CN114059036B - 铁薄膜在辅助剥离金刚石多晶薄膜中的应用 - Google Patents

铁薄膜在辅助剥离金刚石多晶薄膜中的应用 Download PDF

Info

Publication number
CN114059036B
CN114059036B CN202111396220.7A CN202111396220A CN114059036B CN 114059036 B CN114059036 B CN 114059036B CN 202111396220 A CN202111396220 A CN 202111396220A CN 114059036 B CN114059036 B CN 114059036B
Authority
CN
China
Prior art keywords
film
sapphire substrate
diamond
diamond polycrystalline
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111396220.7A
Other languages
English (en)
Other versions
CN114059036A (zh
Inventor
陶涛
郑凯文
张东祺
智婷
谢自力
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202111396220.7A priority Critical patent/CN114059036B/zh
Publication of CN114059036A publication Critical patent/CN114059036A/zh
Application granted granted Critical
Publication of CN114059036B publication Critical patent/CN114059036B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了铁薄膜在辅助剥离金刚石多晶薄膜中的应用,具体为在蓝宝石衬底上生长铁薄膜,在铁薄膜上生长金刚石多晶薄膜,采用机械剥离的方式将金刚石多晶薄膜从蓝宝石衬底上剥离。可以使金刚石多晶薄膜无碎裂的从蓝宝石衬底上剥离。本发明利用铁薄膜来辅助剥离金刚石多晶衬底,生长过程中金属铁具有好的延展性,可以缓解蓝宝石与金刚石之间由晶格失配带来的应力,减少样品碎裂的概率。且铁金属层、金刚石层、蓝宝石之间的热膨胀系数差距较大,结合力较弱,便于采用机械剥离的方法实现金刚石多晶薄膜与蓝宝石衬底的分离,从而使金刚石多晶薄膜无碎裂的从蓝宝石衬底上完整剥离。

Description

铁薄膜在辅助剥离金刚石多晶薄膜中的应用
技术领域
本发明涉及一种铁薄膜在辅助剥离金刚石多晶薄膜中的应用。
背景技术
为满足工业发展的需要,人工金刚石的制造有了许多制备方式。本项目44发明主要采用MPCVD多晶金刚石生长方式,并着力于减少生长过程以及剥离过程中的金刚石碎裂造成的损耗,从而提高工业工程当中金刚石的生长效率。
金刚石作为一种新型的宽禁带半导体材料,具有很多热学、电学与光学的优良性质。例如更大的禁带宽度、更高的电子迁移率、更高的击穿电压、更优良的导热特性、更好的生物兼容性等,这也使得金刚石在新型半导体材料领域当中具有极为广泛的前景。然而天然金刚石的储量相对较少,其含有的杂质也往往较多,导致可利用尺寸较小。因此天然金刚石很难满足人们对于金刚石材料的在电子器件领域的工业化需求。因此人们也发展出了多种工业上人工合成金刚石的方法:一种是HPHT法(High Pressure High Temperature高温高压法),另一种是CVD法(Chemical Vapor Deposition化学气相沉积法)。本实验采用的方法为MPCVD法(Microwave Plasma Chemical Vapor Deposition微波等离子化学气相沉积法)。
在现有的生长过程中时常出现由于衬底热膨胀系数较大,导致金刚石在生长过程中出现破碎的情况,又或者由于衬底与金刚石间的应力较大,导致在剥离过程中出现破裂情况。
发明内容
本发明提供了铁薄膜在辅助剥离金刚石多晶薄膜中的应用,可以使金刚石多晶薄膜无碎裂的从蓝宝石衬底上剥离。
本发明采用的技术方案为:铁薄膜在辅助剥离金刚石多晶薄膜中的应用,其步骤为:在蓝宝石衬底上生长铁薄膜,在铁薄膜上生长金刚石多晶薄膜,采用机械剥离的方式将金刚石多晶薄膜从蓝宝石衬底上剥离。
优选的,机械剥离的方法具体为将金刚石多晶薄膜表面通过胶贴合到载片上,采用工具将载片与蓝宝石衬底衬底分离,再将载片上的胶去除,使得金刚石多晶薄膜从载片分离,得到金刚石多晶薄膜。
优选的,所述胶为热熔胶,所述载片为蓝宝石载片。
优选的,胶贴合载片的过程为:将蓝宝石载片加热至热熔胶熔点以上,热熔胶熔化,均匀涂抹在蓝宝石载片上,将金刚石多晶薄膜表面贴合在热熔胶上,待热熔胶冷却后进行机械剥离。
优选的,机械剥离后还包括步骤:蓝宝石衬底的重生。
优选的,蓝宝石衬底的重生具体为:将剥离完成后的蓝宝石衬底依次放入丙酮溶液、无水乙醇、去离子水中清洗,待清洗完成后将蓝宝石衬底放入盐酸溶液中浸泡去除铁薄膜,随后再依次放入丙酮溶液、无水乙醇、去离子水中超声清洗,得到重生的蓝宝石衬底。
优选的,在蓝宝石衬底上生长铁薄膜后,先对铁薄膜进行等离子刻蚀后,使其表面粗糙化,再在其上生长金刚石多晶薄膜。
优选的,在蓝宝石衬底上采用电子束蒸发的方式蒸镀铁薄膜,电子束功率为13-15%,蒸镀速率为
Figure BDA0003370036550000021
蒸镀时蓝宝石衬底进行旋转。
优选的,等离子刻蚀条件为:刻蚀温度为700~800℃,微波0功率为2500W-3000W,通入氢气的流量为100-300sccm,腔内气压为50-100Torr,刻蚀时间为20-25min。
优选的,采用MPCVD法生长金刚石多晶薄膜,C源为纯甲烷气体,氢气氛围,通入氢气的流量为200~900sccm,生长温度为850-900℃,微波功率为3000-3500W,腔内气压为50~250Torr,甲烷流量为气体总流量的2~6%,生长时间大于20小时。
本发明的有益效果为:
(1)本发明利用铁薄膜来辅助剥离金刚石多晶衬底,在生长过程中,处于高温状态,金属铁具有良好的延展性,可以缓解蓝宝石与金刚石之间由晶格失配带来的应力,减少样品碎裂的概率。
(2)铁金属层的热膨胀系数在12.2*10-6/K左右,金刚石层的热膨胀系数在1.2~4.5*10-6/K,蓝宝石的热膨胀系数在5.3×10-6/K,热膨胀系数差距较大,在生长完成后,因为热膨胀系数的差异所产生的应力,导致金刚石与铁薄膜的结合力较弱,从而便于采用机械剥离的方法实现金刚石多晶薄膜与蓝宝石衬底的分离,从而使金刚石多晶薄膜无碎裂的从蓝宝石衬底上剥离下来。
(3)剥离后的金刚石多晶薄膜能够自支撑,可继续进行金刚石的生长,对于实现低成本制备高质量金刚石薄膜提供了潜在的可能,具有十分重要的科学意义和工程价值。
(4)采用热熔胶进行剥离,便于清洗,对样品无损伤,工艺简单、易于操作,并且蓝宝石衬底可以重复利用,效率更高,成本更低;
(5)本发明将衬底进行表面等离子体刻蚀处理,使其表面粗糙化,有利于金刚石成核点的形成,便于金刚石薄膜在蓝宝石衬底上的异质外延。
附图说明
图1为采用MPCVD法制备金刚石的蓝宝石衬底上的铁薄膜氢气刻蚀后的SEM表面图。
图2为MPCVD制备金刚石多晶薄膜剥离后的蓝宝石衬底与金刚石薄膜图。
图3为MPCVD制备的金刚石多晶薄膜SEM截面图。
图4为MPCVD制备的金刚石多晶薄膜SEM表面图。
图5为MPCVD制备的硅片上金刚石多晶薄膜SEM截面图。
图6为MPCVD法制备的金刚石多晶薄膜剥离后的金刚石薄膜图片。
具体实施方式
以下是结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
对比例1:硅衬底制备金刚石多晶薄膜
(1)衬底预处理:将硅片衬底用金刚石粉打磨后,经N2气流充分干燥,方可使用;
(3)刻蚀:将样品放置MPCVD腔体中心,调整衬底样品位置至光学测温相机观测范围内,刻蚀温度为750℃,微波功率为2500W,通入氢气的流量为300sccm,腔内气压为60Torr,刻蚀时间为20min;
(4)生长:C源为纯甲烷气体,氢气氛围,通入氢气的流量为400sccm,生长温度为860℃,微波功率为3200W,腔内气压为110Torr,甲烷流量为气体总流量的5%,生长5小时;
测试:采用SEM显微镜观测样品截面形貌。
图5为本对比例生长的金刚石薄膜的SEM照片,硅衬底上生长金刚石过后的截面形貌,没有铁薄膜作为过渡层释放应力以及辅助生长,硅片上直接生长的金刚石薄膜,无法采用机械剥离的方法得到金刚石薄膜。
对比例2:蓝宝石衬底钛薄膜MPCVD法生长金刚石
(1)衬底预处理:将蓝宝石衬底抛光后,用无水乙醇充分清洗表面残余石蜡,然后将衬底依次在丙酮溶液、无水乙醇和去离子水中超声清洗,最后经N2气流充分干燥,方可使用;
(2)蒸镀金属:采用电子束蒸发来进行钛薄膜的蒸镀,采用电子束功率为15%,蒸镀速率为
Figure BDA0003370036550000041
蒸镀时间50min,蒸镀时衬底进行旋转,确保钛薄膜的均匀性。
(3)刻蚀:将样品放置MPCVD腔体中心,调整衬底样品位置至光学测温相机观测范围内,刻蚀温度为750℃,微波功率为2500W,通入氢气的流量为300sccm,腔内气压为60Torr,刻蚀时间为20min;
(4)生长:C源为纯甲烷气体,氢气氛围,通入氢气的流量为400sccm,生长温度为860℃,微波功率为3200W,腔内气压为110Torr,甲烷流量为气体总流量的5%,生长20小时;
(5)剥离:采用清洗过后的临时蓝宝石衬底作为载片,热熔胶熔点为120℃,蓝宝石载片加热至120℃以上,热熔胶均匀涂覆到蓝宝石载片上,样品的金刚石面与蓝宝石载片的热熔胶进行贴合,等待热熔胶自然冷却,利用镊子将样品的蓝宝石衬底与多晶金刚石薄膜机械分离,将蓝宝石载片加热至120℃以上,将金刚石多晶薄膜与蓝宝石载片分离。
图6为本对比例生长的金刚石多晶薄膜进行热熔胶剥离后的照片,蒸镀钛薄膜后,由于钛薄膜(9.4×10-6/K)与金刚石(1.3×10-6/K)和蓝宝石(5.3×10-6/K)之间差距热膨胀系数更小,结合力更强,剥离时产生碎裂,无法采用机械剥离的方法实现金刚石多晶薄膜与蓝宝石衬底的分离。
实施例1:蓝宝石衬底铁薄膜MPCVD法生长金刚石
(1)衬底预处理:将蓝宝石衬底抛光后,用无水乙醇充分清洗表面残余石蜡,然后将衬底依次在丙酮溶液、无水乙醇和去离子水中超声清洗,最后经N2气流充分干燥,方可使用;
(2)蒸镀金属:采用电子束蒸发来进行铁薄膜的蒸镀,采用电子束功率为13%,蒸镀速率为
Figure BDA0003370036550000051
蒸镀时间50min,蒸镀时衬底进行旋转,确保铁薄膜的均匀性。
(3)刻蚀:将样品放置MPCVD腔体中心,调整衬底样品位置至光学测温相机观测范围内,刻蚀温度为750℃,微波功率为2500W,通入氢气的流量为300sccm,腔内气压为60Torr,刻蚀时间为20min,刻蚀后的铁薄膜表面如图1所示;
(4)生长:C源为纯甲烷气体,氢气氛围,通入氢气的流量为400sccm,生长温度为860℃,微波功率为3200W,腔内气压为110Torr,甲烷流量为气体总流量的5%,生长20小时,生长后的金刚石膜表面SEM图为图3,截面SEM图为图4;
(5)剥离:采用清洗过后的临时蓝宝石衬底作为载片,热熔胶熔点为120℃,蓝宝石载片加热至120℃以上,热熔胶均匀涂覆到蓝宝石载片上,样品的金刚石面与蓝宝石载片的热熔胶进行贴合,等待热熔胶自然冷却,利用镊子将样品的蓝宝石衬底与多晶金刚石薄膜机械分离,如图2所示,再将蓝宝石载片加热至120℃以上,使金刚石多晶薄膜与蓝宝石载片分离;
(6)清洗:剥离后的金刚石多晶薄膜依次在丙酮溶液、无水乙醇和去离子水中清洗,去除剩余的热熔胶,最后经N2气流充分干燥;
(7)衬底重生:剥离完成后首先在丙酮溶液和无水乙醇、去离子水中清洗,去除多余的热熔胶。待清洗完成后将覆盖铁薄膜的蓝宝石衬底置入30%的盐酸中,以60℃加热20分钟,随后再于丙酮溶液和无水乙醇、去离子水中分别超声洗5分钟,即可将铁薄膜从蓝宝石衬底上去除,此蓝宝石衬底即可进行重复使用。
图3、4为本实施例生长的金刚石薄膜的SEM照片,蒸镀铁薄膜后金刚石多晶薄膜无碎裂,形貌均匀,用热熔胶进行剥离后也无碎裂,通过蒸镀铁薄膜的方式可以有效缓释应力,铁(12.2×10-6/K)与金刚石(1.3×10-6/K)和蓝宝石(5.3×10-6/K)之间差距热膨胀系数较大,结合力较弱,便于采用机械剥离的方法实现金刚石多晶薄膜与蓝宝石衬底的分离。

Claims (6)

1.铁薄膜在辅助剥离金刚石多晶薄膜中的应用,其特征在于其步骤为:在蓝宝石衬底上采用电子束蒸发的方式蒸镀铁薄膜,电子束功率为13-15%,蒸镀速率为0.3-0.5Å/s,蒸镀时间为30-50 min,蒸镀时蓝宝石衬底进行旋转;
在铁薄膜上生长金刚石多晶薄膜,具体为采用MPCVD法生长金刚石多晶薄膜,C源为纯甲烷气体,氢气氛围,通入氢气的流量为200~900sccm,生长温度为850-900℃,微波功率为3000-3500W,腔内气压为50~250Torr,甲烷流量为气体总流量的2~6%,生长时间大于20小时;
采用机械剥离的方式将金刚石多晶薄膜从蓝宝石衬底上剥离,其中机械剥离的方法具体为将金刚石多晶薄膜表面通过胶贴合到载片上,采用工具将载片与蓝宝石衬底分离,再将载片上的胶去除,使得金刚石多晶薄膜从载片分离,得到金刚石多晶薄膜,所述胶为热熔胶,所述载片为蓝宝石载片。
2.根据权利要求1所述的应用,其特征在于:胶贴合载片的过程为:将蓝宝石载片加热至热熔胶熔点以上,热熔胶熔化,均匀涂抹在蓝宝石载片上,将金刚石多晶薄膜表面贴合在热熔胶上,待热熔胶冷却后进行机械剥离。
3.根据权利要求1或2所述的应用,其特征在于:机械剥离后还包括步骤:蓝宝石衬底的重生。
4.根据权利要求3所述的应用,其特征在于蓝宝石衬底的重生具体为:将剥离完成后的蓝宝石衬底依次放入丙酮溶液、无水乙醇、去离子水中清洗,待清洗完成后将蓝宝石衬底放入盐酸溶液中浸泡去除铁薄膜,随后再依次放入丙酮溶液、无水乙醇、去离子水中超声清洗,得到重生的蓝宝石衬底。
5.根据权利要求1或2所述的应用,其特征在于:在蓝宝石衬底上生长铁薄膜后,先对铁薄膜进行等离子刻蚀后,使其表面粗糙化,再在其上生长金刚石多晶薄膜。
6.根据权利要求5所述的应用,其特征在于:等离子刻蚀条件为:刻蚀温度为700~800℃,微波功率为2500W-3000W,通入氢气的流量为100-300sccm,腔内气压为50-100Torr,刻蚀时间为20-25min。
CN202111396220.7A 2021-11-23 2021-11-23 铁薄膜在辅助剥离金刚石多晶薄膜中的应用 Active CN114059036B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111396220.7A CN114059036B (zh) 2021-11-23 2021-11-23 铁薄膜在辅助剥离金刚石多晶薄膜中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111396220.7A CN114059036B (zh) 2021-11-23 2021-11-23 铁薄膜在辅助剥离金刚石多晶薄膜中的应用

Publications (2)

Publication Number Publication Date
CN114059036A CN114059036A (zh) 2022-02-18
CN114059036B true CN114059036B (zh) 2023-03-14

Family

ID=80275527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111396220.7A Active CN114059036B (zh) 2021-11-23 2021-11-23 铁薄膜在辅助剥离金刚石多晶薄膜中的应用

Country Status (1)

Country Link
CN (1) CN114059036B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056827B2 (ja) * 1991-05-20 2000-06-26 ティーディーケイ株式会社 ダイヤモンド様炭素保護膜を有する物品とその製造方法
US5270077A (en) * 1991-12-13 1993-12-14 General Electric Company Method for producing flat CVD diamond film
JP3107683B2 (ja) * 1993-08-12 2000-11-13 富士通株式会社 ダイヤモンドの気相合成方法
JP2002284600A (ja) * 2001-03-26 2002-10-03 Hitachi Cable Ltd 窒化ガリウム結晶基板の製造方法及び窒化ガリウム結晶基板
JP3631724B2 (ja) * 2001-03-27 2005-03-23 日本電気株式会社 Iii族窒化物半導体基板およびその製造方法
CN100540727C (zh) * 2005-10-26 2009-09-16 中国砂轮企业股份有限公司 钻石薄膜制造方法
CN102034764A (zh) * 2009-09-25 2011-04-27 苏州纳维科技有限公司 具有自剥离功能的衬底以及剥离外延层的方法
CN104561925B (zh) * 2015-01-20 2017-04-26 太原理工大学 一种自支撑金刚石膜的制备方法
CN112301324B (zh) * 2020-09-21 2023-04-14 贾春德 一种在钢铁基体上镀金刚石膜的方法
CN112430803B (zh) * 2020-11-16 2022-04-01 北京科技大学 一种自支撑超薄金刚石膜的制备方法
CN113373512B (zh) * 2021-05-24 2022-02-11 北京科技大学 基于铱-石墨烯结构化缓冲层的单晶金刚石外延生长方法

Also Published As

Publication number Publication date
CN114059036A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN110265356B (zh) 基于石墨烯的氮化镓外延层剥离方法
CN112430803B (zh) 一种自支撑超薄金刚石膜的制备方法
CN113463192B (zh) 一种拼接生长金刚石单晶的方法
CN109722641B (zh) 金刚石/石墨烯复合导热膜及其制备方法和散热系统
US20130220214A1 (en) Base material for growing single crystal diamond and method for producing single crystal diamond substrate
US9076653B2 (en) Substrate for growing single crystal diamond layer and method for producing single crystal diamond substrate
Ramesham et al. Selective growth of polycrystalline diamond thin films on a variety of substrates using selective damaging by ultrasonic agitation
CN110335809B (zh) 一种在云母衬底上生长单晶γ相硒化铟薄膜的方法
CN113990739A (zh) 基于范德华薄膜上的氧化镓外延层转印方法
CN110600435A (zh) 多层复合基板结构及其制备方法
CN110817852B (zh) 基于水处理辅助机制的石墨烯制备方法
CN114606568B (zh) 低维碲晶体的制备方法
CN114059036B (zh) 铁薄膜在辅助剥离金刚石多晶薄膜中的应用
CN109081332B (zh) 石墨烯纳米图形化蓝宝石衬底及其制备方法
CN113130296A (zh) 一种六方氮化硼上生长氮化镓的方法
JPH08509575A (ja) 3c−炭化ケイ素の成長のための基板
CN115377196A (zh) 一种以金刚石为衬底的外延GaN及其制备方法
US20100175613A1 (en) Base material for forming single crystal diamond film and method for producing single crystal diamond using the same
CN115132569A (zh) 一种基于六方氮化硼的氮化镓外延层生长与剥离方法
CN113622024B (zh) 一种单晶石墨烯及其制备方法
CN112919454B (zh) 一种控制双层石墨烯堆叠角度的方法
CN111211041B (zh) 一种制备大面积β相硒化铟单晶薄膜的方法
CN114566424A (zh) 一种在集成电路芯片上直接生长图形化石墨烯的工艺方法
JP2009190953A (ja) 半導体基板の製造方法およびそれによって製造される半導体基板
CN116715230A (zh) 一种干法转移石墨烯氮化硼异质结的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant