CN117417952B (zh) 一种提高香兰素产量的重组拟无枝酸菌、其构建方法及应用
CN116179380A (zh) 一种高产丙酮酸的解脂耶氏酵母工程菌wsmhp、构建方法及应用
CN111378691B (zh) 一种发酵生产β-法尼烯的玉米水解液培养基及其应用
CN116875474A (zh) 一种利用对香豆酸合成白藜芦醇工程菌、构建及应用
CN118165906A (zh) 一种直接利用废弃二氧化碳产3-羟基丙酸的重组菌及其构建方法与应用
CN117844837A (zh) 产琥珀酸的大肠杆菌基因工程菌的构建方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant