CN114028603B - 促进皮肤伤口修复的双层不对称敷料及其制备方法 - Google Patents
促进皮肤伤口修复的双层不对称敷料及其制备方法 Download PDFInfo
- Publication number
- CN114028603B CN114028603B CN202111286207.6A CN202111286207A CN114028603B CN 114028603 B CN114028603 B CN 114028603B CN 202111286207 A CN202111286207 A CN 202111286207A CN 114028603 B CN114028603 B CN 114028603B
- Authority
- CN
- China
- Prior art keywords
- solution
- printing
- dressing
- layer
- hydrogel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/26—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/32—Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/425—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/62—Compostable, hydrosoluble or hydrodegradable materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/02—Preparation of spinning solutions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/10—Filtering or de-aerating the spinning solution or melt
- D01D1/103—De-aerating
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/12—Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
促进皮肤伤口修复的双层不对称敷料及其制备方法,属于生物医用材料技术领域。它采用静电纺丝和3D生物打印技术制备的对称膜用作皮肤伤口敷料,用8wt%~12wt%聚己内酯和2wt%~6wt%聚乳酸共混纺丝液制备致密的静电纺纳米纤维膜来模拟皮肤的表皮层,以模拟表皮的致密性和防水能力,膜的顶层可作为保护屏障,防止细菌和微生物的渗透;3D打印水凝胶由5wt%海藻酸钠、2wt%~8wt%聚乙烯醇和1wt%壳聚糖季铵盐制备。本发明底层能够吸收大量的渗出物,为细胞迁移和增殖提供了合适的结构和环境,提高了皮肤伤口的愈合效果。
Description
技术领域
本发明属于医用生物材料领域,具体涉及一种促进皮肤伤口修复的双层不对称敷料的制备方法。
背景技术
近年来,虽然有一些临床上可用的皮肤替代物,但创面类型、位置的范围和使用过程要求临床有更广泛的选择。伤口和损伤可由多种原因引起,根据伤口的复杂性,伤口敷料被设计成不同的形态和性质。市场上有几种形式的伤口敷料,包括封闭敷料、非粘结敷料、吸收敷料和薄片、泡沫、粉末和凝胶形式的敷料。虽然这些常用伤口敷料便宜易得,但它们通常与伤口区域的亲和性差,水气透过性不足。创面敷料的目的是建立并维持损伤组织重建的最佳条件,理想的伤口敷料常常来源于具有类似于患者皮肤性质的天然材料,应该紧贴受伤的组织,保持平衡的湿润状态,允许氧气交换,防止细菌感染,从而确保一个最佳的微环境来加速愈合过程。
静电纺丝是一种直接生产超细纤维、功能广泛、成本低廉的纳米纤维结构制备技术。采用静电纺丝技术制备的纳米纤维具有较大的比表面积和高的孔隙率,其直径从微米到纳米不等,且结构和尺寸可控,在药物传递系统中具有潜在的应用前景。在对伤口敷料多样化的构建中,生物3D打印成为研究热点,尤其是用于创面敷料,具有许多优点,如能够调整创面敷料的尺寸属性(如面积、厚度或孔径),装载药物简单,可使用多种材料,以及基于孔隙设计的可调氧渗透能力。其将可打印的高分子生物材料作为墨水,通过计算机设计与控制,可逐层打印,得到结构复杂、尺寸精确,具有促进皮肤修复的敷料支架。3D打印支架因其力学性能、生物相容性、生物降解性和3D多孔微结构而成为组织工程应用的理想材料。
发明内容
为了防止细菌和微生物入侵,促进皮肤伤口快速修复,本发明提供一种促进皮肤伤口修复的双层不对称敷料的制备方法,实现有效控制伤口感染的同时促进皮肤创面的快速愈合。
一种促进皮肤伤口修复的双层不对称敷料,其特征是由上层的静电纺丝纳米纤维膜和下层的3D打印水凝胶组成。所述静电纺丝纳米纤维膜是由8wt%~12wt%聚己内酯(PCL)和2wt%~6wt%聚乳酸(PLA)共混液所制备,3D打印水凝胶支架是由5wt%海藻酸钠、2wt%~8wt%聚乙烯醇(PVA)和1wt%壳聚糖季铵盐(HACC)混合得到3D打印水凝胶所制备。在3D打印水凝胶支架表面涂附丝素蛋白纳米纤维溶液将静电纺丝膜覆盖其上,结合后为多孔结构,其平均孔隙率为70%~80%。最终获得促进伤口修复的双层不对称敷料。
一种促进伤口修复的双层不对称敷料的制备方法,包括以下步骤:
(1)静电纺丝法制备纳米纤维膜:将2.4g聚己内酯(PCL)与1.2g聚乳酸(PLA)混合后溶解于14ml二氯甲烷(DCM)与6ml N-N-二甲基甲酰胺(DMF)共混液中,常温下,磁力搅拌24h,转速为1000r/min,再置于磁力超声波清洗机中超声20min,除去溶液中气泡,最终制得静电纺丝液;将纺丝液置于注射器(20ml)中,用转接头连接聚四氟乙烯软管(1m)以及纺丝针头(21G),在环境温度为25℃、湿度25%、纺丝电压24KV、滚筒转速300r/min、纺丝挤出速度为0.003mm/s的条件下,纺丝时间持续6h,获得聚己内酯(PCL)/聚乳酸(PLA)复合静电纺丝纳米纤维膜。
(2)3D打印法制备水凝胶支架:将1.2g聚乙烯醇(PVA)倒入50ml烧杯,加入20ml去离子水,盖上保鲜膜,置于温度为90℃、转速为1000r/min的磁力搅拌锅中,持续搅拌2h,直至聚乙烯醇(PVA)完全溶解;待聚乙烯醇(PVA)溶液自然冷却至室温(25℃),加入0.2g壳聚糖季铵盐(HACC)粉末,在25℃条件下磁力搅拌30min,直至壳聚糖季铵盐(HACC)完全溶解;调节磁力搅拌锅温度至45℃以及转速1500r/min,将1g海藻酸钠(SA)缓慢加入溶解好的溶液中,持续搅拌2h,即制得3D打印水凝胶。将获得溶胶状3D打印水凝胶置于注射器(BD-5ml)中,连接打印针头(0.25G/0.3G),在环境温度为25℃、湿度40%、针头温度37℃、机床温度10℃、打印速度6mm/s、挤出速度7mm/s、回抽(S.K)0.25mm、抬高(H.P)0.2mm、尺寸10*10/15*15mm、线间距1.2mm、层高0.2mm、支架高度0.8mm的条件下,打印时间持续5min,获得海藻酸钠(SA)、聚乙烯醇(PVA)和壳聚糖季铵盐(HACC)复合3D打印水凝胶支架,使用4wt%氯化钙溶液化学交联之后,将支架于-20℃下冷冻12h,-4℃解冻12h,进行反复冻融物理交联三次。
(3)丝素纳米纤维溶液的制备:将丝素蛋白溶液在 60℃ 下缓慢浓缩24h,得到浓度为20 wt%的均一的丝素纳米粒溶液。稀释至0.5wt%,在60℃烘箱中密封培养24h,制备出直径为15~50nm、长度 1~2μm 的丝素纳米纤维。
将8wt%~12wt%聚己内酯(PCL)和2wt%~6wt%聚乳酸(PLA)共混纺丝液制备致密的顶层(静电纺纳米纤维膜);5wt%海藻酸钠、2wt%~8wt%聚乙烯醇(PVA)和1wt%壳聚糖季铵盐(HACC)制备多孔底层(3D打印水凝胶);浓度为0.5wt%~2wt%的丝素纳米纤维溶液作为粘合剂。制备促进伤口修复的双层不对称敷料。
本发明采用静电纺丝和3D打印技术制备的不对称膜用作伤口敷料,用8wt%~12wt%聚己内酯(PCL)和2wt%~6wt%聚乳酸(PLA)共混纺丝液制备致密的顶层(静电纺纳米纤维膜)来模拟皮肤的表皮层,以复制表皮的致密性和防水能力,膜的顶层可作为保护屏障,防止细菌和微生物的渗透,而模拟皮肤真皮层的多孔底层(3D打印水凝胶)由5wt%海藻酸钠、2wt%~8wt%聚乙烯醇(PVA)和1wt%壳聚糖季铵盐(HACC)所制备,底层能够吸收大量的渗出物,为细胞迁移和增殖提供了合适的结构和环境。最上层的纳米纤维直径在人类皮肤外基质胶原原纤维的范围内(50-500纳米),通并过层层连续沉积纳米纤维来确定顶层的厚度,直到达到与表皮层相似的厚度(0.5-1.5mm)。而底层3D打印水凝胶结构的厚度是由3D打印机软件控制打印层的数量来实现,使其处于天然真皮层范围内(0.6-3mm)。最终获得促进皮肤伤口修复的双层不对称敷料。
本发明具有出色的生物相容性、生物可降解性、低毒性和低免疫原性,在皮肤损伤处有效控制感染的同时促进皮肤再生,并且更换敷料时还可有效防止粘连,避免二次创伤的形成,它还具有良好的细胞吸附能力,有利于细胞的黏附和生长,降低感染率,从而提高创面愈合的质量和速率。
本发明在聚己内酯(PCL)和聚乳酸(PLA)的质量比为2:1共混液时,纺丝膜具有良好的孔隙率及光滑无珠纤维结构;海藻酸钠(SA)、聚乙烯醇(PVA)和壳聚糖季铵盐(HACC)的质量比为5:6:1的共混墨水制备的支架具有良好的亲水性及可塑性能。双层材料具有良好的生物相容性、力学性能、吸湿溶胀性能,抗菌性能,及促人真皮成纤维细胞的增殖。
附图说明
图1是18wt% PCL静电纺丝纳米纤维膜SEM形貌图。
图2是12wt%PCL+6wt%PLA静电纺丝纳米纤维膜SEM形貌图。
图3是18wt%PLA静电纺丝纳米纤维膜SEM形貌图。
图4是不同材料的静电纺丝纳米纤维膜的平均直径比较图。
图5是不同材料的静电纺丝纳米纤维膜的水接触角比较图。
具体实施方式
实施例1
静电纺丝法制备纳米纤维膜:将质量比为2:1的聚己内酯(PCL)和聚乳酸(PLA)混合后溶解于体积比为7:3的二氯甲烷(DCM)和 N-N-二甲基甲酰胺(DMF)共混液中,常温下,磁力搅拌24h,转速为1000r/min,再置于磁力超声波清洗机中超声20min,除去溶液中气泡,最终制得静电纺丝液,将纺丝液置于注射器(20ml)中,用转接头连接聚四氟乙烯软管(1m)以及纺丝针头(21G),在环境温度为25℃、湿度25%、纺丝电压24KV、滚筒转速300r/min、纺丝挤出速度为0.003mm/s的条件下,纺丝时间持续6h,获得聚己内酯(PCL)/聚乳酸(PLA)复合静电纺丝纳米纤维膜。
3D打印法制备水凝胶支架:将1.2g聚乙烯醇(PVA)倒入50ml烧杯,加入20ml去离子水,盖上保鲜膜,置于温度为90℃、转速为1000r/min的磁力搅拌锅中,持续搅拌2h,直至聚乙烯醇(PVA)完全溶解;待聚乙烯醇(PVA)溶液自然冷却至室温(25℃),加入0.2g壳聚糖季铵盐(HACC)粉末,在25℃条件下磁力搅拌30min,直至壳聚糖季铵盐(HACC)完全溶解;调节磁力搅拌锅温度至45℃以及转速1500r/min,将1g海藻酸钠(SA)缓慢加入溶解好的溶液中,持续搅拌2h,即制得3D打印水凝胶。将获得溶胶状3D打印水凝胶置于注射器(BD-5ml)中,连接打印针头(0.25G/0.3G),在环境温度为25℃、湿度40%、针头温度37℃、机床温度10℃、打印速度6mm/s、挤出速度7mm/s、回抽(S.K)0.25mm、抬高(H.P)0.2mm、尺寸10*10/15*15mm、线间距1.2mm、层高0.2mm、支架高度0.8mm的条件下,打印时间持续5min,获得海藻酸钠(SA)、聚乙烯醇(PVA)和壳聚糖季铵盐(HACC)复合3D打印水凝胶支架,使用4wt%氯化钙溶液化学交联之后,将支架于-20℃下冷冻12h,-4℃解冻12h,进行循环冻融物理交联。
丝素纳米纤维溶液的制备:将丝素蛋白溶液在 60℃ 下缓慢浓缩24h,得到浓度为20 wt%的较为均一的丝素纳米粒溶液。稀释至0.5wt%,在60℃烘箱中密封培养24h,制备出直径为15~50nm、长度 1~2μm 的丝素纳米纤维。
将3.6g聚己内酯(PCL)溶解于14ml的二氯甲烷(DCM)和 6ml的N-N-二甲基甲酰胺(DMF)共混液中,静电纺丝法制得上层膜;将1.2g聚乙烯醇(PVA)、1g海藻酸钠(SA)、0.2g壳聚糖季铵盐(HACC)粉末溶于20ml去离子子水中混合均匀,3D打印法制得水凝胶底层支架。蘸取0.5ml~1ml浓度为0.5wt%~2wt%丝素纳米纤维溶液,将二者粘合。制得促进伤口修复的双层不对称敷料。测得静电纺丝膜的纤维平均直径为170nm~220nm,水接触角为121°~127°,拉伸模量为1.8 MPa ~2.2 MPa,1d、3d、5d的细胞存活率分别为91%、97.6%、95.6%。而水凝胶层的网格孔直径为800μm ~900μm,可打印性Pr值为1.02,溶胀率达到1200%~1280%,拉伸模量为0.81 MPa ~0.84 MPa,压缩模量为0.52 MPa ~0.54 MPa,1d、3d、5d的细胞存活率分别为89%、96.68%、102.6%,抑菌环直径为15.67mm~16.43mm。
实施例2
静电纺丝纳米纤维膜、3D打印水凝胶支架、丝素纳米纤维溶液的制备同实例1。
将3.6g聚乳酸(PLA)溶解于14ml的二氯甲烷(DCM)和 6ml的N-N-二甲基甲酰胺(DMF)共混液中,静电纺丝法制得上层膜;将1.2g聚乙烯醇(PVA)、1g海藻酸钠(SA)、0.2g壳聚糖季铵盐(HACC)粉末溶于20ml去离子子水中混合均匀,3D打印法制得水凝胶底层支架。蘸取0.5ml~1ml浓度为0.5wt%~2wt%丝素纳米纤维溶液,将二者粘合。制得促进伤口修复的双层不对称敷料。测得静电纺丝膜的纤维平均直径为1000nm~1300nm,水接触角为115°~118°,拉伸模量为1.8 MPa ~2.2 MPa,1d、3d、5d的细胞存活率分别为87.5%、83.9%、84.5%。而水凝胶层的网格孔直径为800μm ~900μm,可打印性Pr值为0.92,溶胀率达到1200%~1280%,拉伸模量为0.81 MPa ~0.84 MPa,压缩模量为0.52 MPa ~0.54 MPa,1d、3d、5d的细胞存活率分别为89%、96.68%、102.6%,抑菌环直径为15.67mm~16.43mm。
实施例3
静电纺丝纳米纤维膜、3D打印水凝胶支架、丝素纳米纤维溶液的制备同实例1。
将2.4g聚己内酯(PCL)和1.2g聚乳酸(PLA)溶解于14ml的二氯甲烷(DCM)和 6ml的N-N-二甲基甲酰胺(DMF)共混液中,静电纺丝法制得上层膜;将1g海藻酸钠(SA)、0.2g壳聚糖季铵盐(HACC)粉末溶于20ml去离子子水中混合均匀,3D打印法制得水凝胶底层支架。蘸取0.5ml~1ml浓度为0.5wt%~2wt%丝素纳米纤维溶液,将二者粘合。制得促进伤口修复的双层不对称敷料。测得静电纺丝膜的纤维平均直径为700nm~800nm,水接触角为118°~120°,拉伸模量为19.11 MPa ~20.41 MPa,1d、3d、5d的细胞存活率分别为98.7%、99.8%、98.9%。而水凝胶层的网格孔直径为100μm ~200μm,可打印性Pr值为0.75,溶胀率达到1875%~1880%,拉伸模量为1.24 MPa ~1.39 MPa,压缩模量为0.39 MPa ~0.41 MPa,1d、3d、5d的细胞存活率分别为53.8%、50.5%、70.5%,抑菌环直径为15.67mm~16.43mm。
实施例4
静电纺丝纳米纤维膜、3D打印水凝胶支架、丝素纳米纤维溶液的制备同实例1。
将2.4g聚己内酯(PCL)和1.2g聚乳酸(PLA)溶解于14ml的二氯甲烷(DCM)和 6ml的N-N-二甲基甲酰胺(DMF)共混液中,静电纺丝法制得上层膜;将0.4g聚乙烯醇(PVA)、1g海藻酸钠(SA)、0.2g壳聚糖季铵盐(HACC)粉末溶于20ml去离子子水中混合均匀,3D打印法制得水凝胶底层支架。蘸取0.5ml~1ml浓度为0.5wt%~2wt%丝素纳米纤维溶液,将二者粘合。制得促进伤口修复的双层不对称敷料。测得静电纺丝膜的纤维平均直径为700nm~800nm,水接触角为118°~120°,拉伸模量为19.11 MPa ~20.41 MPa,1d、3d、5d的细胞存活率分别为98.7%、99.8%、98.9%。而水凝胶层的网格孔直径为400μm ~500μm,可打印性Pr值为0.8,溶胀率达到1600%~1700%,拉伸模量为0.97 MPa ~1.07 MPa,压缩模量为0.44 MPa ~0.46 MPa,1d、3d、5d的细胞存活率分别为57.4%、61%、85.2%,抑菌环直径为15.67mm~16.43mm。
实施例5
静电纺丝纳米纤维膜、3D打印水凝胶支架、丝素纳米纤维溶液的制备同实例1。
将2.4g聚己内酯(PCL)和1.2g聚乳酸(PLA)溶解于14ml的二氯甲烷(DCM)和 6ml的N-N-二甲基甲酰胺(DMF)共混液中,静电纺丝法制得上层膜;将0.8g聚乙烯醇(PVA)、1g海藻酸钠(SA)、0.2g壳聚糖季铵盐(HACC)粉末溶于20ml去离子子水中混合均匀,3D打印法制得水凝胶底层支架。蘸取0.5ml~1ml浓度为0.5wt%~2wt%丝素纳米纤维溶液,将二者粘合,制得促进伤口修复的双层不对称敷料。测得静电纺丝膜的纤维平均直径为700nm~800nm,水接触角为118°~120°,拉伸模量为19.11 MPa ~20.41 MPa,1d、3d、5d的细胞存活率分别为98.7%、99.8%、98.9%。而水凝胶层的网格孔直径为600μm ~700μm,可打印性Pr值为0.85,溶胀率达到1410%~1415%,拉伸模量为0.87 MPa ~0.93 MPa,压缩模量为0.48 MPa ~0.49 MPa,1d、3d、5d的细胞存活率分别为59.6%、81.1%、98.1%,抑菌环直径为15.67mm~16.43mm。
实施例6
将2.4g聚己内酯(PCL)和1.2g聚乳酸(PLA)溶解于14ml的二氯甲烷(DCM)和 6ml的N-N-二甲基甲酰胺(DMF)共混液中,静电纺丝法制得上层膜;将1.2g聚乙烯醇(PVA)、1g海藻酸钠(SA)、0.2g壳聚糖季铵盐(HACC)粉末溶于20ml去离子子水中混合均匀,3D打印法制得水凝胶底层支架。蘸取0.5ml~1ml浓度为2wt%丝素纳米纤维溶液,将二者粘合。制得促进伤口修复的双层不对称敷料。测得静电纺丝膜的纤维平均直径为700nm~800nm,水接触角为118°~120°,拉伸模量为19.11 MPa ~20.41 MPa,1d、3d、5d的细胞存活率分别为98.7%、99.8%、98.9%。而水凝胶层的网格孔直径为800μm ~900μm,可打印性Pr值为0.92,溶胀率达到1237%~1280%,拉伸模量为0.81 MPa ~0.84 MPa,压缩模量为0.52 MPa ~0.54 MPa,1d、3d、5d的细胞存活率分别为89%、96.68%、102.6%,抑菌环直径为15.67mm~16.43mm。
以上方法制得的伤口修复的双层不对称敷料简单易得,并满足皮肤力学性能、具有良好的抑菌性能及生物相容性能,最符合临床手术要求。
Claims (4)
1.促进皮肤伤口修复的双层不对称敷料,由静电纺丝纳米纤维膜和3D打印水凝胶通过丝素纳米纤维溶液粘合而成,所述静电纺丝纳米纤维膜原料是8wt%~12wt%聚己内酯和2wt%~6wt%聚乳酸混合液,3D打印水凝胶采用5wt%海藻酸钠、2wt%~8wt%聚乙烯醇和1wt%壳聚糖季铵盐制备;其特征是它的制备方法包括下述步骤:
(1)将质量比为2:1的聚己内酯和聚乳酸颗粒溶于体积比为7:3的二氯甲烷与N-N-二甲基甲酰胺中,常温下磁力搅拌24h,磁力搅拌转速为1000r/min,获得微粘稠的淡黄色初态纺丝液;
(2)将初态纺丝液置于磁力超声波清洗机中超声20min,除去纺丝液中气泡,制得静电纺丝液;
(3)将静电纺丝液置于20ml的注射器中,用转接头连接聚四氟乙烯软管以及纺丝针头,在环境温度为25℃、湿度25%、纺丝电压24KV、滚筒转速300r/min、纺丝挤出速度为0.003mm/s的条件下,纺丝时间持续6h,获得聚己内酯/聚乳酸复合静电纺丝纳米纤维膜;
(4)将3D打印水凝胶置于5ml的注射器中,连接打印针头,在环境温度为25℃、湿度40%、针头温度37℃、机床温度10℃、打印速度6mm/s、挤出速度7mm/s、回抽0.25mm、抬高0.2mm、尺寸10*10/15*15mm、线间距1.2mm、层高0.2mm、支架高度0.8mm的条件下,打印时间持续5min,获得3D打印水凝胶支架;
(5) 将静电纺丝纳米纤维膜与3D打印水凝胶支架,用0.5ml~1ml浓度为0.5wt%~2wt%丝素纳米纤维溶液进行粘合,最终获得双层不对称敷料;
所述丝素纳米纤维溶液的制备步骤是:
(Ⅰ)称取8g~10g蚕丝,经0.5 wt%Na2CO3脱胶处理三次,每次30 min,除去丝胶后放置到60 ℃烘箱中烘干,获得丝素蛋白;
(Ⅱ)将丝素蛋白放入配制好的溴化锂溶液中,水浴搅拌4h,直至丝素蛋白全部溶解;
(Ⅲ)将溶解得到的溶液倒进透析袋,用自来水透析一天,去离子水透析两天后进行离心,得到的上清液即丝素蛋白溶液;
(Ⅳ)取丝素蛋白溶液于烧杯中,烧杯用锡纸封口,在锡纸表面扎眼并将烧杯放入60 ℃的烘箱中进行浓缩,当浓度为12 wt%时放到通风橱中进行浓缩,使浓度缓慢浓缩到20 wt%;用去离子水稀释为浓度为0.5 wt%后倒入蓝口瓶中放到60 ℃烘箱中培养24h制备得到直径为15~50nm、长度是 1~2μm 的丝素纳米纤维溶液。
2.根据权利要求1所述的促进皮肤伤口修复的双层不对称敷料,其特征是所述静电纺丝纳米纤维膜的纤维直径为900nm,成膜后为多孔结构,孔隙率为85%。
3.根据权利要求1所述的促进皮肤伤口修复的双层不对称敷料,其特征是所述3D打印水凝胶的制备步骤是:
(1) 将1.2g聚乙烯醇倒入烧杯,加入20ml去离子水,盖上保鲜膜,置于温度为92℃、转速为1000r/min的磁力搅拌锅中,持续搅拌2h;
(2)待聚乙烯醇溶液自然冷却至45℃,加入0.2g壳聚糖季铵盐粉末,在45℃条件下磁力搅拌30min;
(3) 调节磁力搅拌锅温度至45℃以及转速1500r/min,将1g海藻酸钠缓慢加入溶解好的溶液中,持续搅拌2h,制得3D打印水凝胶。
4.根据权利要求1所述的促进皮肤伤口修复的双层不对称敷料,其特征是所述3D打印水凝胶的制备步骤是:
(1)称取质量比为5:6:1的海藻酸钠、聚乙烯醇和壳聚糖季铵盐粉末备用;
(2)将聚乙烯醇在92℃下、转速为1000r/min的磁力搅拌锅中,持续搅拌2h;
(3)然后降温至45℃,同时加入壳聚糖季铵盐和海藻酸钠,再继续搅拌2h,制得3D打印水凝胶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111286207.6A CN114028603B (zh) | 2021-11-02 | 2021-11-02 | 促进皮肤伤口修复的双层不对称敷料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111286207.6A CN114028603B (zh) | 2021-11-02 | 2021-11-02 | 促进皮肤伤口修复的双层不对称敷料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114028603A CN114028603A (zh) | 2022-02-11 |
CN114028603B true CN114028603B (zh) | 2022-11-25 |
Family
ID=80135942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111286207.6A Active CN114028603B (zh) | 2021-11-02 | 2021-11-02 | 促进皮肤伤口修复的双层不对称敷料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114028603B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114736398B (zh) * | 2022-05-17 | 2024-02-06 | 西安建筑科技大学 | 一种铜纳米粒子-丁香油双层抑菌水凝胶及其制备方法 |
CN115105622B (zh) * | 2022-07-08 | 2023-12-12 | 重庆科技学院 | 多功能创伤敷料及其制备方法与应用 |
CN115192763B (zh) * | 2022-07-08 | 2023-12-12 | 重庆科技学院 | 多功能调温创面敷料及其制备方法与应用 |
CN115569230B (zh) * | 2022-09-14 | 2023-11-21 | 东华大学 | 一种高保湿且快速自愈合的双层纳米纤维复合水凝胶敷料 |
CN115737936B (zh) * | 2022-11-23 | 2024-06-18 | 中国科学院深圳先进技术研究院 | 人工皮肤支架、生物打印方法及人工皮肤的培养方法 |
CN115887733B (zh) * | 2022-11-28 | 2024-02-27 | 天津中医药大学 | 一种3d打印载银抗菌中药敷料及其制备方法 |
CN116212089A (zh) * | 2023-02-13 | 2023-06-06 | 山东万容生物科技有限公司 | 一种含高分子吸水树脂的医用敷料及其制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7309498B2 (en) * | 2001-10-10 | 2007-12-18 | Belenkaya Bronislava G | Biodegradable absorbents and methods of preparation |
CN102493126A (zh) * | 2011-11-04 | 2012-06-13 | 无锡中科光远生物材料有限公司 | 一种含纳米银的复合纤维材料及其制备方法 |
CN106400314A (zh) * | 2016-09-10 | 2017-02-15 | 华南理工大学 | 一种结构仿生皮肤细胞外基质的复合纳米纤维膜及其制备方法与应用 |
CN110025828B (zh) * | 2019-04-16 | 2021-07-30 | 苏州科技城医院 | 一种功能丝素蛋白多孔材料或功能丝素蛋白膜及其制备方法 |
CN110694102A (zh) * | 2019-11-13 | 2020-01-17 | 中国矿业大学 | 一种具有长效抗菌作用的3d打印水凝胶伤口敷料 |
CN112675360B (zh) * | 2020-12-11 | 2022-03-04 | 中山大学 | 一种负载hADSCs双层皮肤仿生水凝胶复合支架的制备和应用 |
CN112569399B (zh) * | 2020-12-11 | 2022-02-01 | 中山大学 | 一种双层皮肤结构水凝胶复合支架的光交联/静电纺丝制备和应用 |
CN113144273B (zh) * | 2021-03-30 | 2022-08-26 | 嘉兴学院 | 一种驱动响应复合材料及其制备方法和应用 |
CN113209373A (zh) * | 2021-04-16 | 2021-08-06 | 华南理工大学 | 一种皮肤组织修复支架及其制备方法与应用 |
-
2021
- 2021-11-02 CN CN202111286207.6A patent/CN114028603B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114028603A (zh) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114028603B (zh) | 促进皮肤伤口修复的双层不对称敷料及其制备方法 | |
CN107693835B (zh) | 一种聚乙烯醇/胶原蛋白/季铵化壳聚糖静电纺丝复合纤维膜及其制备方法 | |
Liu et al. | Recent development of electrospun wound dressing | |
CN104491914B (zh) | 一种多孔复合凝胶-纳米纤维透氧敷料及其制备方法 | |
KR101130879B1 (ko) | 부직포 섬유 집합체 | |
CN106390177B (zh) | 一种壳聚糖基多层纳米纤维膜敷料及其制备方法和应用 | |
CN111588900B (zh) | 皮肤敷料用防水透气高弹自修复双层纳米纤维膜及其制法 | |
CN110772661A (zh) | 一种无毒环保溶剂型双层纳米纤维皮肤敷料及其制备方法 | |
JP4821004B2 (ja) | キトサン/セリシン複合体ナノファイバー及びその人工皮膚への利用 | |
Chen et al. | Three-dimensional layered nanofiber sponge with in situ grown silver-metal organic framework for enhancing wound healing | |
CN109731121B (zh) | 一种含有介孔二氧化硅的纤维素和壳聚糖复合敷料的制备方法 | |
WO2012091636A2 (ru) | Биополимерное волокно, состав формовочного раствора для его получения, способ приготовления формовочного раствора, полотно биомедицинского назначения, способ его модификации, биологическая повязка и способ лечения ран | |
Palanisamy et al. | A critical review on starch-based electrospun nanofibrous scaffolds for wound healing application | |
CN115154642B (zh) | 一种仿生非对称海绵敷料及其制备方法 | |
Kuddushi et al. | Recent advances in novel materials and techniques for developing transparent wound dressings | |
CN104906623A (zh) | 一种纤维素基敷料及其制备方法和应用 | |
Ma et al. | Fabrication of bioactive glass-introduced nanofibrous membranes with multifunctions for potential wound dressing | |
CN114949325A (zh) | 一种用于伤口敷料的复合纳米纤维膜的制备方法及复合纳米纤维膜 | |
CN101927028A (zh) | 壳聚糖/缩醛化聚乙烯醇医用敷料的制备方法 | |
Liu et al. | Fabrication of a bionic asymmetric wettable Cu-doped chitosan-laponite-PCL wound dressing with rapid healing and antibacterial effect | |
CN108635619B (zh) | 一种多功能纳米纤维复合凝胶敷料的制备方法 | |
Sadeghianmaryan et al. | Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding–A review | |
CN115845114B (zh) | 一种纳米纤维医用伤口敷料及其制备方法 | |
CN117065075A (zh) | 一种纳米纤维抗菌敷料及其制备方法 | |
CN115887747B (zh) | 一种含有纳米孔隙柔性膜的液体创口保护材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |