CN114085080B - 一种稀土掺杂钽钛酸盐粉体及其制备方法 - Google Patents

一种稀土掺杂钽钛酸盐粉体及其制备方法 Download PDF

Info

Publication number
CN114085080B
CN114085080B CN202111177245.8A CN202111177245A CN114085080B CN 114085080 B CN114085080 B CN 114085080B CN 202111177245 A CN202111177245 A CN 202111177245A CN 114085080 B CN114085080 B CN 114085080B
Authority
CN
China
Prior art keywords
solution
rare earth
citric acid
earth doped
titanate powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111177245.8A
Other languages
English (en)
Other versions
CN114085080A (zh
Inventor
刘洋
肖文海
贺图升
王操
田长安
黎载波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoguan University
Original Assignee
Shaoguan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoguan University filed Critical Shaoguan University
Priority to CN202111177245.8A priority Critical patent/CN114085080B/zh
Publication of CN114085080A publication Critical patent/CN114085080A/zh
Application granted granted Critical
Publication of CN114085080B publication Critical patent/CN114085080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种稀土掺杂钽钛酸盐粉体,其通式为Cu3‑xLax(TiO3)2(TaO3)2,其中0.05≤x≤0.22。本发明还涉及所述稀土掺杂钽钛酸盐粉体的其制备方法,以碳酸氢钾、五氧化二钽、硝酸镧或其水合物、硝酸铜或其水合物、钛酸丁酯和柠檬酸为原料,无水乙醇作为溶剂,通过混合、水浴搅拌、干燥煅烧得到所述稀土掺杂钽钛酸盐粉体。本发明合成的稀土掺杂钽钛酸盐粉体纯度较高,合成过程无水解发生,烧结块材致密,介电系数高,介电响应稳定。

Description

一种稀土掺杂钽钛酸盐粉体及其制备方法
技术领域
本发明涉及固体电介质陶瓷粉体制备技术领域,具体是涉及一种稀土掺杂钽钛酸盐粉体及其制备方法。
背景技术
固体电介质是一类在电场中以感应而非传导的方式的物质,介质能量密度高、抗击穿能力强,是电子工业、静电技术工程的关键材料。钽钛酸盐电介质材料介电强度高、能量密度大,能够在宽温区范围内保持介电性能稳定,具有潜在的应用价值。A(BC)O3(A=Cu、Mn等;B=Ti;C=Nb,Ta,Sb等)型类钙钛矿结构的钽钛酸盐氧化物是典型的非铅介质,在谐振器、介质导波回路、卫星接收器等领域可有非常重要的应用。
目前,钽钛酸盐粉体主要采用传统的固相反应法制备。虽然制备成本低,方法简易,但制备的固体电介质陶瓷粉体颗粒不均匀,且需要较高的烧结温度(1100℃以上)才能获得较为致密的材料。为了改进这类材料的性能,人们正在探寻用溶胶凝胶法、水热法、共沉淀法等软化学方法制备此类材料,但是制备过程容易出现水解,粉体纯度差。
发明内容
基于此,本发明提供一种稀土掺杂钽钛酸盐粉体及其制备方法,此粉体制成的钽钛酸盐固体电介质具有优良的巨介电性能。本发明通过溶胶凝胶法制备较纯的稀土掺杂钽钛酸盐粉体,且避免合成过程中出现水解变质,以提高钽钛酸盐固体电介质的介电性能。
本发明采取的技术方案如下:一种稀土掺杂钽钛酸盐粉体,其化学式为Cu3-xLax(TiO3)2(TaO3)2,其中0.05≤x≤0.22。
优选地,x=0.1。
优选地,所述稀土掺杂钽钛酸盐粉体通过溶胶凝胶法制备而成,且制备过程中采用无水乙醇作为溶剂。
所述稀土掺杂钽钛酸盐粉体的制备方法,包括如下步骤:
(1)按照3~7:1的摩尔比将碳酸氢钾和五氧化二钽混合后以980℃熔融6小时,再将熔融后自然冷却得到的固体溶解于去离子水中,震荡后静置分层,取上层清液,滴加硝酸调整pH值至析出白色沉淀;
(2)将步骤(1)得到的白色沉淀与柠檬酸一起溶解于无水乙醇中,然后滴加过氧化氢溶液,以80℃水浴加热,并搅拌至澄清,再滴加氨水调节pH值至4~7得到溶液1;
(3)将柠檬酸溶解于无水乙醇中,然后缓慢滴加钛酸丁酯,并搅拌至无色透明,得到溶液2;
(4)将硝酸镧或其水合物、硝酸铜或其水合物溶解于无水乙醇中,再缓慢滴加所述溶液2并搅拌,然后滴加氨水调节pH值至4~7得到溶液3;
(5)将所述溶液1缓慢滴加到所述溶液3中混合均匀,再经过超声处理,然后以80℃水浴加热搅拌直至形成凝胶;
(6)将步骤(5)得到的凝胶以140℃恒温干燥10~24小时,然后磨碎,再经过1020℃煅烧4小时,得到所述稀土掺杂钽钛酸盐粉体。
本发明所述制备方法中,将各种原料分别配置成所述溶液1、溶液2和溶液3的作用或理由是:1)各原料与柠檬酸在溶液中的螯合程度不同,浓度匹配也不一样,配置成所述溶液1至3保证各原料能与柠檬酸充分混合形成溶液,且防止如钛酸四丁酯产生水解;2)不是所有原料形成溶液后都需要氨水调节pH,氨水的加入是针对一些难溶性挥发性易水解的原料在溶解时,增加柠檬酸根的电离,最大程度保证其与金属离子的螯合。
另外,所述步骤(1)采取碳酸氢钾和五氧化二钽混合后高温熔融、溶解于水、调整pH析出沉淀等操作,是为了合成钽酸(Ta(OH)5),这样引入的优点在于高腐蚀性的酸用量较小,且硝酸只为了合成钽酸沉淀,不参与浸泡溶解原料的过程,化学反应并不剧烈,安全、环保。
优选地,步骤(1)中,滴加硝酸调整pH值至1~2。
优选地,步骤(2)配置所述溶液1时加入的柠檬酸与其中金属阳离子的摩尔比为5:1;步骤(3)中,先根据化学式Cu3-xLax(TiO3)2(TaO3)2,按化学计量比分别称取硝酸镧或其水合物、硝酸铜或其水合物、钛酸丁酯备用,在配置所述溶液2时加入的柠檬酸与其中金属阳离子的摩尔比为5:1;步骤(4)中,在配置所述溶液3时加入的柠檬酸与其中金属阳离子的摩尔比为5:1。
本发明制得的钽钛酸盐粉体纯度较高,合成过程无水解发生,此粉体制成的钽钛酸盐固体电介质具有优良的巨介电性能。
本发明选用稀土La掺杂钽钛酸盐,并选择适宜的掺杂量,采用溶胶凝胶法进行合成,选用无水乙醇为溶剂,避免Ti(C4H9O)4的水解变质,通过调节适宜的pH值、柠檬酸的用量,制备了结晶较纯的钽钛酸盐粉体,且以此粉体压制密实成型的材料经烧结后结构致密、晶粒形貌规整,尺寸均匀,具有良好的介电性能,可用于固体电介质。
相对于现有技术,本发明所述制备方法得到的粉体粒度更加均匀,且合成条件不苛刻,合成温度低,可减少球磨、烧结等过程中能量消耗,缺陷少,粉体烧结后的介电性能较好。
为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
图1为本发明制备的稀土掺杂钽钛酸盐粉体的XRD图谱;
图2为本发明制备的稀土掺杂钽钛酸盐烧结体的SEM图;
图3为本发明制备的稀土掺杂钽钛酸盐烧结体的室温介电系数及损耗。
具体实施方式
实施例1
本实施例中,x=0.1,按如下步骤制备稀土掺杂钽钛酸盐粉体:
(1)按照4:1的摩尔比,准确称量KHCO3和Ta2O5均匀混合,980℃熔融6小时,将自然冷却得到的固体溶解于500mL去离子水中,震荡10分钟后静置分层,取上层清液,并向里滴加硝酸调整pH=2至析出白色沉淀。
(2)抽滤分离、洗涤步骤(1)的白色沉淀,按照柠檬酸与金属阳离子摩尔比为5:1与适量柠檬酸一起溶解于无水乙醇中,滴加适量过氧化氢溶液,80℃水浴加热、搅拌至澄清,滴加氨水调节pH=5.5得到溶液1。
(3)根据化学式Cu2.9La0.1(TiO3)2(TaO3)2,按化学计量比分别称取La(NO3)3·6H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,按照柠檬酸与金属阳离子摩尔比为5:1,将适量柠檬酸溶解于无水乙醇中,向其缓慢滴加称量好的Ti(C4H9O)4,搅拌20分钟至无色透明,得到溶液2。
(4)将称量好的La(NO3)3·6H2O、Cu(NO3)2·3H2O溶解于无水乙醇中,向其缓慢滴加溶液2,不断搅拌,滴加氨水调节pH=6得到溶液3。
(5)将溶液1缓慢滴加到溶液3中混合均匀,放在超声波清洗机里超声2.5小时,80℃水浴加热搅拌直至形成凝胶;
(6)将步骤(5)的凝胶放入140℃干燥箱中,恒温干燥12小时;取出磨碎后,置于马弗炉中1020℃煅烧4小时,获得目标样品Cu2.9La0.1(TiO3)2(TaO3)2粉体材料。
对制得的Cu2.9La0.1(TiO3)2(TaO3)2粉体及密实成型烧结块材进行测试,具体测试结果如下:
如图1-3所示,制得的粉体为类钙钛矿结构,除了极少量二氧化钛相之外,结晶较好,物相较纯;块材烧结致密,颗粒粒径分布于3~5μm之间,较均匀;室温条件下中低频率范围内介电系数>2000,介电损耗较低,介电响应稳定。
实施例2
本实施例中,x=0.15,按如下步骤制备稀土掺杂钽钛酸盐粉体:
(1)按照5.5:1的摩尔比,准确称量KHCO3和Ta2O5均匀混合,980℃熔融6小时,将自然冷却得到的固体溶解于500mL去离子水中,震荡10分钟后静置分层,取上层清液,并向里滴加硝酸调整pH=1.5至析出白色沉淀。
(2)抽滤分离、洗涤步骤(1)的白色沉淀,按照柠檬酸与金属阳离子摩尔比为5:1与适量柠檬酸一起溶解于无水乙醇中,滴加适量过氧化氢溶液,80℃水浴加热、搅拌至澄清,滴加氨水调节pH=5得到溶液1。
(3)根据化学式Cu2.85La0.15(TiO3)2(TaO3)2,按化学计量比分别称取La(NO3)3·6H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,按照柠檬酸与金属阳离子摩尔比为5:1,将适量柠檬酸溶解于无水乙醇中,向其缓慢滴加称量好的Ti(C4H9O)4,搅拌20分钟至无色透明,得到溶液2。
(4)将称量好的La(NO3)3·6H2O、Cu(NO3)2·3H2O溶解于无水乙醇中,向其缓慢滴加溶液2,不断搅拌,滴加氨水调节pH=5得到溶液3。
(5)将溶液1缓慢滴加到溶液3中混合均匀,放在超声波清洗机里超声2.5小时,80℃水浴加热搅拌直至形成凝胶;
(6)将步骤(5)的凝胶放入140℃干燥箱中,恒温干燥16小时;取出磨碎后,置于马弗炉中1020℃煅烧4小时,获得目标样品Cu2.85La0.15(TiO3)2(TaO3)2粉体材料。
实施例3
本实施例中,x=0.2,按如下步骤制备稀土掺杂钽钛酸盐粉体:
(1)按照6:1的摩尔比,准确称量KHCO3和Ta2O5均匀混合,980℃熔融6小时,将自然冷却得到的固体溶解于500mL去离子水中,震荡10分钟后静置分层,取上层清液,并向里滴加硝酸调整pH=1至析出白色沉淀。
(2)抽滤分离、洗涤步骤(1)的白色沉淀,按照柠檬酸与金属阳离子摩尔比为5:1与适量柠檬酸一起溶解于无水乙醇中,滴加适量过氧化氢溶液,80℃水浴加热、搅拌至澄清,滴加氨水调节pH=6得到溶液1。
(3)根据化学式Cu2.8La0.2(TiO3)2(TaO3)2,按化学计量比分别称取La(NO3)3·6H2O、Cu(NO3)2·3H2O、Ti(C4H9O)4,按照柠檬酸与金属阳离子摩尔比为5:1,将适量柠檬酸溶解于无水乙醇中,向其缓慢滴加称量好的Ti(C4H9O)4,搅拌20分钟至无色透明,得到溶液2。
(4)将称量好的La(NO3)3·6H2O、Cu(NO3)2·3H2O溶解于无水乙醇中,向其缓慢滴加溶液2,不断搅拌,滴加氨水调节pH=5.5得到溶液3。
(5)将溶液1缓慢滴加到溶液3中混合均匀,放在超声波清洗机里超声2.5小时,80℃水浴加热搅拌直至形成凝胶;
(6)将步骤(5)的凝胶放入140℃干燥箱中,恒温干燥18小时;取出磨碎后,置于马弗炉中1020℃煅烧4小时,获得目标样品Cu2.8La0.2(TiO3)2(TaO3)2粉体材料。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (1)

1.一种稀土掺杂钽钛酸盐粉体的制备方法,所述稀土掺杂钽钛酸盐粉体的化学式为Cu2.9La0.1(TiO3)2(TaO3)2,所述制备方法包括如下步骤:
(1)按照3~7:1的摩尔比将碳酸氢钾和五氧化二钽混合后以980℃熔融6小时,再将熔融后自然冷却得到的固体溶解于去离子水中,震荡后静置分层,取上层清液,滴加硝酸调整pH值至1~2析出白色沉淀;
(2)将步骤(1)得到的白色沉淀与柠檬酸一起溶解于无水乙醇中,然后滴加过氧化氢溶液,以80℃水浴加热,并搅拌至澄清,再滴加氨水调节pH值至4~7得到溶液1;
(3)将柠檬酸溶解于无水乙醇中,然后缓慢滴加钛酸丁酯,并搅拌至无色透明,得到溶液2;
(4)将硝酸镧或其水合物、硝酸铜或其水合物溶解于无水乙醇中,再缓慢滴加所述溶液2并搅拌,然后滴加氨水调节pH值至4~7得到溶液3;
(5)将所述溶液1缓慢滴加到所述溶液3中混合均匀,再经过超声处理,然后以80℃水浴加热搅拌直至形成凝胶;
(6)将步骤(5)得到的凝胶以140℃恒温干燥10~24小时,然后磨碎,再经过1020℃煅烧4小时,得到所述稀土掺杂钽钛酸盐粉体;
步骤(2)配置所述溶液1时加入的柠檬酸与其中金属阳离子的摩尔比为5:1;步骤(3)中,先根据化学式Cu2.9La0.1(TiO3)2(TaO3)2,按化学计量比分别称取硝酸镧或其水合物、硝酸铜或其水合物、钛酸丁酯备用,在配置所述溶液2时加入的柠檬酸与其中金属阳离子的摩尔比为5:1;步骤(4)中,在配置所述溶液3时加入的柠檬酸与其中金属阳离子的摩尔比为5:1。
CN202111177245.8A 2021-10-09 2021-10-09 一种稀土掺杂钽钛酸盐粉体及其制备方法 Active CN114085080B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111177245.8A CN114085080B (zh) 2021-10-09 2021-10-09 一种稀土掺杂钽钛酸盐粉体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111177245.8A CN114085080B (zh) 2021-10-09 2021-10-09 一种稀土掺杂钽钛酸盐粉体及其制备方法

Publications (2)

Publication Number Publication Date
CN114085080A CN114085080A (zh) 2022-02-25
CN114085080B true CN114085080B (zh) 2022-11-08

Family

ID=80296681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111177245.8A Active CN114085080B (zh) 2021-10-09 2021-10-09 一种稀土掺杂钽钛酸盐粉体及其制备方法

Country Status (1)

Country Link
CN (1) CN114085080B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116477947A (zh) * 2023-05-18 2023-07-25 韶关学院 一种提高钽酸铜陶瓷材料介电性能的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE153322T1 (de) * 1991-03-22 1997-06-15 Canon Kk Metalloxidisches material
FR2684663A1 (fr) * 1991-12-06 1993-06-11 Rhone Poulenc Chimie Perosvskites a base de tantale ou de niobium et leur procede de preparation.
US6727199B2 (en) * 2001-10-12 2004-04-27 E. I. Du Pont De Nemours And Company Sodium copper titanate compositions containing a rare earth, yttrium or bismuth
CN100467421C (zh) * 2006-10-20 2009-03-11 宁波大学 一种钙铜钛镧氧介电陶瓷粉体的制备方法
US8287832B1 (en) * 2010-04-27 2012-10-16 Sandia Corporation Hydrothermal method of synthesis of rare-earth tantalates and niobates
CN103172363B (zh) * 2012-09-10 2014-08-13 常州大学 一种高介电常数类钙钛矿型CaCu3Ti4O12(CCTO)压敏材料的制备方法
CN103992102B (zh) * 2014-05-13 2015-12-30 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN108689709B (zh) * 2018-05-17 2021-04-16 韶关学院 一种铌酸钛铜巨介电陶瓷的制备方法
CN108558401B (zh) * 2018-05-17 2021-08-17 韶关学院 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法

Also Published As

Publication number Publication date
CN114085080A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
KR100435073B1 (ko) 미립 티탄산바륨 분말, 칼슘 변성 미립 티탄산바륨 분말 및 그 제조방법
CN106946566B (zh) 一种片状钛酸锶钡粉体材料的制备方法
Gorokhovsky et al. Preparation and dielectric properties of ceramics based on mixed potassium titanates with the hollandite structure
CN110182855A (zh) 稀土元素掺杂pmn-pt弛豫铁电粉体的制备方法
CN114085080B (zh) 一种稀土掺杂钽钛酸盐粉体及其制备方法
CN104129988A (zh) 一种无铅高储能密度高储能效率陶瓷介质材料及其制备方法
CN104844204B (zh) 一种高介微波陶瓷介质材料、制备方法及用途
Watanabe et al. Preparation of lead magnesium niobate by a coprecipitation method
CN108689709B (zh) 一种铌酸钛铜巨介电陶瓷的制备方法
CN109987629B (zh) 一种利用硝酸银制备钙钛矿结构的铌酸银的水热合成方法
CN101428856B (zh) 钽铌酸银纳米粉体的制备方法
CN103693680B (zh) 一种制备钛酸钡类化合物的方法
CN106747421B (zh) 一种水热法合成晶界层陶瓷电容器用粉体的方法
CN108558401B (zh) 一种溶胶凝胶法制备Bi2/3Cu2Ta2Ti2O12陶瓷粉体的方法
CN110128133B (zh) 钛酸钡钙基无铅压电陶瓷及其制备方法
CN105254295B (zh) 一种钕掺杂钛酸钡纳米陶瓷粉体的制备方法
CN112126408A (zh) 一种La-Al-TiN/h-BN纳米片复合吸波材料及其制备方法
JP3488270B2 (ja) 半導体微粉末およびその製造法
JP6278380B2 (ja) 表面処理炭酸カルシウム、その製造方法及び該炭酸カルシウムを配合してなるセラミック組成物
Lisnevskaya et al. Comparison of the properties of PZTNB-1+ Ni0. 9Co0. 1Cu0. 1Fe1. 9O4− δ magnetoelectric composites manufactured from components synthesized by Sol-Gel processes
Politova et al. Processing, phase transitions, and dielectric properties of BSPT ceramics
WO2004092071A1 (ja) チタン酸バリウム粉末の製造方法
JPH0855706A (ja) 酸化物系半導体微粉体の製造方法
CN103951424A (zh) 利用湿化学工艺低温精细合成钨锰铁矿结构MgZrNb2O8介质陶瓷纳米粉体
CN103708837A (zh) 一种利用水溶性溶胶凝胶工艺精细合成Ba(Zn1/3Nb2/3)O3介质陶瓷纳米粉体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant