CN114031392A - 一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法 - Google Patents

一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法 Download PDF

Info

Publication number
CN114031392A
CN114031392A CN202111538628.3A CN202111538628A CN114031392A CN 114031392 A CN114031392 A CN 114031392A CN 202111538628 A CN202111538628 A CN 202111538628A CN 114031392 A CN114031392 A CN 114031392A
Authority
CN
China
Prior art keywords
sintering
magnesium aluminate
aluminate spinel
temperature
inert atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111538628.3A
Other languages
English (en)
Other versions
CN114031392B (zh
Inventor
庞珍丽
尹利君
李祯
雷牧云
王立弟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinoma Intraocular Lens Research Institute Co ltd
Beijing Sinoma Synthetic Crystals Co Ltd
Original Assignee
BRIGHT CRYSTALS Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BRIGHT CRYSTALS Tech Inc filed Critical BRIGHT CRYSTALS Tech Inc
Priority to CN202111538628.3A priority Critical patent/CN114031392B/zh
Publication of CN114031392A publication Critical patent/CN114031392A/zh
Application granted granted Critical
Publication of CN114031392B publication Critical patent/CN114031392B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:将镁铝尖晶石粉体加入LiF,常温常压下球磨,造粒,得到镁铝尖晶石球状粉体;将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,然后卸压降温同时充入惰性气体,先程序降温,最后自然降温,得到镁铝尖晶石烧结体;对镁铝尖晶石烧结体进行退火后热等静压,得到镁铝尖晶石透明陶瓷。本发明能在材料孔结构形成过程中,阻止晶粒异常长大,缩小材料晶粒粒径分布范围,降低材料内部应力,改善陶瓷性能。降温阶段充入惰性气体,利用惰性气体增加热质传输效率,缩短降温时间,提高生产效率。

Description

一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法
技术领域
本发明属于透明陶瓷制备技术领域,更具体的说是涉及一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法。
背景技术
镁铝尖晶石透明陶瓷具有熔点高、绝缘性好、热膨胀系数小、高硬度、耐腐蚀等特点,尤其是在紫外、可见光、红外波段的高透过率特点,决定了其在高速制导导弹整流罩及窗口材料等领域的广泛应用。
近年来,随着对镁铝尖晶石透明陶瓷的持续研制,其应用范围也在不断扩大。作为优良的透明窗口材料逐渐在光学、特种仪器制造、无线电子技术、安保及高温技术等领域获得日益广泛的应用。目前使用镁铝尖晶石主要是恶劣环境下的窗口材料,如:高温、高压、腐蚀性气氛条件容器的观察窗等(能耐高温高压的锅炉水位计等),手机、摄像机以及各种电子产品的面板和商品条码扫描窗口等耐磨窗口材料。
透明镁铝尖晶石于1961年最先由GE公司研制出来,作为一种在0.3μm-5.5μm波段具有广泛而重要应用的红外材料,在上世纪六十年代,美国就致力于研制和开发尖晶石多晶材料。七十年代末期,美国军方率先展开热压尖晶石的研究。八十年代初,美国的CoorsPorcelain公司和Raytheon公司在国防部的大力支持下,成功地制备出性能较为完善的热压尖晶石多晶材料。九十年代初Coors Porcelain公司成功地实现了镁铝尖晶石的生产。1990年,Rate Controlled Sintering(RCS)Technologies Inc.开始研制烧结/热等静压法制备尖晶石,其光学性能和机械性能有了很大程度的提升。随后,俄罗斯、英、法、日等国也加强了对这种材料的研制,并陆续用于多种武器系统,对提高武器装备性能起到了重要的作用。国内九十年代初中非人工晶体研究院开展研究工作,后该项目投入烁光特晶科技有限公司,经过三十年的研究发展,该公司研制的尖晶石透明陶瓷光电窗口材料指标达到国外同类技术产品水平。21世纪以来,随着纳米粉体的出现及CIP/HP/HIP制备技术的发展,国际上众多机构进行了高性能镁铝尖晶石透明陶瓷的制备。但是降低生产成本及改善材料的力学性能一直是该材料的研究重点。
目前镁铝尖晶石透明陶瓷的制备方法主要有热压烧结、无压烧结及放电等离子体烧结。热压烧结得到的镁铝尖晶石透明陶瓷普遍存在生产效率低,晶粒大、粒径分布均一性较差,导致陶瓷性能较差。无压烧结虽然能制备细晶高力学性能陶瓷,但是此种方法对原料粉体的要求很高,粉体粒径要求不大于50nm,依靠国外进口,制备成本随之增加。放电等离子体烧结制得的陶瓷晶粒较小,但由于使用石墨模具导致碳污染而严重降低了陶瓷的光学性能。
因此,提供一种晶粒小、晶粒尺寸分布均一,光学和力学性能一致性好的镁铝尖晶石透明陶瓷是本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明提供了一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法。
为了实现上述目的,本发明采用如下技术方案:
一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将镁铝尖晶石粉体加入LiF,常温常压下球磨,造粒,得到镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,然后卸压降温同时充入惰性气体,先程序降温,最后自然降温,得到镁铝尖晶石烧结体;
(3)对镁铝尖晶石烧结体进行退火后热等静压,得到上述镁铝尖晶石透明陶瓷。
进一步,上述步骤(1)中镁铝尖晶石粉体的粒径为20-100μm,LiF的加入量为镁铝尖晶石粉体质量的1-3%。
采用上述进一步技术方案的有益效果:LiF的加入量为镁铝尖晶石粉体质量的1-3%既能保证低的烧结温度,又能避免陶瓷晶粒异常长大。
进一步,上述步骤(1)中球磨转速为120-180转/分钟,球磨时间为2-5小时。
采用上述进一步技术方案的有益效果:合适的球磨工艺既能保证打开团聚的粉体,又能保证生产效率。
进一步,上述步骤(1)中造粒为压力式喷雾干燥造粒。
采用上述进一步技术方案的有益效果:造粒采用压力式喷雾干燥机制备的中空粉体更适合真空热压烧结。
进一步,上述步骤(1)中镁铝尖晶石球状粉体的粒径为1-20μm。
采用上述进一步技术方案的有益效果:粒径为1-20μm的镁铝尖晶石球状粉体最适合真空热压烧结。
进一步,上述步骤(2)中真空烧结的真空度为10-1-10-2Pa,烧结温度为1300-1700℃,烧结压力为30-70MPa,烧结时间为2-5小时。
采用上述进一步技术方案的有益效果:上述烧结工艺得到的陶瓷样品光学及力学性能最好。
进一步,上述步骤(2)中惰性气体为氮气或氩气;充入惰性气体至真空热压烧结炉的真空表表压为-0.1~-0.05Mpa。
采用上述进一步技术方案的有益效果:充入惰性气体既能增加热质传输效率,又能不损坏热压模具。
进一步,上述步骤(2)中程序降温至900℃,降温速度为5℃/min。
采用上述进一步技术方案的有益效果:卸压降温既能保证石墨模具不被氧化,又能降低烧结出来的尖晶石内部应力。
进一步,上述步骤(2)中自然降温至100℃。
进一步,上述步骤(3)中退火温度为800-1200℃,热等静压温度为1600-1800℃,热等静压压力150-200Mpa。
采用上述进一步技术方案的有益效果:上述退火工艺烧结出来的陶瓷样品光学及力学性能最好。
本发明的有益效果:(1)真空热压烧结后期,在卸压降温阶段,充入惰性气体,以惰性气体为热量传输介质,保证烧结温度的均匀性,烧结温度均匀性较真空烧结要高,能在材料孔结构形成过程中,阻止晶粒异常长大,缩小材料晶粒粒径分布范围,降低材料内部应力,改善陶瓷性能。(2)降温阶段充入惰性气体,利用惰性气体增加热质传输效率,缩短降温时间,提高生产效率,经本发明方法制备出的陶瓷晶粒粒径分布在20-130μm,陶瓷抗弯强度分布范围缩小到140-210MPa,生产周期缩短20%。
附图说明
图1为对比例1与实施例4所述方法真空热压烧结降温曲线对比图。
图2为对比例1与实施例5所述方法真空热压烧结降温曲线对比图。
图3为对比例1所述方法制备的样品的晶粒尺寸测量图。
图4为实施例4所述方法制备的样品的晶粒尺寸测量图。
图5为实施例5所述方法制备的样品的晶粒尺寸测量图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将2000g镁铝尖晶石粉体加入60gLiF,镁铝尖晶石粉体的粒径为20-100μm,常温常压下球磨,球磨转速为150转/分钟,球磨时间为2小时,压力式喷雾干燥造粒,得到粒径为1-20μm的镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,真空烧结的真空度为10-1Pa,烧结温度为1300℃,烧结压力为30MPa,烧结时间为2小时,然后卸压降温同时充入氮气至真空热压烧结炉的真空表表压为-0.1Mpa,先程序降温至900℃,降温速度为5℃/min,最后自然降温至100℃,得到镁铝尖晶石烧结体;
(3)对镁铝尖晶石烧结体进行退火后热等静压,退火温度为800℃,热等静压温度为1600℃,热等静压压力150Mpa,得到镁铝尖晶石透明陶瓷。
实施例2
惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将2000g镁铝尖晶石粉体加入40gLiF,镁铝尖晶石粉体的粒径为20-100μm,常温常压下球磨,球磨转速为120转/分钟,球磨时间为3小时,压力式喷雾干燥造粒,得到粒径为1-20μm的镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,真空烧结的真空度为10-1Pa,烧结温度为1400℃,烧结压力为50MPa,烧结时间为3小时,然后卸压降温同时充入氮气至真空热压烧结炉的真空表表压为-0.07Mpa,先程序降温至900℃,降温速度为5℃/min,最后自然降温至100℃,得到镁铝尖晶石烧结体;
(3)对镁铝尖晶石烧结体进行退火后热等静压,退火温度为1000℃,热等静压温度为1700℃,热等静压压力180Mpa,得到镁铝尖晶石透明陶瓷。
实施例3
惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将2000g镁铝尖晶石粉体加入20gLiF,镁铝尖晶石粉体的粒径为20-100μm,常温常压下球磨,球磨转速为180转/分钟,球磨时间为5小时,压力式喷雾干燥造粒,得到粒径为20μm的镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,真空烧结的真空度为10-2Pa,烧结温度为1700℃,烧结压力为70MPa,烧结时间为5小时,然后卸压降温同时充入氮气至真空热压烧结炉的真空表表压为-0.05Mpa,先程序降温至900℃,降温速度为5℃/min,最后自然降温至100℃,得到镁铝尖晶石烧结体;
(3)对镁铝尖晶石烧结体进行退火及热等静压,退火温度为1200℃,热等静压温度为1800℃,热等静压压力200Mpa,得到镁铝尖晶石透明陶瓷。
实施例4
惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将2000g镁铝尖晶石粉体加入60gLiF,镁铝尖晶石粉体的粒径为20-100μm,常温常压下球磨,球磨转速为160转/分钟,球磨时间为5小时,压力式喷雾干燥造粒,得到粒径为20μm的镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,真空烧结的真空度为10-2Pa,烧结温度为1500℃,烧结压力为30MPa,烧结时间为5小时,然后卸压降温同时充入氮气至真空热压烧结炉的真空表表压为-0.05Mpa,先程序降温至900℃,降温速度为5℃/min,最后自然降温至100℃,一个小时后降温430℃,900℃降至100℃用时4小时,降温速度远远大于对比例1中未充入惰性气体的降温速度,热压烧结后期的降温曲线见图1,得到镁铝尖晶石烧结体;
(3)对镁铝尖晶石烧结体进行退火及热等静压,退火温度为800℃,热等静压温度为1800℃,热等静压压力150Mpa,得到镁铝尖晶石透明陶瓷。
200倍金相显微镜测量晶粒尺寸,见图4。发现晶粒最大128μm,晶粒尺寸分布范围25μm~130μm,可见充入惰性气体氩气后,陶瓷内晶粒尺寸分布范围变窄,均匀一致性较好。测量样品的抗弯强度,抗弯强度分布范围变窄,测量数值在140MPa与210MPa之间,离散性要明显小于未充入惰性气体制得的陶瓷样品。
实施例5
惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将2000g镁铝尖晶石粉体加入60gLiF,镁铝尖晶石粉体的粒径为20-100μm,常温常压下球磨,球磨转速为150转/分钟,球磨时间为5小时,压力式喷雾干燥造粒,得到粒径为20μm的镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,真空烧结的真空度为-0.05Mpa,烧结温度为1500℃,烧结压力为30MPa,烧结时间为5小时,然后卸压降温同时充入氮气至真空热压烧结炉的真空表表压为-0.05Mpa,先程序降温至900℃,降温速度为5℃/min,最后自然降温至100℃,一个小时后降温527℃,900℃降至100℃用时3小时,降温速度远远大于对比例1中未充入惰性气体的降温速度,得到镁铝尖晶石烧结体,热压烧结后期的降温曲线见图2;
(3)对镁铝尖晶石烧结体进行退火后热等静压,退火温度为800℃,热等静压温度为1800℃,热等静压压力150Mpa,得到镁铝尖晶石透明陶瓷。
200倍金相显微镜测量晶粒尺寸,见图5。发现晶粒最大129μm,晶粒尺寸分布范围20μm~130μm,可见充入惰性气体氮气后,陶瓷内晶粒尺寸分布范围变窄,均匀一致性较好。测量样品的抗弯强度,测量数值与实施例4相近,在140MPa与200MPa之间,抗弯强度分布范围较对比例1中样品的抗弯强度分布范围变窄,离散性要明显小于未充入惰性气体制得的陶瓷样品。
对比例1
惰性气氛烧结镁铝尖晶石透明陶瓷的方法,包括以下步骤:
(1)将2000g镁铝尖晶石粉体加入60gLiF,镁铝尖晶石粉体的粒径为20-100μm,常温常压下球磨,球磨转速为150转/分钟,球磨时间为5小时,压力式喷雾干燥造粒,得到粒径为1-20μm的镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,真空烧结的真空度为-0.05Mpa,烧结温度为1500℃,烧结压力为30MPa,烧结时间为5小时,卸压降温,先程序降温至900℃,降温速度为5℃/min,最后自然降温至100℃,一个小时后降温240℃,900℃降至100℃用时8小时,得到镁铝尖晶石烧结体,烧结后期的降温曲线见图1;
(3)对镁铝尖晶石烧结体进行退火后热等静压,退火温度为800℃,热等静压温度为1800℃,热等静压压力150Mpa,得到镁铝尖晶石透明陶瓷。
200倍金相显微镜测量晶粒尺寸,见图3。发现晶粒最大392μm,晶粒尺寸分布范围2μm~400μm。测量样品的抗弯强度,抗弯强度分布范围较大,从90MPa到210MPa不等。
对所公开的实施例的说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,包括以下步骤:
(1)将镁铝尖晶石粉体加入LiF,常温常压下球磨,造粒,得到镁铝尖晶石球状粉体;
(2)将镁铝尖晶石球状粉体装入石墨模具,放入真空热压烧结炉中进行真空烧结,然后卸压降温同时充入惰性气体,先程序降温,最后自然降温,得到镁铝尖晶石烧结体;
(3)对镁铝尖晶石烧结体进行退火后热等静压,得到所述镁铝尖晶石透明陶瓷。
2.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(1)中所述镁铝尖晶石粉体的粒径为20-100μm,LiF的加入量为镁铝尖晶石粉体质量的1-3%。
3.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(1)中所述球磨转速为120-180转/分钟,球磨时间为2-5小时。
4.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(1)中所述造粒为压力式喷雾干燥造粒。
5.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(1)中所述镁铝尖晶石球状粉体的粒径为1-20μm。
6.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(2)中所述真空烧结的真空度为10-1-10-2Pa,烧结温度为1300-1700℃,烧结压力为30-70MPa,烧结时间为2-5小时。
7.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(2)中所述惰性气体为氮气或氩气;充入惰性气体至真空热压烧结炉的真空表表压为-0.1~-0.05Mpa。
8.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(2)中所述程序降温至900℃,降温速度为5℃/min。
9.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(2)中所述自然降温至100℃。
10.根据权利要求1所述一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法,其特征在于,步骤(3)中所述退火温度为800-1200℃,所述热等静压温度为1600-1800℃,热等静压压力为150-200Mpa。
CN202111538628.3A 2021-12-15 2021-12-15 一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法 Active CN114031392B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111538628.3A CN114031392B (zh) 2021-12-15 2021-12-15 一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111538628.3A CN114031392B (zh) 2021-12-15 2021-12-15 一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法

Publications (2)

Publication Number Publication Date
CN114031392A true CN114031392A (zh) 2022-02-11
CN114031392B CN114031392B (zh) 2023-03-17

Family

ID=80140750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111538628.3A Active CN114031392B (zh) 2021-12-15 2021-12-15 一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法

Country Status (1)

Country Link
CN (1) CN114031392B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490509A (zh) * 2022-09-19 2022-12-20 有研科技集团有限公司 一种低成本镁铝尖晶石粉体改性处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527837A (en) * 1978-08-14 1980-02-28 Ngk Insulators Ltd Polycrystal transparent spinel sintered article and its manufacture
CN101265082A (zh) * 2008-04-24 2008-09-17 烁光特晶科技有限公司 一种透明镁铝尖晶石陶瓷的制备方法
CN101397615A (zh) * 2008-11-04 2009-04-01 四川大学 一种具有近等轴wc晶粒的硬质合金的制备方法
CN106920617A (zh) * 2017-03-21 2017-07-04 四川大学 高性能钕铁硼稀土永磁材料及其制备方法
CN111926204A (zh) * 2020-08-10 2020-11-13 河南荣泰耐火材料有限公司 一种超细晶粒硬质合金的微波真空烧结方法、硬质合金制品
CN112159221A (zh) * 2020-09-27 2021-01-01 烁光特晶科技有限公司 一种高温高压窗口用透明镁铝尖晶石陶瓷材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527837A (en) * 1978-08-14 1980-02-28 Ngk Insulators Ltd Polycrystal transparent spinel sintered article and its manufacture
CN101265082A (zh) * 2008-04-24 2008-09-17 烁光特晶科技有限公司 一种透明镁铝尖晶石陶瓷的制备方法
CN101397615A (zh) * 2008-11-04 2009-04-01 四川大学 一种具有近等轴wc晶粒的硬质合金的制备方法
CN106920617A (zh) * 2017-03-21 2017-07-04 四川大学 高性能钕铁硼稀土永磁材料及其制备方法
CN111926204A (zh) * 2020-08-10 2020-11-13 河南荣泰耐火材料有限公司 一种超细晶粒硬质合金的微波真空烧结方法、硬质合金制品
CN112159221A (zh) * 2020-09-27 2021-01-01 烁光特晶科技有限公司 一种高温高压窗口用透明镁铝尖晶石陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李法荟等: "LiF对镁铝尖晶石透明陶瓷红外透过率的影响", 《无机材料学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115490509A (zh) * 2022-09-19 2022-12-20 有研科技集团有限公司 一种低成本镁铝尖晶石粉体改性处理方法

Also Published As

Publication number Publication date
CN114031392B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
Krell et al. Transparent sintered corundum with high hardness and strength
US5152940A (en) Method of producing a light-transmitting spinel sintered body
US8501081B2 (en) Polycrystalline alumina articles and methods of manufacture
US20070172378A1 (en) Tungsten based sintered compact and method for production thereof
CN114031392B (zh) 一种惰性气氛烧结镁铝尖晶石透明陶瓷的方法
Razavi et al. Effect of sintering temperature on microstructural and optical properties of transparent yttria ceramics fabricated by spark plasma sintering
CN112390628B (zh) 一种氧化铝靶材的制备方法
CN102627450A (zh) 一种细晶透明氧化铝陶瓷材料及制备方法
CN112500163A (zh) 一种高可见光透过率氧化钇透明陶瓷的制备方法
CN111499371A (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN104507892A (zh) 多晶体硫族化物陶瓷材料
CN101306942B (zh) 细晶高透明度红宝石陶瓷材料及其低温制备方法
US3878280A (en) Method for production of transparent yttrium oxide
CN113443919A (zh) 一种非晶态合金喷嘴材料及其制备方法
KR102026458B1 (ko) 금속 소결체의 제조방법
CN110937898B (zh) 一种倍半氧化物窗口材料的制备方法
JP5458552B2 (ja) 高靭性且つ透光性の着色アルミナ焼結体及びその製造方法並びに用途
CN112159221A (zh) 一种高温高压窗口用透明镁铝尖晶石陶瓷材料及其制备方法
JP2019038720A (ja) セシウムタングステン酸化物焼結体の製造方法、セシウムタングステン酸化物焼結体及び酸化物ターゲット
EP0577427A1 (en) Infrared transmitting barium fluoride sintered body and method of producing the same
US5443773A (en) Process for producing high strength alumina
CN113754436B (zh) 一种纳米晶激光级倍半氧化物透明陶瓷的制备方法
CN113045310B (zh) 一种am凝胶注模成型工艺制备锆酸镧钆透明陶瓷的方法
WO2006069050A2 (en) Improved density and hardness pressureless sintered and post-hiped b4c
CN114773049B (zh) 一种可见-红外透明陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230711

Address after: 100018 Beijing Chaoyang District pine Park No. 1

Patentee after: Sinoma intraocular lens Research Institute Co.,Ltd.

Patentee after: BEIJING SINOMA SYNTHETIC CRYSTALS CO.,LTD.

Address before: 100018 No.1 hongsongyuan, Dongba, Chaoyang District, Beijing

Patentee before: Bright Crystals Technology, Inc.