CN114773049B - 一种可见-红外透明陶瓷及其制备方法 - Google Patents

一种可见-红外透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN114773049B
CN114773049B CN202210403517.XA CN202210403517A CN114773049B CN 114773049 B CN114773049 B CN 114773049B CN 202210403517 A CN202210403517 A CN 202210403517A CN 114773049 B CN114773049 B CN 114773049B
Authority
CN
China
Prior art keywords
sintering
transparent ceramic
powder
visible
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210403517.XA
Other languages
English (en)
Other versions
CN114773049A (zh
Inventor
涂兵田
涂广升
王皓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202210403517.XA priority Critical patent/CN114773049B/zh
Publication of CN114773049A publication Critical patent/CN114773049A/zh
Application granted granted Critical
Publication of CN114773049B publication Critical patent/CN114773049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Abstract

本发明公开了一种可见‑红外透明陶瓷及其制备方法。所述透明陶瓷材料基体化学计量式为Mg(AlxGa1‑x)2O4,其中0﹤x﹤1;它以Mg(AlxGa1‑x)2O4粉末或MgO、Al2O3、Ga2O3按化学计量比形成的混合粉末为原料,经成型和烧结制备而成。本发明所得Mg(AlxGa1‑x)2O4透明陶瓷的透光范围在300~7500nm之间,尤其在3~5μm红外波段具有>81.5%的光学透过率,同时具有较高的硬度、弹性模量等机械性能,适用于激光通讯、红外夜视、红外传感器窗口或头罩等领域;且涉及的制备方法较简单,操作方便,适合推广应用。

Description

一种可见-红外透明陶瓷及其制备方法
技术领域
本发明属于透明陶瓷材料技术领域,具体涉及一种可见-红外透明陶瓷及其制备方法。
背景技术
透明结构陶瓷兼具优异的光学透明性能和良好的机械性能,在国防和国民经济等领域均显现出巨大的应用需求和价值。为了满足高速、高温、热冲击及磨损等使用环境,迫切需要使用具备优异光学透明性能、优良机械性能、抗腐蚀、耐冲击、抗热震以及优良介电性能等的特种无机透明材料制成的窗口和头罩。此外,透明结构陶瓷也广泛应用于透明防护装甲、激光点火窗口、UV排版印刷窗口、化工设备和高温炉的检测窗口、POS机扫描仪窗口、高压金卤灯灯管、液晶电视偏振片、防刮透镜、激光通讯等众多领域。以上应用领域对可见光-红外波段,尤其是3~5μm大气窗口波段透明的窗口材料需求尤为迫切,同时要求窗口材料具有较好的环境生存能力,即具有优异的力学性能。
目前,同时具有可见光380~760nm、1064nm激光、中红外3~5μm波段光学透过性能的透明陶瓷材料体系主要包括Mg-Al-O-N系、Y2O3、MgO、YAG等透明陶瓷及单晶蓝宝石(J.Am.Ceram.Soc.,2016,99,3173;J.Am.Ceram.Soc.,2013,96,3341;J.Am.Ceram.Soc.,2013,96,3828)。单晶蓝宝石具有良好硬度、高温稳定性等,但其在中波红外的光学透过率对温度较为敏感,且成本高;Mg-Al-O-N系尖晶石型透明陶瓷(MgAl2O4、AlON和MgAlON)的力学性能匹敌蓝宝石(专利:CN108794016A、CN 101817683A、CN109354501A),但红外波段光学透过范围窄,且在高温环境下,窗口热辐射强烈。宽的红外光学透过域,能够有效改善窗口材料3~5μm的高温应用性能。氧化钇、氧化镁及其纳米复相陶瓷材料能够获得中红外波段的透过性能,但其力学性能不足、制备难度较大。
综合分析,Y2O3、MgO等透明陶瓷具有优异的红外光谱透过性能,但力学性能不足;传统尖晶石型透明陶瓷具有优异的力学性能,能够耐受热冲击,但该类材料在4μm左右开始产生多声子红外光学吸收,且随着温度的升高加剧,导致其在3~5μm中红外应用波段的透过率随着温度的升高显著降低,限制了其在特定高温环境下的应用性能。现有透明陶瓷窗口应用总是需要在材料的宽光学透过范围和优异的力学性能之间平衡和抉择,亟需开发具有宽的可见-红外光学透过域,同时力学性能优异的新型透明陶瓷材料。
发明内容
本发明针对现有技术的不足及应用需求,提供一种新型可见-红外透明陶瓷及其制备方法,可同时满足可见至红外波段的高透过率要求,并表现出高的空间和温度分辨率、较优的力学性能,可有效拓宽透明陶瓷窗口应用范围;且涉及的制备方法较简单,操作方便,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种可见-红外透明陶瓷材料,所述透明陶瓷化学式为Mg(AlxGa1-x)2O4,其中0﹤x﹤1;所述可见-红外透明陶瓷材料兼具优异的光学透过范围和力学性能,光学透过范围为300~7500nm,其中在400~6800nm范围的光学透过率>61%,尤其在3~5μm范围的光学透过率>81.5%;硬度为12~13.5GPa,杨氏模量为256~282MPa。
优选的,x取值0.5~0.96时,更优选为0.76~0.96,所得透明陶瓷材料可得到较宽的光学透过范围。
优选的,所述x取值0.66~0.86时,更优选为0.76~0.86,可兼具更优异的光学透过范围和良好的力学性能。
上述方案中,可见-红外透明陶瓷材料以Mg(AlxGa1-x)2O4粉末或MgO、Al2O3、Ga2O3按化学计量比(摩尔比例为1:x:1-x)形成的混合粉末为原料,经过成型和烧结制备而成。
进一步的,所述MgO、Al2O3、Ga2O3粉末为市售原料或以Mg、Al、Ga的无机盐或盐的结晶水合物等化合物为原料经煅烧(300~1100℃)得到的对应的氧化物原料。
上述方案中,所述烧结步骤采用热压烧结工艺、放电等离子体烧结工艺或无压烧结工艺等;烧结至形成致密度>95%的陶瓷烧结体。
上述一种可见-红外透明陶瓷材料的制备方法,包括如下步骤:
1)原料分散与混合:以Mg(AlxGa1-x)2O4粉末为原料,或以MgO、Al2O3、Ga2O3按化学计量比(摩尔比为1:1x:1-x)形成的混合粉末为原料,将称取的粉末原料进行球磨、干燥、破碎、过筛后待用;
2)素坯成型:将步骤1)所得粉料压制成型处理,素坯进一步通过冷等静压处理,得到成型素坯;
3)陶瓷烧结:将所得成型素坯进行烧结处理,得致密度>95%的陶瓷烧结体;
4)陶瓷退火:将所得陶瓷烧结体进行空气或者氧气气氛退火处理,即得到所述可见-红外透明陶瓷材料。
上述方案中,步骤1)中采用的Mg(AlxGa1-x)2O4粉末的平均粒径为50~800nm,纯度为99%以上;采用的MgO、Al2O3、Ga2O3粉末可以是对应氧化物无定形相或多种晶相的任一种,其粒径为5~200nm,纯度为99%以上。
上述方案中,所述Mg(AlxGa1-x)2O4粉末可采用MgO、Al2O3、Ga2O3按化学计量比(摩尔比为1:1x:1-x)形成的混合粉末为原料,通过高温固相反应制得,合成温度为1200~1600℃。
上述方案中,球磨球可选用刚玉球、氮化硅球、氧化锆球中的一种,球料比为(3~5):1;有机溶剂是乙醇、丙酮等小分子有机溶剂的一种;转速为120~320r/min,球磨时间6~48h。
上述方案中,步骤(2)中所述一次压制成型压力为10~80MPa,保压时间为1~5min;冷等静压成型压力为100~400MPa,保压时间为1~20min。
上述方案中,所述烧结处理采用热压烧结工艺、放电等离子体烧结工艺或无压烧结工艺等;其中,可采用气氛烧结条件,其中热压烧结工艺和放电等离子体烧结工艺可采用氮气或氩气气氛等;无压烧结工艺可采用氮气、含氧气氛(如空气等)、氩气气氛等中的一种;优选地,采用无压烧结工艺在空气气氛中烧结时,可有效抑制O空位的产生,有利于提升所得透明陶瓷的透过率和力学性能。
优选的,所述热压烧结工艺采用的烧结温度为1000~1700℃,保温时间为0.5~5h;放电等离子体烧结工艺采用的烧结温度为1000~1700℃,保温时间为0.2~3h;无压烧结工艺采用的烧结温度为1100~1800℃,保温时间为0.5~48h。
进一步地,采用Mg(AlxGa1-x)2O4粉末为原料时,热压烧结工艺采用的烧结温度为1100~1700℃,压力为10~80MPa,保温时间为0.5~6h;放电等离子体烧结工艺采用的烧结温度为烧结温度为1100~1700℃,压力为10~80MPa,保温时间为0.5~3h;无压烧结工艺采用的烧结温度为1100~1800℃,保温时间为1~24h。
进一步地,采用MgO、Al2O3、Ga2O3粉末为原料时,热压烧结工艺采用的烧结温度为1100~1600℃,压力为10~80MPa,保温时间为0.5~4h;放电等离子体烧结工艺采用的烧结温度为烧结温度为1100~1700℃,压力为10~80MPa,保温时间为0.5~3h;无压烧结工艺采用的烧结温度为1100~1800℃,保温时间为1~20h。
优选的,步骤3)所得陶瓷烧结体进一步进行热等静压烧结后处理,其中采用的烧结温度为1100~1850℃,保温时间为1~12h,然后再进行步骤4)所述退火处理。
上述方案中,所述退火温度为800~1400℃,时间为0.5~48h。
优选的,所述退火温度为1100~1300℃,时间为5~6h;在该条件下,可有效消除热等静压过程中O的缺失导致的色心对光的吸收,有利于进一步提高透明陶瓷的光学透过性能。
根据上述方案制备的可见-红外透明陶瓷材料,其陶瓷晶粒尺寸为5~200μm,透明陶瓷达到理论烧结密度达99.6%以上,透过范围可达300~7600nm,弹性模量可达200~300MPa,硬度可达12~13.5GPa,尤其当x取值0.76~0.96时,在3~5μm的光学透过性能可达84%以上。
与现有技术相比,本发明的有益效果为:
1)本发明将固溶体组成调控作为Mg(AlxGa1-x)2O4透明陶瓷烧结和性能优化的重要手段之一,并进一步结合热等静压等烧结后处理工艺,首次制备出Mg(AlxGa1-x)2O4透明陶瓷;Al/Ga含量的变化可有效改变Mg(AlxGa1-x)2O4透明陶瓷的烧结工艺制度,抑制高温烧结过程中难以控制的晶粒异常长大等问题,进而有效调控所得Mg(AlxGa1-x)2O4透明陶瓷的力学性能和光学性能;并可根据服役环境按需设计和调控透明陶瓷的组成和性能;尤其,当x为0.5~0.96时,Mg(AlxGa1-x)2O4透明陶瓷表现出优异的3~5μm光学透过性能,以满足其作为红外窗口材料对高温下分辨率的性能需求;
2)本发明所述制备可见-红外透明陶瓷材料的工艺过程中,由于Al/Ga相互取代,同时加剧了Mg/Al或Mg/Ga阳离子无序度,能够改变其烧结动力学行为,有利于获得晶粒尺寸在5~200μm,分布均匀的透明陶瓷材料,可同时满足可见光-红外波段的高透过率,在3~5μm光学透过率>81.5%,接近理论透过率,并可显著拓宽所得透明陶瓷材料的光学透过范围,表现出较高的空间和温度分辨率;同时其硬度达到13.5GPa,杨氏模量在200~350MPa;所得可见-红外透明陶瓷材料的综合性能优于现有AlON、MgAlON、Y2O3等透明陶瓷材料体系;
3)涉及的制备方法操作简单、成本低,原料容易获取,条件稳定可控,适用于工业化大规模生产。
附图说明
图1为本发明所得前处理粉末(原料2)的显微照片和物相组成;
图2为本发明所得前处理粉末(原料7)的显微照片和物相组成;
图3为本发明实施例9制得可见-红外透明陶瓷材料表面显微结构图;
图4为本发明实施例9制得可见-红外透明陶瓷抛光后实物图;
图5为如下实施例2、5、7、12、17制得可见-红外透明陶瓷材料的透过率曲线。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。特别说明的是,由于Mg(AlxGa1-x)2O4为无限固溶体,任何采用含Ga化合物作为添加剂制备MgAl2O4透明陶瓷,或采用含Al化合物作为添加剂制备MgGa2O4透明陶瓷的实施例,实际上制备所得透明陶瓷均为Mg(AlxGa1-x)2O4透明陶瓷,属于本发明的保护范围。
以下实施例中,所述可见-红外透明陶瓷材料的制备方法包括以下步骤:
1)原料分散与混合:以氧化铝球为球磨球,按照球料比在3:1~5:1的范围称取Mg(AlxGa1-x)2O4单相粉末或摩尔比例为1:x:1-x的MgO、Al2O3、Ga2O3原料混合粉末放入球磨罐中,以乙醇为分散介质,球磨6~48h,所得料浆粉末在60~120℃下干燥,干燥时间6~48h,随后破碎,过200目筛,待用;
其中,采用的Mg(AlxGa1-x)2O4粉末纯度>99.9%,平均粒径为50~800nm;采用的MgO、Al2O3、Ga2O3是指在步骤(2)成型之前的粉末化学形态,可以是对应氧化物无定形相或多种晶相的任一种。在实际应用中,MgO、Al2O3、Ga2O3粉末还可由含Mg、Ga、Al的氧化物、盐和结晶水合物等进行热处理形成(其粒径为5~200nm),热处理温度在300~1100℃之间;各原料纯度>99.9%。
2)素坯成型:将步骤1)所得粉料压制成型处理,得到成型素坯;其中压制成型方法包括但不限于采用轴向加压方式进行压制成型,再将成型后的素坯进行冷等静压成型;具体步骤包括:先将步骤1)所得粉料装入钢模中(如直径为20mm的钢模,模具的材质和直径根据实际需要进行选择),然后进行压制成型,采用的压力为10~80MPa,保压时间1~5min,接着进行冷等静压成型,成型压力位100~400MPa,保压时间为1~20min;
3)陶瓷烧结:将步骤(2)所得成型素坯进行烧结处理,得到致密度>99.7%的陶瓷烧结体;烧结处理可以采用无压烧结、热压烧结或放电等离子烧结工艺,其中无压烧结采用的气氛为氮气、空气、氩气中的一种;热压烧结和放电等离子烧结工艺采用的气氛为氮气或氩气;
采用热压烧结工艺时,一般将素坯置于石墨模具中,模具上下压头及四周可通过钼箔隔开,或采用BN、Si3N4内套作为阻隔,装模后,整个组件置于热压烧结炉中,抽真空后通入氮气或氩气至常压作为保护气,烧结温度为1000~1700℃,保温时间为0.5~5h,施加压力为10~80MPa;
采用无压烧结工艺时,将素坯置于99氧化铝坩锅中,装入马弗炉,烧结温度为1100~1800℃,保温时间为0.5~24h;
采用放电等离子烧结工艺时,将素坯置于石墨模具中,模具上下压头及四周可通过钼箔隔开,或采用BN、Si3N4内套作为阻隔,装模后,整个组件置于热压烧结炉中,抽真空后通入氮气或氩气至常压作为保护气,烧结温度为1000~1700℃,保温时间为0.2~3h,施加压力为10~80MPa;
对于以上三种烧结工艺来说,当烧结温度小于温度范围最小值时,可能导致致密度过低,无法获得良好的光学透光性,且力学性能下降;当烧结温度大于温度范围最大值时,可能导致晶粒过度生长,光学透过性和力学性能退化。因此,对于各种烧结工艺而言,应控制在相应温度范围内,以获得材料最优性能。
在经过上述步骤(3)的一次烧结工艺后,再置于热等静压烧结设备中进行后处理,热等静压传压介质为氩气,烧结温度为1100~1850℃,保温时间1~12h;
4)陶瓷退火:对步骤(3)所述透明陶瓷烧结体进行含氧气氛退火处理,一般地,采用温场均匀的马弗炉,退火温度800~1400℃,保温时间0.5~48小时;退火后样品依此经过打磨、机械抛光、化学抛光等加工步骤得到所述可见-红外透明陶瓷材料。
以下具体实施例说明本发明制备方法的特点和技术效果。实施例中未注明具体条件者,按照常规条件或设备参数特点进行,除Mg(AlxGa1-x)2O4粉末为实验室制备原料外,所用试剂或仪器未注明生产厂商者,均为市售可获取产品。
实施例1~20
实施例1~20所述可见-红外透明陶瓷材料参考上述方法(步骤1)~4))制备,其中采用的原料体系和步骤1)涉及的工艺参数分别见表1和表2;步骤3)~4)涉及的工艺参数见表3。表1中以实验室通过固相反应法制备的Mg(AlxGa1-x)2O4粉末为原料,表2中以按化学计量比称取得含Mg、Ga、Al的氧化物、盐和/或结晶水合物粉末为原料;经步骤1)处理得到的粉末颗粒均匀、细小,适合开展步骤2)成型素坯;然后主要通过步骤2)~3)各工艺参数条件的调整和优化(具体工艺参数见表3),最终得到所述可见-红外透明陶瓷材料2mm厚度样品。
表1采用不同Mg(AlxGa1-x)2O4原料体系制备前处理粉末对应的工艺参数
Figure BDA0003600926380000061
表2采用不同含Mg、Ga和Al原料体系制备前处理粉末对应的工艺参数
Figure BDA0003600926380000062
Figure BDA0003600926380000071
表3实施例1~20所述透明陶瓷的制备工艺参数
Figure BDA0003600926380000072
/>
Figure BDA0003600926380000081
/>
Figure BDA0003600926380000091
/>
Figure BDA0003600926380000101
注:表中Pl表示无压烧结;HP表示热压烧结;SPS表示放电等离子烧结;Air表示空气气氛;O表示氧气气氛;N表示氮气气氛;Ar表示氩气气氛。
需要说明的是,本发明制备红外透明陶瓷材料的方法可以采用上述方法中列举出的任一种粉末前处理工艺和任一种烧结工艺进行组合来实现,各个步骤的工艺的参数可以在上述方法中列出的条件参数中进行合理选择,也可由专业技术人员在上述方法工艺制度范围内进一步筛选。上述的各个实施例仅为举例说明,本发明对此并不进行限定。
表1所得前处理粉末原料2的典型扫描电镜照片和物相组成如图1所示(原料1~5的表征效果相当),可以看出所得颗粒均匀细小,粒径在50~300nm范围内;采用的Mg(AlxGa1-x)2O4粉末物相为尖晶石相。
表2所得前处理粉末原料7的典型扫描电镜照片和物相组成如图2所示(原料6~10的表征效果相当),可以看出所得混合颗粒细小,粒径在20~200nm范围内;所得混合粉末为氧化镁、氧化铝、氧化镓三种氧化物的混合相。
图3和图4分别为实施例9所得可见-红外透明陶瓷材料的典型表面显微结构图和抛光后实物图;可见所得透明陶瓷具有良好的透光性能,且晶粒均匀,无异常长大现象。
本发明实施例2采用原料9所制得x=0.76的2mm厚透明陶瓷的透过率曲线如图5所示,从图中可以看出:所得透明陶瓷材料的光学透过范围在300~7500nm范围内,覆盖了可见光、激光、中红外三个关键波段,其中300~6.5μm处透过率>80%,满足多模透过性能需求,而3~5μm中红外波段光学透过率超过85%;其红外区域多声子吸收加剧的起始波长高于5μm,能够在3~5μm波段保持较高的温度分辨率;其杨氏模量为271MPa,硬度达到12.2GPa。
本发明实施例5采用原料7所制得x=0.28的透明陶瓷曲线如图5所示,从图中可以看出,在透明陶瓷材料的光学透过范围在300~6600nm范围内;其杨氏模量为282MPa,硬度达到13.1GPa。
本发明实施例17采用原料5所制得x=0.96的透明陶瓷曲线如图5所示,从图中可以看出,在透明陶瓷材料的光学透过范围在300~7600nm范围内,在3~5μm中红外波段光学透过率超过84%;其杨氏模量为256MPa,硬度达12.0GPa。
本发明实施例7采用原料1所制得x=0.05的透明陶瓷曲线如图5所示,从图中可以看出,在透明陶瓷材料的光学透过范围在300~6500nm范围内;其杨氏模量为284MPa,硬度达到13.5GPa。
本发明实施例12采用原料8所制得x=0.51的透明陶瓷曲线如图5所示,从图中可以看出,在透明陶瓷材料的光学透过范围在300~6850nm范围内,在3~5μm中红外波段光学透过率超过81.5%;其杨氏模量为280MPa,硬度达12.8GPa。
综上,本发明制备可见-红外透明陶瓷材料的方法,在上述的烧结工艺制度和参数情况下,制备透明陶瓷晶粒尺寸在5~200μm,透明陶瓷达到理论烧结密度99.6%以上,透过范围300~7600nm,弹性模量在200~300MPa,硬度在12~13.5GPa,尤其当x取值0.76左右时,在3~5μm的光学透过性能在81.5%以上,可兼顾优异的光学透过性能和良好的力学性能。所述透明陶瓷材料能满足多模透波窗口、光电吊舱等对可见光、激光、红外透明材料的需求。本发明有助于国内红外窗口材料的升级,为满足军民应用领域尖端装备对红外窗口、头罩等提供有力支撑。
以上实施例仅是本发明的较佳工艺制度而已,并非是对发明做其它形式的限制,任何熟悉无机非金属材料、陶瓷、玻璃等专业的技术人员可能利用上述揭示的技术内容加以变更,视为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (8)

1.一种可见-红外透明陶瓷材料,其特征在于,所述可见-红外透明陶瓷基体化学计量式可表示为Mg(AlxGa1-x)2O4,其中0﹤x﹤1;
所述透明陶瓷材料2mm样品的光学透过范围可达300~7600nm,在400~6800nm范围光学透过率>61%,在3~5μm范围光学透过率>81.5%;
具体制备步骤如下:
(1)原料分散与混合:以Mg(AlxGa1-x)2O4单相粉末为原料,或以按Mg(AlxGa1-x)2O4化学计量比称量的MgO、Al2O3、Ga2O3混合粉末为原料,将称取的粉末原料进行球磨,然后进行干燥、破碎、过筛,得前处理粉末;
(2)素坯成型:将所得前处理粉料进行一次压制成型,然后进行冷等静压处理,得成型素坯;
(3)陶瓷烧结:将步骤(2)所得成型素坯进行烧结处理,得致密度>95%的透明陶瓷烧结体;
(4)陶瓷退火:对步骤(3)所得透明陶瓷烧结体进行含氧气体气氛退火处理,即得到所述可见-红外透明陶瓷材料;
所述烧结处理采用热压烧结、放电等离子体烧结工艺或无压烧结工艺。
2.一种权利要求1所述的可见-红外透明陶瓷材料的制备方法,其特征在于,具体步骤如下:
(1)原料分散与混合:以Mg(AlxGa1-x)2O4单相粉末为原料,或以按Mg(AlxGa1-x)2O4化学计量比称量的MgO、Al2O3、Ga2O3混合粉末为原料,将称取的粉末原料进行球磨,然后进行干燥、破碎、过筛,得前处理粉末;
(2)素坯成型:将所得前处理粉料进行一次压制成型,然后进行冷等静压处理,得成型素坯;
(3)陶瓷烧结:将步骤(2)所得成型素坯进行烧结处理,得致密度>95%的透明陶瓷烧结体;
(4)陶瓷退火:对步骤(3)所得透明陶瓷烧结体进行含氧气体气氛退火处理,即得到所述可见-红外透明陶瓷材料。
3.根据权利要求2所述的制备方法,其特征在于,所述热压烧结工艺采用的烧结温度为1000~1700℃,压力为10~80MPa,保温时间为0.5~5h;放电等离子体烧结工艺采用的烧结温度为1000~1700℃,压力为10~80MPa,保温时间为0.2~3h;无压烧结工艺采用的烧结温度为1100~1800℃,保温时间为0.5~48h;其中热压烧结工艺和放电等离子体烧结工艺采用氮气或氩气气氛;无压烧结工艺采用含氧气体、氩气或氮气气氛。
4.根据权利要求2所述的制备方法,其特征在于,采用的Mg(AlxGa1-x)2O4粉末的平均粉末粒径为50~800nm;MgO、Al2O3、Ga2O3混合粉末的粒径为200nm以下。
5.根据权利要求2所述的制备方法,其特征在于,所述球磨步骤采用湿磨工艺,采用的球料比为(3~5):1;转速为120~320r/min,时间为6~48h。
6.根据权利要求2所述的制备方法,其特征在于,所述冷等静压成型工艺采用的压力为100~400MPa,保压时间为1~20min。
7.根据权利要求2所述的制备方法,其特征在于,将步骤3)所得陶瓷烧结体进行热等静压烧结后再进行步骤4)所述退火处理,其中采用的烧结温度为1100~1850℃,保温时间为1~12h。
8.根据权利要求2所述的制备方法,其特征在于,步骤4)所述退火处理步骤采用的温度为800~1400℃,时间为0.5~48h。
CN202210403517.XA 2022-04-18 2022-04-18 一种可见-红外透明陶瓷及其制备方法 Active CN114773049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210403517.XA CN114773049B (zh) 2022-04-18 2022-04-18 一种可见-红外透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210403517.XA CN114773049B (zh) 2022-04-18 2022-04-18 一种可见-红外透明陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114773049A CN114773049A (zh) 2022-07-22
CN114773049B true CN114773049B (zh) 2023-06-13

Family

ID=82431393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210403517.XA Active CN114773049B (zh) 2022-04-18 2022-04-18 一种可见-红外透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114773049B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107352994B (zh) * 2017-08-04 2020-08-14 中国科学院上海硅酸盐研究所 一种镁铝尖晶石透明陶瓷的制备方法
CN108998020A (zh) * 2018-02-12 2018-12-14 有研稀土新材料股份有限公司 一种近红外荧光粉以及含该荧光粉的发光装置
CN109369183B (zh) * 2018-12-13 2020-07-17 东北大学 一种红外透明陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN114773049A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
Lee et al. Solid‐state reactive sintering of transparent polycrystalline Nd: YAG ceramics
JP5819992B2 (ja) 透明度が向上した多結晶酸窒化アルミニウムの製造方法
CN107721406B (zh) 一种制备高透光性镁铝尖晶石透明陶瓷的方法
JP4995920B2 (ja) 透明な多結晶酸窒化アルミニウムの製造方法
Liu et al. Hard transparent AlON ceramic for visible/IR windows
KR101794410B1 (ko) 고 열전도도 질화규소 소결체 및 이의 제조 방법
CN112299861B (zh) 一种AlON透明陶瓷伪烧结剂与应用及透明陶瓷的制备方法
CN110218096A (zh) 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用
CN110156476A (zh) 一种高硬高韧氮化硅基陶瓷及其制备方法和应用
JPH06211573A (ja) 透明なy2o3焼結体の製造方法
KR101575561B1 (ko) 투명도가 향상된 다결정 산질화알루미늄의 제조방법
CN107473730B (zh) 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN114773049B (zh) 一种可见-红外透明陶瓷及其制备方法
Gan et al. Fabrication of submicron-grained IR-transparent Y2O3 ceramics from commercial nano-raw powders
CN110937898B (zh) 一种倍半氧化物窗口材料的制备方法
CN109437916B (zh) 高透明LiAlON陶瓷的制备方法
US7045091B1 (en) Transient liquid phase reactive sintering of aluminum oxynitride (AlON)
JP7027338B2 (ja) 透明AlN焼結体及びその製法
Jing et al. Influence of presintering temperature on magnesium aluminate spinel transparent ceramics fabricated by solid‐state reactive sintering
CN112830792B (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
KR102066489B1 (ko) 기계적 강도가 향상된 적외선 투과 스피넬 및 그 제조 방법
KR101442634B1 (ko) 고온 강도가 우수한 알루미늄티타네이트의 제조방법
CN117658617A (zh) 一种高光学质量的镁铝尖晶石透明陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant