CN114014663A - 一种碲硒砷镉化合物、靶材及其制备方法 - Google Patents

一种碲硒砷镉化合物、靶材及其制备方法 Download PDF

Info

Publication number
CN114014663A
CN114014663A CN202111429740.3A CN202111429740A CN114014663A CN 114014663 A CN114014663 A CN 114014663A CN 202111429740 A CN202111429740 A CN 202111429740A CN 114014663 A CN114014663 A CN 114014663A
Authority
CN
China
Prior art keywords
cadmium
selenium
particles
tellurium
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111429740.3A
Other languages
English (en)
Other versions
CN114014663B (zh
Inventor
李青霄
张心会
徐开东
王继娜
李志新
王朝勇
徐龙云
包云
杨欢
丁凌凌
李文静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Urban Construction
Original Assignee
Henan University of Urban Construction
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Urban Construction filed Critical Henan University of Urban Construction
Priority to CN202111429740.3A priority Critical patent/CN114014663B/zh
Publication of CN114014663A publication Critical patent/CN114014663A/zh
Priority to ZA2022/07617A priority patent/ZA202207617B/en
Application granted granted Critical
Publication of CN114014663B publication Critical patent/CN114014663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种碲硒砷镉化合物/靶材及制备方法,由摩尔比为(60‑90):(0.999‑39.99):(0.001~0.01)的碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒研磨成粉、混匀,将混匀的物料装入石墨坩埚中,或者将混匀的物料放入模具中室温压片成靶材坯,压片成形的靶材坯装入石墨治具内,石墨治具放入真空烧结炉内,在真空烧结炉内压实,真空状态加热烧结,自然降温至室温,打开真空烧结炉即得到碲硒砷镉化合物/靶材。上述制备方法能够适应市场规模化生产需求,工序简单、环境友好。制备出的碲硒砷镉化合物结晶度好,制备出的碲硒砷镉靶材相对密度高于90%(晶粒尺寸小于300nm)。

Description

一种碲硒砷镉化合物、靶材及其制备方法
技术领域
本发明属于半导体材料领域,具体涉及一种碲硒砷镉化合物、靶材及其制备方法。
背景技术
Ⅱ-Ⅵ族化合物半导体材料在微电子、红外调制、红外探测器和太阳电池等方面有着广泛的应用。其中,由Ⅱ-Ⅵ族元素碲与镉组成的二元化合物碲化镉(CdTe)带隙值为1.5eV,与太阳可见光谱匹配,处于理想的太阳电池带隙范围,有很好的光电转换效率,成为薄膜太阳电池研究热点。
随着对Ⅱ-Ⅵ族元素化合物半导体研究深入以及相关产业的飞速发展,人们逐渐认识到这类半导体具有自补偿效应。这种自补偿效应限制了该类化合物载流子浓度的增加,进而影响了尤其构成的器件的开路电压和填充因子的提高。为了提高载流子浓度及其少子寿命,于是人们尝试在二元化合物碲化镉(CdTe)中掺入硒元素。尽管硒元素掺杂碲化镉组成的三元化合物碲硒镉(CdSeTe)带隙略下降到1.4eV,较好地扩展了其红外响应,增加了器件的光电流密度,但是因硒掺杂引起带隙降低造成器件开路电压下降成为了新的挑战。为了解决这一问题,人们实验发现,通过在由Ⅱ-Ⅵ族元素碲、镉、硒组成的化合物中掺杂V族元素,尤其是掺杂元素砷能较好地钝化碲硒镉化合物薄膜中的缺陷,利于提高载流子浓度及少子寿命,使器件开路电压和电流密度增加。正如上述,碲化镉基多元化合物半导体在性能上有优良的表现,作为一种多元化合物薄膜太阳电池材料,具有广阔的发展前景。但是,目前有关在碲硒镉化合物薄膜中掺砷的方法是先沉积好碲硒镉化合物薄膜,然后再把该薄膜放置在砷源气氛中热扩散得到碲硒砷镉化合物薄膜,工艺过程中必须严苛控制砷源温度、工艺气压,工艺过程复杂且对设备要求苛刻,砷和硒的化学计量比难以控制,重金属砷、镉泄露风险也比较高。若采用碲硒砷镉化合物或靶材为原料制备碲硒砷镉化合物薄膜,上述问题迎刃而解,因此,开展碲硒砷镉化合物、靶材制备方法的研究是必要的。目前国内外关于碲硒砷镉化合物、靶材制备的方法还未见报道。
发明内容
为解决上述问题,本发明提供一种碲硒砷镉化合物、靶材及其制备方法,利用此方法合成的碲硒砷镉化合物或制备的靶材,通过热蒸发或溅射等技术可以在真空镀膜设备内一步完成预期化学计量比的碲硒砷镉薄膜制备,实现简化工艺、降低设备成本,有利于多元化合物碲硒砷镉薄膜材料的发展。
为解决上述技术问题,本发明采用的技术方案如下:一种碲硒砷镉化合物的制备方法,包括以下步骤:
1)将碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒混合均匀,置于研磨机内研磨成粉末,碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒三者的摩尔比为(60-90): (0.999-39.99): (0.001~0.01);
2)将上述研磨好的混合物料装入石墨坩埚内,将石墨坩埚放入带有液压装置的真空烧结炉内,液压装置将坩埚内的混合物料压实,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,最后对石墨坩埚密封,并充保护气体使真空烧结炉内气压在0.1-100Torr之间;
3)对密封好的石墨坩埚进行加热,升温速率为1~5℃/min,加热至700~900℃,保温30~60min,保温结束后,停止加热,自然降温至室温,即得碲硒砷镉化合物。
步骤1)中碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒的纯度均为5N级以上;所述研磨机为行星研磨机。
步骤1)中碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒研磨成粉末,研磨时间4-6h,粉末粒径为不大于200微米。
步骤2)中将石墨坩埚放入带有液压装置的真空烧结炉内,抽真空与充保护气循环,循环过程中真空烧结炉内气压始终低于大气压;所述保护气为氩氢混合气。
一种碲硒砷镉化合物,由上述任一制备方法制得。
一种碲硒砷镉靶材的制备方法,包括以下步骤:
1)将碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒混合,置于研磨机内研磨成粉末,碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒三者的摩尔比为(60-90): (0.999-39.99): (0.001~0.01);
2)将上述混合均匀的物料放入模具中室温压片成靶材坯,压片成形的靶材坯装入石墨治具内,将石墨治具放入带有液压装置的真空烧结炉内,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,最后对石墨治具密封,使用真空烧结炉自带的液压装置对石墨治具内的靶材坯加压保持为50MPa-80Mpa,并充保护气体使真空烧结炉内气压在0.1-100Torr之间;
3)对密封好的石墨治具进行加热,升温速率为1~3℃/min,加热至800~900℃,保温1~2h,保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉靶材。
步骤1)中碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒的纯度均为5N级以上;所述研磨机为行星研磨机。
步骤2)中压片成靶材坯时的压强为50MPa-80Mpa,靶材坯为厚度6mm-10mm的平面圆形或平面长方形。
步骤2)中将石墨治具放入带有液压装置的真空烧结炉内,抽真空与充保护气循环,循环过程中真空烧结炉内气压始终低于大气压。
一种碲硒砷镉靶材,由以上任一所述制备方法制得。
本发明的有益效果是:通过配制预设摩尔比例的碲化镉、碲硒镉和砷化镉,并经研磨后根据需要压实或压片经真空炉烧结并保温保压一定时间,得到碲硒砷镉化合物或致密碲硒砷镉靶材。上述制备方法能够适应市场规模化生产需求,工序简单、环境友好。制备出的碲硒砷镉化合物结晶度好,制备出的碲硒砷镉靶材相对密度高于90%(晶粒尺寸小于300nm)。
附图说明
图1为碲硒砷镉化合物X射线衍射谱。
图2为碲硒砷镉靶材扫描电镜图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的其他所有实施方式,都属于本发明保护的范围。因此,以下对本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
本发明提出一种碲硒砷镉化合物的制备方法,包括如下步骤:
1)将碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒混合,放置在研磨机内研磨4-8小时,碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒三者的摩尔比为(60-90): (9.999-39.99): (0.001~0.01),碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒的纯度均为5N级以上,研磨机为行星研磨机;
2)将上述研磨好的物料装入石墨坩埚内,再将石墨坩埚放入真空烧结炉内,使用真空烧结炉自带的液压装置将坩埚内的物料压实,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,该抽真空与充保护气完成若干次循环,以尽可能减少真空烧炉内杂质气体(比如氧)等存在,其中,该循环过程中炉内气压始终低于大气压,最后对石墨坩埚密封,并充保护气体使真空烧结炉内气压在0.1-100Torr之间;
3)对密封好的石墨坩埚进行加热,升温速率为1~5℃/min,加热至700~900℃,保温30~60min,保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉化合物块体;
4)将碲硒砷镉块体根据不同客户的需求用进行破碎筛选得到不同粒径的碲硒砷镉化合物产品
研磨机可以选用行星研磨机,其他种类的研磨机也可以用,优选行星研磨机;碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒纯度均优选5N级以上;碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒在研磨机中的研磨时间4-6h,粉末粒径为不大于200微米,保证颗粒均匀。
一种碲硒砷镉靶材的制备方法,该方法包括如下步骤:
1)将一定量碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒混合,放置在研磨机内研磨24-28小时研磨成粉末混合均匀;碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒三者的摩尔比例为:(60-90): (0.999-39.99): (0.001~0.01);
2)将上述混合均匀的一定量的物料放入模具中室温压片成平面圆形或平面长方形,压片成形压强为45MPa-60Mpa,压片厚度为6mm-10mm;压片成形的靶材坯装入石墨治具内,再将石墨治具放入带有液压装置的真空烧结炉内,抽真空至10-9Torr;然后向真空烧结炉内充保护气体,该抽空与充保护气完成若干次循环,以尽可能减少真空烧炉内杂质气体(比如氧)等存在,其中,该循环过程中炉内气压始终低于大气压;最后对石墨治具密封,使用真空烧结炉自带的液压装置对石墨治具内的的靶材坯加压保持为45MPa-60Mpa,并充保护气体使真空烧结炉内气压在0.1-100Torr之间;
3)对密封好的石墨治具进行加热,升温速率为1~3℃/min,加热至800~900℃,保温1~2h;保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉靶材。
研磨机可以选用行星研磨机,其他种类的研磨机也可以用,优选行星研磨机;碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒纯度均优选5N级以上;碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒在研磨机中的研磨时间24-28h,保证碲化镉、碲硒镉和砷化镉混合均匀,研磨后的颗粒粒度均匀,确保靶材晶粒成形更好。
本发明公开的上述碲硒砷镉化合物及靶材的制备方法,能够规模化生产,适应市场规模化生产需求。
实施例1
碲硒砷镉化合物的制备方法:将5N级以上的碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒按摩尔比为60: 39.99: 0.01进行配比。将上述混合物料放入行星球磨机研磨4h,将上述混合均匀的物料装入一石墨坩埚内,再将石墨坩埚放入一真空烧结炉内,使用真空烧结炉自带的液压装置使物料在坩埚内被压实,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,该抽空与充保护气完成若干次循环,以尽可能减少真空烧炉内杂质气体(比如氧)等存在,其中,该循环过程中炉内气压始终低于大气压,所述保护气为氩氢混合气;最后对石墨坩埚密封,并充保护气体使真空烧结炉内气压在10Torr之间;对密封好的石墨坩埚进行加热,升温速率为1~5℃/min,加热至800℃,保温60min,保温时温度会有几度的上下浮动,属于正常范围;保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉化合物块体。将碲硒砷镉块体根据不同客户的需求进行破碎筛选,得到不同粒径的碲硒砷镉化合物产品
碲硒砷镉靶材的制备:将5N级以上的碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒按摩尔比为60: 39.99: 0.01进行配比,将上述混合物料放入行星球磨机研磨28h。将上述混合均匀的一定量的物料放入模具中室温压片成平面圆形,压片成形压强为50MPa,压片厚度为8mm;压片成形的靶材坯装入石墨治具内,再将石墨治具放入带有液压装置的真空烧结炉内,抽真空至10-9Torr;然后向真空烧结炉内充保护气体,该抽空与充保护气完成若干次循环,以尽可能减少真空烧炉内杂质气体(比如氧)等存在,其中,该循环过程中炉内气压始终低于大气压;最后对石墨治具密封,使用真空烧结炉自带的液压装置对石墨治具内的的靶材坯加压保持为50MPa,并充保护气体使真空烧结炉内气压在10Torr之间;对密封好的石墨治具进行加热,升温速率为1~3℃/min,加热至800℃,保温1h;保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉靶材。
由实施例1制备的碲硒砷镉化合物X射线衍射谱见图1,从图1可以看出碲硒砷镉化合物结晶度高。由实施例1制备的碲硒砷镉靶材扫描电镜图见图2,从图2可以看出碲硒砷镉靶材致密,晶粒尺寸小于300nm,分布均匀。
实施例2
将5N级以上的碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒按摩尔比为90: 9.999:0.001进行配比。将上述混合物料放入行星球磨机研磨8h。将上述混合均匀的物料装入一石墨坩埚内,再将石墨坩埚放入一真空烧结炉内,使用真空烧结炉自带的液压装置使物料在坩埚内被压实,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,该抽空与充保护气完成若干次循环,以尽可能减少真空烧炉内杂质气体(比如氧)等存在,其中,该循环过程中炉内气压始终低于大气压;最后对石墨坩埚密封,并充保护气体使真空烧结炉内气压在,1Torr之间;对密封好的石墨坩埚进行加热,升温速率为1~5℃/min,加热至700℃,保温40min;保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉化合物块体。将碲硒砷镉块体根据不同客户的需求用进行破碎筛选得到不同粒径的碲硒砷镉化合物产品
采用上述配方制备碲硒砷镉靶材时,将混合物料放入行星球磨机研磨24h,将混合均匀的物料放入模具中室温压片成平面长方形,压片成形的压强为60Mpa,压片厚度为6mm;压片成形的靶材坯装入石墨治具内,再将石墨治具放入带有液压装置的真空烧结炉内,抽真空至10-9Torr,然后向真空烧结炉内充保护气体;最后对石墨治具密封,使用真空烧结炉自带的液压装置对石墨治具内的的靶材坯加压保持为60Mpa,并充保护气体使真空烧结炉内气压在1Torr之间;对密封好的石墨治具进行加热,升温速率为1~3℃/min,加热至900℃,保温1.5h;保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉靶材。
实施例3-20
碲硒砷镉化合物的制备:原料碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒摩尔比,研磨时间、加热温度及保温时间等工艺变量均见表1,其余制备步骤同实施例1中碲硒砷镉化合物的制备方法;碲硒砷镉靶材的制备原料与上述碲硒砷镉化合物制备原料相同,研磨时间、压片压力、靶材坯加压压力、真空烧结炉内气压等工艺变量均见表2,其余制备步骤同实施例中碲硒砷镉靶材的制备方法。
表1
Figure DEST_PATH_IMAGE002
表2
Figure DEST_PATH_IMAGE004

Claims (10)

1.一种碲硒砷镉化合物的制备方法,其特征在于,包括以下步骤:
1)将碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒混合均匀,置于研磨机内研磨成粉末,碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒三者的摩尔比为(60-90): (0.999-39.99): (0.001~0.01);
2)将上述研磨好的混合物料装入石墨坩埚内,将石墨坩埚放入带有液压装置的真空烧结炉内,液压装置将坩埚内的混合物料压实,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,最后对石墨坩埚密封,并充保护气体使真空烧结炉内气压在0.1-100Torr之间;
3)对密封好的石墨坩埚进行加热,升温速率为1~5℃/min,加热至700~900℃,保温30~60min,保温结束后,停止加热,自然降温至室温,即得碲硒砷镉化合物。
2.根据权利要求1所述碲硒砷镉化合物的制备方法,其特征在于,步骤1)中碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒的纯度均为5N级以上;所述研磨机为行星研磨机。
3.根据权利要求1所述碲硒砷镉化合物的制备方法,其特征在于,步骤1)中碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒研磨成粉末,研磨时间4-6h,粉末粒径为不大于200微米。
4.根据权利要求1所述碲硒砷镉化合物的制备方法,其特征在于,步骤2)中将石墨坩埚放入带有液压装置的真空烧结炉内,抽真空与充保护气循环,循环过程中真空烧结炉内气压始终低于大气压;所述保护气为氩氢混合气。
5.一种碲硒砷镉化合物,其特征在于,由权利要求1-4任一制备方法制得。
6.一种碲硒砷镉靶材的制备方法,其特征在于,包括以下步骤:
1)将碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒混合,置于研磨机内研磨成粉末,碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒三者的摩尔比为(60-90): (0.999-39.99): (0.001~0.01);
2)将上述混合均匀的物料放入模具中室温压片成靶材坯,压片成形的靶材坯装入石墨治具内,将石墨治具放入带有液压装置的真空烧结炉内,抽真空至10-9Torr,然后向真空烧结炉内充保护气体,最后对石墨治具密封,使用真空烧结炉自带的液压装置对石墨治具内的靶材坯加压保持为50MPa-80Mpa,并充保护气体使真空烧结炉内气压在0.1-100Torr之间;
3)对密封好的石墨治具进行加热,升温速率为1~3℃/min,加热至800~900℃,保温1~2h,保温结束后,停止加热,自然降温至室温,打开真空烧结炉得到碲硒砷镉靶材。
7.根据权利要求6所述碲硒砷镉靶材的制备方法,其特征在于,步骤1)中碲化镉颗粒、碲硒镉颗粒和砷化镉颗粒的纯度均为5N级以上;所述研磨机为行星研磨机。
8.根据权利要求6所述碲硒砷镉靶材的制备方法,其特征在于,步骤2)中压片成靶材坯时的压强为50MPa-80Mpa,靶材坯为厚度6mm-10mm的平面圆形或平面长方形。
9.根据权利要求6所述碲硒砷镉靶材的制备方法,其特征在于,步骤2)中将石墨治具放入带有液压装置的真空烧结炉内,抽真空与充保护气循环,循环过程中真空烧结炉内气压始终低于大气压。
10.一种碲硒砷镉靶材,其特征在于,由权利要求6-9任一所述制备方法制得。
CN202111429740.3A 2021-11-29 2021-11-29 一种碲硒砷镉化合物、靶材及其制备方法 Active CN114014663B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111429740.3A CN114014663B (zh) 2021-11-29 2021-11-29 一种碲硒砷镉化合物、靶材及其制备方法
ZA2022/07617A ZA202207617B (en) 2021-11-29 2022-07-11 Cadmium arsenide selenide telluride compound or target material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111429740.3A CN114014663B (zh) 2021-11-29 2021-11-29 一种碲硒砷镉化合物、靶材及其制备方法

Publications (2)

Publication Number Publication Date
CN114014663A true CN114014663A (zh) 2022-02-08
CN114014663B CN114014663B (zh) 2023-01-31

Family

ID=80066920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111429740.3A Active CN114014663B (zh) 2021-11-29 2021-11-29 一种碲硒砷镉化合物、靶材及其制备方法

Country Status (2)

Country Link
CN (1) CN114014663B (zh)
ZA (1) ZA202207617B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1015559A (en) * 1963-05-28 1966-01-05 Ibm Improvements in or relating to ultrasonic signal-delay apparatus
CA884036A (en) * 1971-10-19 J. Page Derrick Thin film high voltage switch
SE7507198L (sv) * 1974-06-21 1975-12-22 Comp Generale Electricite Optisk anordning.
JPS55113802A (en) * 1979-02-24 1980-09-02 Sumitomo Electric Ind Ltd Production of high-purity sintered body by hot hydrostatic press
JP2004203721A (ja) * 2002-12-24 2004-07-22 Hiramitsu Taniguchi 単結晶成長装置および成長方法
KR20060118161A (ko) * 2005-05-16 2006-11-23 삼성전기주식회사 혼합 나노 입자 및 이를 이용한 전자소자
CN101130692A (zh) * 2007-09-27 2008-02-27 上海交通大学 三元量子点CdSeTe的制备方法
CN108394873A (zh) * 2018-02-27 2018-08-14 清远先导材料有限公司 封管合成碲硒镉的方法
CN109371371A (zh) * 2018-12-10 2019-02-22 有研工程技术研究院有限公司 一种硒砷锗多元合金溅射靶材的制备方法
CN111739959A (zh) * 2020-06-05 2020-10-02 中国建材国际工程集团有限公司 一种高效碲化镉薄膜太阳能电池及其制备方法
CN112125286A (zh) * 2020-09-18 2020-12-25 先导薄膜材料(广东)有限公司 掺砷或其化合物的硒化镉及其制备方法、薄膜太阳能电池及其制备方法
CN113023688A (zh) * 2021-04-23 2021-06-25 先导薄膜材料(广东)有限公司 一种掺砷碲化镉的制备方法
CN113336549A (zh) * 2021-06-15 2021-09-03 先导薄膜材料(广东)有限公司 一种碲硒镉靶材及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA884036A (en) * 1971-10-19 J. Page Derrick Thin film high voltage switch
GB1015559A (en) * 1963-05-28 1966-01-05 Ibm Improvements in or relating to ultrasonic signal-delay apparatus
SE7507198L (sv) * 1974-06-21 1975-12-22 Comp Generale Electricite Optisk anordning.
JPS55113802A (en) * 1979-02-24 1980-09-02 Sumitomo Electric Ind Ltd Production of high-purity sintered body by hot hydrostatic press
JP2004203721A (ja) * 2002-12-24 2004-07-22 Hiramitsu Taniguchi 単結晶成長装置および成長方法
KR20060118161A (ko) * 2005-05-16 2006-11-23 삼성전기주식회사 혼합 나노 입자 및 이를 이용한 전자소자
CN101130692A (zh) * 2007-09-27 2008-02-27 上海交通大学 三元量子点CdSeTe的制备方法
CN108394873A (zh) * 2018-02-27 2018-08-14 清远先导材料有限公司 封管合成碲硒镉的方法
CN109371371A (zh) * 2018-12-10 2019-02-22 有研工程技术研究院有限公司 一种硒砷锗多元合金溅射靶材的制备方法
CN111739959A (zh) * 2020-06-05 2020-10-02 中国建材国际工程集团有限公司 一种高效碲化镉薄膜太阳能电池及其制备方法
CN112125286A (zh) * 2020-09-18 2020-12-25 先导薄膜材料(广东)有限公司 掺砷或其化合物的硒化镉及其制备方法、薄膜太阳能电池及其制备方法
CN113023688A (zh) * 2021-04-23 2021-06-25 先导薄膜材料(广东)有限公司 一种掺砷碲化镉的制备方法
CN113336549A (zh) * 2021-06-15 2021-09-03 先导薄膜材料(广东)有限公司 一种碲硒镉靶材及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
林青: "铅锌矿石和精矿的现代处理方法", 《有色金属(冶炼部分)》 *
胡思超: "论原子荧光光谱仪对饮用水的检测", 《环境与发展》 *

Also Published As

Publication number Publication date
ZA202207617B (en) 2022-10-26
CN114014663B (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US20190311889A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
US4940604A (en) Method for production of copper indium diselenide
Caballero et al. CuIn1− xGaxSe2‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers
CN101333645B (zh) 一种制备铜铟硒溅射靶材的工艺
CA2599412A1 (en) Photovoltaic cell containing a semiconductor photovoltaically active material
WO2003052837A1 (en) Semiconductor device with higher oxygen (o2) concentration within window layers and method for making
CN113336549B (zh) 一种碲硒镉靶材及其制备方法
CN104835869B (zh) 铜铟镓硒薄膜太阳能电池及其制备方法
CN108394873B (zh) 封管合成碲硒镉的方法
Chen et al. Sustainable p-type copper selenide solar material with ultra-large absorption coefficient
CN114014663B (zh) 一种碲硒砷镉化合物、靶材及其制备方法
JP7169508B2 (ja) n型BrドープSnS半導体の製造方法
CN112125286B (zh) 掺砷或其化合物的硒化镉及其制备方法、薄膜太阳能电池及其制备方法
US8480944B2 (en) Quaternary chalcogenide wafers
CN114956823B (zh) 一种导电碲化镉靶材的制备方法
CN112125285B (zh) 掺砷或其化合物的硒化镉及其制备方法、薄膜太阳能电池及其制备方法
CN114920561A (zh) 一种碲化镉掺杂靶材的制备方法
CN103626495B (zh) 一种铜铟镓硒靶材的无压烧结制备方法
CN113066922B (zh) 一种n型碲化锡热电材料及其制备方法
EP3447812B1 (en) Novel compound semiconductor and use thereof
WO2013183790A1 (ja) Cigsスパッタリングターゲットの製造方法
US5484736A (en) Process for producing large grain cadmium telluride
CN115108831B (zh) 一种碲化锌掺杂靶材及其制备方法与应用
CN114195518B (zh) 碲化锌靶材、制备方法及其薄膜太阳能电池
WO2023286691A1 (ja) 化合物半導体組成物、それを用いる薄膜、太陽電池、熱電材料、及びその製法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant