CN114920561A - 一种碲化镉掺杂靶材的制备方法 - Google Patents

一种碲化镉掺杂靶材的制备方法 Download PDF

Info

Publication number
CN114920561A
CN114920561A CN202210584840.1A CN202210584840A CN114920561A CN 114920561 A CN114920561 A CN 114920561A CN 202210584840 A CN202210584840 A CN 202210584840A CN 114920561 A CN114920561 A CN 114920561A
Authority
CN
China
Prior art keywords
powder
cadmium telluride
target material
temperature
telluride doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210584840.1A
Other languages
English (en)
Inventor
周荣艳
岑立衡
文崇斌
童培云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vital Thin Film Materials Guangdong Co Ltd
Original Assignee
Vital Thin Film Materials Guangdong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vital Thin Film Materials Guangdong Co Ltd filed Critical Vital Thin Film Materials Guangdong Co Ltd
Priority to CN202210584840.1A priority Critical patent/CN114920561A/zh
Publication of CN114920561A publication Critical patent/CN114920561A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/34Moulds, cores, or mandrels of special material, e.g. destructible materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/722Nitrogen content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于太阳能电池领域,公开了一种碲化镉掺杂靶材的制备方法,包括以下步骤:(1)将Cd粉、Te粉、CdTe粉混匀,得到混合物料;(2)将步骤(1)的混合物料装入石墨模具,置于热压炉中进行预压;(3)预压完成后,抽真空处理,至真空度<10pa开始加热升温,升温速率为5~10℃/min,加热到400~700℃后保温100~200min;(4)达到保温时间后进行加压处理;(5)加压处理后降至室温,出炉、脱模,得毛坯靶材,毛坯靶材经机床加工后得碲化镉掺杂靶材。本发明的制备方法可以改善碲化镉材料本身的缺陷,提高其光电转化率,并进一步降低了合成反应温度。

Description

一种碲化镉掺杂靶材的制备方法
技术领域
本发明属于太阳能电池领域,更具体的,涉及一种碲化镉掺杂靶材的制备方法。
背景技术
溅射镀膜是指在真空中利用荷能粒子轰击靶表面,使被轰击出的粒子沉积在基片上的技术。与传统的蒸发镀膜相比,溅射镀膜具有可镀制任何材料,特别是高熔点材料,具备膜层致密、附着牢固、镀膜过程易于控制、镀膜速率稳定等系列优点。
溅射所用的材料,称之为靶材。碲化镉(CdTe)是一种II-VI族化合物半导体材料,CdTe材料的禁带宽度为1.46eV,光谱响应与太阳光谱十分吻合,光吸收系数高达10-5cm-1,理论光电转换效率达到29%,因此,CdTe靶材是公认高效、廉洁的薄膜太阳能电池吸收材料。目前,CdTe应用于薄膜太阳能电池吸收材料的过程中,有以下问题需要得到解决:
(1)CdTe中碲和镉的相对原子序数比较大,导致CdTe靶材中经常含有本征点缺陷和杂质缺陷,形成载流子复合中心,减少非平衡载流子寿命,造成CdTe载流子浓度低,薄膜电阻率大,影响电池的电流输出;
(2)CdTe本身具有很强的自补偿效应,很难像硅等半导体一样通过掺入杂质元素来调控电学性能。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提供一种碲化镉掺杂靶材的制备方法,该方法改善了碲化镉材料本身的缺陷,提高其光电转化率,进一步降低了合成反应温度。
为实现上述目的,本发明所采用的技术方案是:
一种碲化镉掺杂靶材的制备方法,包括以下步骤:
(1)将Cd粉、Te粉、CdTe粉混匀,得到混合物料;
(2)将步骤(1)的混合物料装入石墨模具,置于热压炉中进行预压;
(3)预压完成后,抽真空处理,至真空度<10pa开始加热升温,升温速率为5~10℃/min,加热到400~700℃后保温;
(4)达到保温时间后进行加压处理;
(5)加压处理后降至室温,出炉、脱模,得毛坯靶材;毛坯靶材经机床加工后得碲化镉掺杂靶材。
作为优选方案之一,步骤(1)中,Cd粉、Te粉、CdTe粉的纯度均为5N以上;Cd粉粒径为10~100μm,Te粉粒径为150~200μm,CdTe粉粒径为150~300μm。
作为优选方案之一,步骤(1)中,Cd粉、Te粉、CdTe粉的质量比为7~8.5:3~6.5:80~90。
本发明创造性的通过碲粉与镉粉发生化合反应来降低反应体系的温度,由于碲的蒸汽压比镉的蒸汽压大,在反应过程中碲的损失相对较多,所以反应过程中需要保证碲含量过量。同时,在掺杂过程中,碲粉与镉粉掺杂量需要精确控制,若碲粉与镉粉掺杂量太少,给体系提供的热量太少,碲的蒸汽压压较大,需要在较大温度下靶材才能成型,对靶材电阻率也没有实质的改善作用;若掺杂量过多,则会导致整个体系的温度过高,碲的损失变大,对于靶材的电阻率也并没有改善作用。
作为优选方案之一,步骤(1)中,混匀的具体操作为:采用均质机进行物理翻滚运行均质,均质时间为3~8h。
作为优选方案之一,步骤(2)中,预压压力为10~30T,进一步优选为25T。
作为优选方案之一,步骤(3)中,保温时间为100~200min。
作为优选方案之一,步骤(4)中,加压压力为40~45MPa,压力的输出功率为0.2~2w,保压时间为60~120min。
作为优选方案之一,步骤(5)中,加压处理后开始降温,温度低于450℃后,停止抽真空,通N2冷却到室温;进一步优选采用自然降温方式;进一步优选,氮气可替换成其他有冷却作用的保护气体。
与现有技术相比,本发明的有益效果为:
(1)本发明的碲化镉掺杂靶材的制备方法中,创造性地采用碲化镉掺杂一定比例的游离镉及一定比例的游离碲,碲与镉反应会放出热量,给整体的反应体系提供一定的热量,使整体反应可在低温下进行,降低反应合成的温度,提高靶材的生产效率。
(2)因为碲化镉本身是不导电的,直接制备高密度的碲化镉靶材,电阻率很高,在溅射靶材时需要用到成本更高的交流电磁控溅射,本发明对碲化镉靶材掺杂改善了靶材的导电性,可选用成本更低的直流电磁控溅射,降低成本。
(3)本发明采用石墨模具,石墨模具耐高温高压,且装料会有石墨纸将物料与模具分开,易于脱模且坯体表面的石墨纸易于去除,也可减少杂质的引入。
(4)本发明的制备方法工艺简单,对设备要求较低,成本较低,制得的靶材纯度和密度均较高。
具体实施方式
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1
本实施例公开了一种碲化镉掺杂靶材的制备方法,包括以下步骤:
(1)称取Cd粉、Te粉、CdTe粉,采用均质机进行物理翻滚运行均质6h,其中,混合粉末中,Cd:8%wt、Te:6%wt、CdTe:86%wt;Cd粉、Te粉、CdTe粉的纯度均为5N;Cd粉粒径为10~100μm、Te粉粒径为150~200μm、CdTe粉粒径为150~300μm;
(2)将上述混合均质的物料装入石墨模具中,其中石墨模具的大小为163×116mm,装料为1.15kg;将装有物料的石墨模具置于热压炉中进行预压,预压压力25T;
(3)预压完成后依次开粗抽阀、机械泵、开罗茨泵对炉体抽真空,在炉体真空度<10pa开始加热;从室温加热到500℃,加热的升温速率为10℃/min,加热到500℃后保温150min;
(4)到达保温设定时间后开始加压处理,加压压力为40MPa,压力的输出功率0.5w,保压时间为80min;
(5)加压处理后开始自然降温,温度低于450℃后,依次关闭粗抽阀、罗茨泵、机械泵,最后通N2降温到室温后出炉,进行脱模处理,得到碲化镉掺杂的毛坯靶材,通过CNC加工,得到碲化镉掺杂靶材。
实施例2
本实施例公开了一种碲化镉掺杂靶材的制备方法,包括以下步骤:
(1)称取Cd粉、Te粉、CdTe粉,采用均质机进行物理翻滚运行均质6h,其中,混合粉末中,Cd:8%wt、Te:6%wt、CdTe:86%wt;Cd粉、Te粉、CdTe粉的纯度均为5N;Cd粉粒径为10~100μm、Te粉粒径为150~200μm、CdTe粉粒径为150~300μm;
(2)将上述混合均质的物料装入石墨模具中,其中石墨模具的大小为163×116mm,装料为1.15kg;将装有物料的石墨模具置于热压炉中进行预压,预压压力25T;
(3)预压完成后依次开粗抽阀、机械泵、开罗茨泵对炉体抽真空,在炉体真空度<10pa开始加热;从室温加热到520℃,加热的升温速率为10℃/min,加热到520℃后保温100min;
(4)到达保温设定时间后开始加压处理,加压压力为40MPa,压力的输出功率0.5w,保压时间为80min;
(5)加压处理后开始自然降温,温度低于450℃后,依次关闭粗抽阀、罗茨泵、机械泵,最后通N2降温到室温后出炉,进行脱模处理,得到碲化镉掺杂的毛坯靶材,通过CNC加工,得到碲化镉掺杂靶材。
实施例3
本实施例公开了一种碲化镉掺杂靶材的制备方法,包括以下步骤:
(1)称取Cd粉、Te粉、CdTe粉,采用均质机进行物理翻滚运行均质6h,其中,混合粉末中,Cd:8%wt、Te:6%wt、CdTe:86%wt;Cd粉、Te粉、CdTe粉的纯度均为5N;Cd粉粒径为10~100μm、Te粉粒径为150~200μm、CdTe粉粒径为150~300μm;
(2)将上述混合均质的物料装入石墨模具中,其中石墨模具的大小为163×116mm,装料为1.15kg;将装有物料的石墨模具置于热压炉中进行预压,预压压力25T;
(3)预压完成后依次开粗抽阀、机械泵、开罗茨泵对炉体抽真空,在炉体真空度<10pa开始加热;从室温加热到550℃,加热的升温速率为7℃/min,加热到550℃后保温100min;
(4)到达保温设定时间后开始加压处理,加压压力为40MPa,压力的输出功率0.5w,保压时间为80min;
(5)加压处理后开始自然降温,温度低于450℃后,依次关闭粗抽阀、罗茨泵、机械泵,最后通N2降温到室温后出炉,进行脱模处理,得到碲化镉掺杂的毛坯靶材,通过CNC加工,得到碲化镉掺杂靶材。
对比例1
本对比例公开了一种碲化镉靶材的制备方法,包括以下步骤:
(1)称取CdTe粉采用均质机进行物理翻滚运行均质6h,CdTe粉粒径为150~300μm,纯度为5N;
(2)将上述混合均质的物料装入石墨模具中,其中装料模具的大小为163×116mm,装料为1.15kg,将装有物料的石墨模具置于热压炉中进行预压,预压压力25T;
(3)预压完成后依次开粗抽阀、机械泵、开罗茨泵对炉体抽真空,在炉体真空度<10pa开始加热;从室温加热到780℃,加热的升温速率为10℃/min,加热到780℃后保温100min;
(4)到达保温设定时间后开始加压处理,加压压力为40MPa,压力的输出功率0.5w,保压时间为100min;
(5)加压处理后开始自然降温,温度低于450℃后,依次关闭粗抽阀、罗茨泵、机械泵,最后通N2降温到室温后出炉,进行脱模处理,得到碲化镉掺杂的毛坯靶材,通过CNC加工,得到碲化镉靶材。
对比例2
本对比例公开了一种碲化镉掺杂靶材的制备方法,包括以下步骤:
(1)称取Cd粉、Te粉、CdTe粉,采用均质机进行物理翻滚运行均质6h,其中,混合粉末中,Cd:4%wt、Te:6%wt、CdTe:90%wt;Cd粉、Te粉、CdTe粉的纯度均为5N;Cd粉粒径为10~100μm、Te粉粒径为150~200μm、CdTe粉粒径为150~300μm;
(2)将上述混合均质的物料装入石墨模具中,其中石墨模具的大小为163×116mm,装料为1.15kg;将装有物料的石墨模具置于热压炉中进行预压,预压压力25T;
(3)预压完成后依次开粗抽阀、机械泵、开罗茨泵对炉体抽真空,在炉体真空度<10pa开始加热;从室温加热到500℃,加热的升温速率为10℃/min,加热到500℃后保温150min;
(4)到达保温设定时间后开始加压处理,加压压力为40MPa,压力的输出功率0.5w,保压时间为80min;
(5)加压处理后开始自然降温,温度低于450℃后,依次关闭粗抽阀、罗茨泵、机械泵,最后通N2降温到室温后出炉,进行脱模处理,得到碲化镉掺杂的毛坯靶材,通过CNC加工,得到碲化镉掺杂靶材。
对实施例1~3、对比例1~2所得靶材进行测试。具体数据如下如表1所示:
实施例1~3中,靶材电阻率均小于30000 Ω.cm;
对比例1~2中,靶材电阻率大于100000 Ω.cm。
表1
Figure 522549DEST_PATH_IMAGE001
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的包含范围之内。

Claims (9)

1.一种碲化镉掺杂靶材的制备方法,其特征在于,包括以下步骤:
(1)将Cd粉、Te粉、CdTe粉混匀,得到混合物料;
(2)将步骤(1)的混合物料装入石墨模具,置于热压炉中进行预压;
(3)预压完成后,抽真空处理,至真空度<10pa开始加热升温,升温速率为5~10℃/min,加热到400~700℃后保温;
(4)达到保温时间后进行加压处理;
(5)加压处理后降至室温,出炉、脱模,得毛坯靶材;毛坯靶材经机床加工后得碲化镉掺杂靶材。
2.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(1)中,Cd粉、Te粉、CdTe粉的纯度为5N以上;Cd粉粒径为10~100μm,Te粉粒径为150~200μm,CdTe粉粒径为150~300μm。
3.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(1)中,Cd粉、Te粉、CdTe粉的质量比为7~8.5:3~6.5:80~90。
4.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(1)中,采用均质机进行物理翻滚运行均质混匀,均质时间为3~8h。
5.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(2)中,预压压力为10~30T。
6.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(3)中,保温时间为100~200min。
7.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(4)中,加压压力为40~45MPa,压力的输出功率0.2~2w;保压时间为60~120min。
8.如权利要求1所述的碲化镉掺杂靶材的制备方法,其特征在于,步骤(5)中,加压处理后开始降温,温度低于450℃后,停止抽真空,通N2冷却到室温。
9.如权利要求8所述的碲化镉掺杂靶材的制备方法,其特征在于,采用自然降温方式。
CN202210584840.1A 2022-05-27 2022-05-27 一种碲化镉掺杂靶材的制备方法 Pending CN114920561A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210584840.1A CN114920561A (zh) 2022-05-27 2022-05-27 一种碲化镉掺杂靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210584840.1A CN114920561A (zh) 2022-05-27 2022-05-27 一种碲化镉掺杂靶材的制备方法

Publications (1)

Publication Number Publication Date
CN114920561A true CN114920561A (zh) 2022-08-19

Family

ID=82810635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210584840.1A Pending CN114920561A (zh) 2022-05-27 2022-05-27 一种碲化镉掺杂靶材的制备方法

Country Status (1)

Country Link
CN (1) CN114920561A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117585649A (zh) * 2024-01-19 2024-02-23 广州市尤特新材料有限公司 一种具有优异光电性能的碲化镉靶材的制备方法及碲化镉薄膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632310A (en) * 1979-08-28 1981-04-01 Agency Of Ind Science & Technol Manufacture of cadmium telluride
JPS6418275A (en) * 1987-07-14 1989-01-23 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element
CN104694889A (zh) * 2013-12-10 2015-06-10 北京有色金属研究总院 一种CdTe溅射靶材的制备方法
CN110127633A (zh) * 2019-06-25 2019-08-16 先导薄膜材料(广东)有限公司 一种碲化镉靶材及其制备方法
CN113402276A (zh) * 2021-08-10 2021-09-17 广东先导稀材股份有限公司 一种碲化锌掺锌平面靶材及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632310A (en) * 1979-08-28 1981-04-01 Agency Of Ind Science & Technol Manufacture of cadmium telluride
JPS6418275A (en) * 1987-07-14 1989-01-23 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element
CN104694889A (zh) * 2013-12-10 2015-06-10 北京有色金属研究总院 一种CdTe溅射靶材的制备方法
CN110127633A (zh) * 2019-06-25 2019-08-16 先导薄膜材料(广东)有限公司 一种碲化镉靶材及其制备方法
CN113402276A (zh) * 2021-08-10 2021-09-17 广东先导稀材股份有限公司 一种碲化锌掺锌平面靶材及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117585649A (zh) * 2024-01-19 2024-02-23 广州市尤特新材料有限公司 一种具有优异光电性能的碲化镉靶材的制备方法及碲化镉薄膜
CN117585649B (zh) * 2024-01-19 2024-03-26 广州市尤特新材料有限公司 一种具有优异光电性能的碲化镉靶材的制备方法及碲化镉薄膜

Similar Documents

Publication Publication Date Title
US20190311889A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
CN101613091B (zh) 一种cigs粉末、靶材、薄膜及其制备方法
CN113336549B (zh) 一种碲硒镉靶材及其制备方法
CN104835869B (zh) 铜铟镓硒薄膜太阳能电池及其制备方法
CN114920561A (zh) 一种碲化镉掺杂靶材的制备方法
CN114956823B (zh) 一种导电碲化镉靶材的制备方法
CN114560700B (zh) 一种非掺杂导电碲化锌靶材及其制备方法
CN112251722B (zh) 一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法
CN112125286B (zh) 掺砷或其化合物的硒化镉及其制备方法、薄膜太阳能电池及其制备方法
CN109354497B (zh) Ho掺杂的透明氧化钪陶瓷及其制备方法
CN114524417B (zh) 一种高收率碲化铅的制备方法
CN104846342A (zh) 铜锌锡硫溅射靶及其制备方法
CN107245632A (zh) 铜铟镓硒合金的制备方法
CN112125285A (zh) 掺砷或其化合物的硒化镉及其制备方法、薄膜太阳能电池及其制备方法
CN115478248B (zh) 一种叠层太阳能电池吸收层材料SrZrS3薄膜及其制备方法
CN115108831B (zh) 一种碲化锌掺杂靶材及其制备方法与应用
CN113372117B (zh) 一种碲化锌掺铜靶材的制备方法
CN112802924B (zh) 一种铜钾锌锡硫吸收层的制备方法
CN114014663B (zh) 一种碲硒砷镉化合物、靶材及其制备方法
CN117702276A (zh) 一种碲化镁合金及其制备方法
CN110171974B (zh) 一种陶瓷靶材及其制备方法
CN117185815A (zh) 一种Cu(In,Ga,Al,Ca)Se2陶瓷靶材的制备工艺
CN105118878B (zh) Cigs的锑化合物掺杂方法
CN104925760A (zh) CIGS的Na掺杂方法、及其溅射靶材的制作方法
CN105070791B (zh) 掺杂铋化合物的cigs及其掺杂方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220819