CN114014645A - 一种微波暗室用镍锌铁氧体吸波片及其制备方法 - Google Patents
一种微波暗室用镍锌铁氧体吸波片及其制备方法 Download PDFInfo
- Publication number
- CN114014645A CN114014645A CN202111393747.4A CN202111393747A CN114014645A CN 114014645 A CN114014645 A CN 114014645A CN 202111393747 A CN202111393747 A CN 202111393747A CN 114014645 A CN114014645 A CN 114014645A
- Authority
- CN
- China
- Prior art keywords
- nickel
- absorbing plate
- zinc ferrite
- ferrite wave
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/265—Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2658—Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2666—Other ferrites containing nickel, copper or cobalt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Magnetic Ceramics (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
一种微波暗室用镍锌铁氧体吸波片及其制备方法,该铁氧体吸波片由原料Fe2O3、NiO、ZnO和CuO,添加剂TiO2和ZrO2制成;所述原料的质量百分比为:Fe2O355~70 wt%。NiO10~20 wt%,ZnO15~25 wt%,CuO2~4 wt%;所述添加剂TiO2和ZrO2的质量为原料总质量的0.2~0.5 wt%。其制备方法,包括以下步骤:(1)配料、球磨;(2)干燥、预烧;(3)振磨、二次球磨;(4)干燥、造粒;(5)压型,烧结。本发明微波暗室用镍锌铁氧体吸波片的厚度为6.7mm,在P波段的吸波性能达到‑15dB,在50~500MHz波段内,吸波性能达到‑20dB,在227MHz处达到峰值,最大的峰值为‑31.72dB,达到暗室用铁氧体吸波材料的指标性能;其制备方法简单。
Description
技术领域
本发明涉及一种铁氧体吸波片及其制备方法,尤其涉及一种微波暗室用镍锌铁氧体吸波片及其制备方法。
背景技术
FCC(美国联邦通信委员会)和欧盟标准要求EMC测试(电磁兼容)的频率下限为30MHz,EMC微波暗室必须在这一频率范围内提供可接受的测试精度。铁氧体吸波片是贴在屏蔽暗室金属壁上,最大限度地吸收电磁波的低频部分,因此铁氧体磁性吸波片的质量是影响微波暗室质量的关键。
目前,生产高性能铁氧体吸波材料的方法,大多是化学法、溶胶凝胶法,难以实现大批量生产。
CN109037961A公开了一种镍锌铁氧体吸波材料的制备方法,包括前驱液的配制、草酸复盐前驱体的制备和镍锌铁氧体的形成等步骤,镍锌铁氧体的形成步骤,是将草酸复盐前驱体以2℃/min的速率从室温匀速升温至440℃~460℃,保温,再以5℃/min速率匀速升温至640℃~660℃,保温,再随炉自然冷却至室温,即得到该镍锌铁氧体吸波材料。但该铁氧体吸波材料的制备方法操作步骤复杂,且制得的镍锌铁氧体吸波材料不适宜用于微波暗室使用。
CN105272194 A公开了一种镍锌系铁氧体吸波材料配方、粉末及其制造方法,配方包括主成份和添加物,主成份是三氧化二铁Fe2O3、氧化锌ZnO、氧化亚镍NiO,主成份的重量百分含量是:Fe2O3为64-70wt%,ZnO为15-25wt%,NiO为6-21wt%,主成份含量总计重量百分比 100wt%;添加物为钽氧化物和/或铌氧化物;其制备方法包含以下步骤:(1)取所述各种比例的主成份,混合得主原料;(2)采用振磨或者其它方式将主原料混合均匀;(3)将混合好的原材料进行预烧;(4)添加所述重量的添加物至预烧料中,均匀混合后进行研磨;(5)得到镍锌系铁氧体吸波材料粉末。该方法制备的铁氧体吸波材料的性能劣于-15dB,不能满足暗室用铁氧体吸波片的使用要求。
发明内容
本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种制备方法简单、在0.03~1 GHz频段内吸波性能好的微波暗室用镍锌铁氧体吸波片。
本发明进一步要解决的技术问题是,提供一种操作简便的微波暗室用镍锌铁氧体吸波片的制备方法。
本发明解决其技术问题采用的技术方案是,一种微波暗室用镍锌铁氧体吸波片,由原料Fe2O3、NiO、ZnO和CuO,添加剂TiO2和ZrO2制成。
进一步,所述原料的质量百分比为:Fe2O355~70 wt%、NiO10~20 wt%、ZnO15~25wt%、CuO2~4 wt%(优选4 wt%);所述添加剂TiO2和ZrO2的质量为原料总质量的0.2~0.5 wt%(优选0.5 wt%)。当各原料的质量百分比不在该范围内时,制备的镍锌铁氧体吸波片的吸波性能下降,并且吸收峰值会往高频偏移。
进一步,所述添加剂TiO2和ZrO2中TiO2和ZrO2的质量比为0.5~5.0:1,优选0.6~4.0:1。
添加剂TiO2和ZrO2在镍锌铁氧体吸波片内的弥散分布,起到了良好的钉扎作用,有利于提升本发明微波暗室用镍锌铁氧体吸波片的吸波性能;当添加剂只含有其中一种,或其中一种的含量过高时,易出现团聚现象,导致材料性能变差。
进一步,所述原料Fe2O3、NiO、ZnO、CuO,添加剂TiO2和ZrO2的粒度≤50μm,纯度≥99%。
本发明进一步解决其技术问题采用的技术方案是,一种微波暗室用镍锌铁氧体吸波片的制备方法,包括以下步骤:
(1)配料、球磨:将原料Fe2O3、NiO、ZnO和CuO,添加剂TiO2和ZrO2置于球磨机中,加水球磨,得混合料浆;
(2)干燥、预烧:将步骤(1)所得的混合料浆干燥,进行预烧结,得预烧料;
(3)振磨、二次球磨:将步骤(2)所得的预烧料进行破碎、振磨和二次球磨,得球磨料;
(4)干燥、造粒:将步骤(3)所得的球磨料干燥,造粒,得粉料;
(5)压型、烧结:将步骤(4)所得的粉料压制,将压制所得压坯进行烧结,即得微波暗室用镍锌铁氧体吸波片。
进一步,步骤(1)中,所述球磨的时间为2~10 h;所述球磨的转速为150~200 rad/min;所述球磨的球料质量比为1~5:1,液固体积比为1~3:1。
进一步,步骤(2)中,所述干燥的温度为100~180℃;所述干燥的时间为10~24h。
进一步,步骤(2)中,所述干燥的方式为,采用电烘烤箱对料浆进行烘烤。
进一步,步骤(2)中,所述预烧结的方法为,先在350~450℃下保温1~3h,然后升温至650~750℃保温1~3h,再升温至950~1150℃保温1~3 h。
步骤(2)中,本发明预烧结的烧结温度和保温时间对预烧料的相生成、成分分布、物理性能等有较大影响:烧结温度不够,时间短,则反应不完全,出现明显的“未烧透”现象;烧结温度过高,时间长,则易产生新相,出现“过烧”现象。因此,本发明预烧工序若不在上述工艺范围内则会导致本发明微波暗室用镍锌铁氧体吸波片的吸波性能变差。
进一步,步骤(3)中,所述二次球磨是将预烧料经振磨后,放置球磨罐中加水球磨,球磨的时间为2~5h,球磨的转速为150~200 rad/min,球料的质量比为1~5:1,液固体积比为1~3:1。
进一步,步骤(5)中,所述压制的压力为3~10 Mpa;所述压制的保压时间为1~5min。
进一步,步骤(5)中,所述压制采用钢模模压成形。
进一步,步骤(5)中,所述烧结的方法为,先在450~600℃下保温1~3h,然后升温至850~1000℃保温1~3h,再升温至1200~1400℃保温1~3 h。
步骤(5)中,烧结温度和保温时间对烧结料的相生成、成分分布、物理性能等有较大影响。同预烧结一样,若烧结温度不够,时间短,则反应不完全,也会出现明显的“未烧透”现象;烧结温度过高,时间长,则易产生新相,出现“过烧”现象。因此,本发明烧结工序若不在上述工艺范围内也会导致本发明微波暗室用镍锌铁氧体吸波片的吸波性能变差。
通过矢量网络分析仪的电磁参数测试发现,本发明微波暗室用镍锌铁氧体吸波片具有较高的μ″和ε″值,μ″和ε″决定着电磁波的吸波功能,能量的损耗也由磁导率和电导率的虚部引起,电磁波能量的损耗tanδ如下式:
tanδ=tanδE+tanδM=ε″/ε′+μ″/μ′ (1)
其中:tanδE为电损耗,tanδM为磁损耗;δE为电感应场相对于外加电场的滞后相位;δM为磁感应场相对于外加磁场的滞后相位。由式(1)可见,tanδ和ε″、μ″呈正比关系,吸波材料的tanδ值越大,吸波性能就越好。
与现有技术相比,本发明的有益效果为:本发明微波暗室用镍锌铁氧体吸波片,优选方案的镍锌铁氧体吸波片的厚度为6.7mm,在P波段的吸波性能达到-15dB,在50~500MHz波段内,吸波性能达到-20dB,在227MHz处达到峰值,最大的峰值为-31.72dB,达到暗室用铁氧体吸波材料的指标性能;本发明制备方法采用粉末冶金的工艺,操作简便,适宜大规模生产。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但不得将这些实施例用于解释对本发明保护范围的限制。
以下实施例微波暗室用镍锌铁氧体吸波片使用的各原料和添加剂的配比见表1。
实施例1-1
本实施例微波暗室用镍锌铁氧体吸波片的制备方法,包括以下步骤:
(1)配料、球磨:称取Fe2O3 粉末600g,NiO粉末160g,ZnO粉末200g,CuO粉末40g,TiO2粉末5g,水2L,置于球磨机中,转速为200 rad/min,球磨5h,得混合料浆;
(2)干燥、预烧:将步骤(1)所得混合料浆在烘箱中进行干燥,然后将获得的干粉料按如下预烧工艺进行预烧:升温至400℃,在400℃下保温2h,然后升温至700℃保温2h,再升温至1050℃保温2h,得预烧料;
(3)振磨、二次球磨:将步骤(2)所得预烧料进行破碎、振磨,然后将粉料置于球磨机中加水进行二次球磨,转速为200 rad/min,球磨时间5h,得球磨料;
(4)干燥、造粒:将步骤(3)所得球磨料置于烘箱中进行干燥并造粒,得粉料;
(5)压型、烧结:将步骤(4)造粒后的粉料进行压制,压制压力5MPa,压制时间2min,然后将压坯置于马弗炉中按如下烧结工艺进行烧结:升温至400℃保温2h,升温至700℃保温2h,然后升温至1000℃保温2h,再升温至1300℃保温2h,即成。
实施例1-2~4-5
实施例1-2~4-5微波暗室用镍锌铁氧体吸波片的制备方法与实施例1-1相比,除原料和/或添加剂的配比不同外,其他工艺参数均相同。
实施例5-1~5-2
实施例5-1~5-2微波暗室用镍锌铁氧体吸波片的制备方法与实施例1-2相比,除原料的配比不同外,其他工艺参数均相同。
实施例6-1
实施例6-1微波暗室用镍锌铁氧体吸波片的制备方法与实施例1-2相比,除步骤(2)中预烧结的工序不同外,其他工艺参数均相同。
实施例6-1微波暗室用镍锌铁氧体吸波片的制备方法中步骤(2)中预烧结的工序为:升温至250℃保温50min,升温至800℃保温50min,升温至1000℃保温50min。
实施例6-2
实施例6-2微波暗室用镍锌铁氧体吸波片的制备方法与实施例1-2相比,除步骤(5)中烧结的工序不同外,其他工艺参数均相同。
实施例6-2微波暗室用镍锌铁氧体吸波片的制备方法中步骤(5)中烧结的为:升温至400℃保温50min,升温至600℃保温50min,升温至1000℃保温50min,升温至1500℃保温50min。
将本发明实施例微波暗室用镍锌铁氧体吸波片进行吸波性能检测,检测结果如下表(表1)所示。
表1 本发明各实施例镍锌铁氧体吸波片的原料组成和性能测试结果
本发明制备方法制备的镍锌铁氧体吸波材料在P波段的吸收损耗达-15dB以上,在50~500MHz波段内,吸波性能达到-20dB,在227MHz处达到峰值,最大峰值为-31.72dB。各原料的配比对材料性能的影响最大,在所研究的比例范围内性能有10 dB的差异,不在该范围内性能有20dB的差异;烧结工艺对材料性能的影响也较大,不在本研究范围内的烧结工艺制备出的材料,性能要差10-15dB;添加剂的配比对材料性能也有一定影响,在所研究的比例范围内,合适的TiO2/ZrO2比例能使镍锌铁氧体的吸波性能提高4~6 dB,若不在该比例范围,吸波性能要差3~5 dB。
Claims (10)
1.一种微波暗室用镍锌铁氧体吸波片,其特征在于,由原料Fe2O3、NiO、ZnO和CuO,添加剂TiO2和ZrO2制成。
2. 根据权利要求1所述的微波暗室用镍锌铁氧体吸波片,其特征在于,所述原料的质量百分比为:Fe2O355~70 wt%,NiO10~20 wt%,ZnO15~25 wt%,CuO2~4 wt%;所述添加剂TiO2和ZrO2的质量为原料总质量的0.2~0.5 wt%。
3.根据权利要求1或2所述的微波暗室用镍锌铁氧体吸波片,其特征在于,所述添加剂TiO2和ZrO2中TiO2和ZrO2的质量比为0.5~5.0:1。
4.根据权利要求1~3之一所述的微波暗室用镍锌铁氧体吸波片,其特征在于,所述原料Fe2O3、NiO、ZnO,添加剂TiO2和ZrO2的粒度≤50μm,纯度≥99%。
5.一种如权利要求1~4之一所述的微波暗室用镍锌铁氧体吸波片的制备方法,其特征在于,包括以下步骤:
(1)配料、球磨:将原料Fe2O3、NiO、ZnO和CuO,添加剂TiO2和ZrO2置于球磨机中,加水球磨,得混合料浆;
(2)干燥、预烧:将步骤(1)所得的混合料浆干燥,进行预烧结,得预烧料;
(3)振磨、二次球磨:将步骤(2)所得的预烧料进行破碎、振磨和二次球磨,得球磨料;
(4)干燥、造粒:将步骤(3)所得的球磨料干燥,造粒,得粉料;
(5)压型、烧结:将步骤(4)所得的粉料压制,将压制所得压坯进行烧结,即得微波暗室用镍锌铁氧体吸波片。
6.根据权利要求5所述的微波暗室用镍锌铁氧体吸波片的制备方法,其特征在于,步骤(1)中,所述球磨的时间为2~10 h;所述球磨的转速为150~200 rad/min;所述球磨的球料质量比为1~5:1,液固体积比为1~3:1。
7.根据权利要求5或6所述的微波暗室用镍锌铁氧体吸波片的制备方法,其特征在于,步骤(2)中,所述干燥的温度为100~180℃;所述干燥的时间为10~24h。
8.根据权利要求5~7之一所述的微波暗室用镍锌铁氧体吸波片的制备方法,其特征在于,步骤(2)中,所述预烧结的方法为,先在350~450℃下保温1~3h,然后升温至650~750℃保温1~3h,再升温至950~1150℃保温1~3 h。
9.根据权利要求5~8之一所述的微波暗室用镍锌铁氧体吸波片的制备方法,其特征在于,步骤(5)中,所述压制的压力为3~10 Mpa;所述压制的保压时间为1~5 min。
10.根据权利要求5~9之一所述的微波暗室用镍锌铁氧体吸波片的制备方法,其特征在于,步骤(5)中,所述烧结的方法为,先在450~600℃下保温1~3h,然后升温至850~1000℃保温1~3h,再升温至1200~1400℃保温1~3 h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111393747.4A CN114014645B (zh) | 2021-11-23 | 2021-11-23 | 一种微波暗室用镍锌铁氧体吸波片及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111393747.4A CN114014645B (zh) | 2021-11-23 | 2021-11-23 | 一种微波暗室用镍锌铁氧体吸波片及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114014645A true CN114014645A (zh) | 2022-02-08 |
CN114014645B CN114014645B (zh) | 2022-12-23 |
Family
ID=80065981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111393747.4A Active CN114014645B (zh) | 2021-11-23 | 2021-11-23 | 一种微波暗室用镍锌铁氧体吸波片及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114014645B (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0669018A (ja) * | 1992-08-20 | 1994-03-11 | Ube Ind Ltd | 複合フェライト磁性粉の製造方法 |
CN104164708A (zh) * | 2014-07-15 | 2014-11-26 | 江苏科技大学 | Nzfo-pzt型铁磁铁电陶瓷复合纳米纤维微波吸收剂、吸波涂层及制备方法 |
CN104844182A (zh) * | 2015-01-29 | 2015-08-19 | 浙江大学 | 一种锆钛共掺杂钡铁氧体吸波粉体材料及其制备方法 |
CN106830912A (zh) * | 2017-01-17 | 2017-06-13 | 杭州安费诺飞凤通信部品有限公司 | 一种镍锌软磁铁氧体磁片及其制备方法 |
CN108863336A (zh) * | 2018-07-24 | 2018-11-23 | 北京无线电测量研究所 | 一种镍系微波铁氧体基片材料及其制备方法 |
CN109574646A (zh) * | 2018-12-17 | 2019-04-05 | 苏州世诺新材料科技有限公司 | 一种适用于6.78MHz的铁氧体片及其制备方法 |
-
2021
- 2021-11-23 CN CN202111393747.4A patent/CN114014645B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0669018A (ja) * | 1992-08-20 | 1994-03-11 | Ube Ind Ltd | 複合フェライト磁性粉の製造方法 |
CN104164708A (zh) * | 2014-07-15 | 2014-11-26 | 江苏科技大学 | Nzfo-pzt型铁磁铁电陶瓷复合纳米纤维微波吸收剂、吸波涂层及制备方法 |
CN104844182A (zh) * | 2015-01-29 | 2015-08-19 | 浙江大学 | 一种锆钛共掺杂钡铁氧体吸波粉体材料及其制备方法 |
CN106830912A (zh) * | 2017-01-17 | 2017-06-13 | 杭州安费诺飞凤通信部品有限公司 | 一种镍锌软磁铁氧体磁片及其制备方法 |
CN108863336A (zh) * | 2018-07-24 | 2018-11-23 | 北京无线电测量研究所 | 一种镍系微波铁氧体基片材料及其制备方法 |
CN109574646A (zh) * | 2018-12-17 | 2019-04-05 | 苏州世诺新材料科技有限公司 | 一种适用于6.78MHz的铁氧体片及其制备方法 |
Non-Patent Citations (1)
Title |
---|
马志军 等: "《对比不同离子的掺杂对镍锌铁氧体电磁损耗性能的影响", 《人工晶体学报》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114014645B (zh) | 2022-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104446421B (zh) | 一种高磁导率镍锌软磁铁氧体材料及制备方法 | |
KR101607353B1 (ko) | 개선된 육방정계 페라이트 재료 및 그 제조 방법 및 용도 | |
CN111233452B (zh) | 一种高频高阻抗的贫铁锰锌铁氧体及其制备方法 | |
CN107382299A (zh) | 一种低介微波介质陶瓷的低温制备方法 | |
CN102850048B (zh) | 一种铌镁钛酸铋陶瓷材料及其制备方法 | |
CN108863336B (zh) | 一种镍系微波铁氧体基片材料及其制备方法 | |
CN111995383A (zh) | Mg2-xMxSiO4-CaTiO3复合微波介质陶瓷及其制备方法 | |
CN108383519B (zh) | 一种微波介电陶瓷材料及其制备方法 | |
CN105884342A (zh) | Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法 | |
CN103011792A (zh) | 一种毫米波段电磁波吸收剂的制备方法 | |
CN105819832B (zh) | 氧化铍/碳化硅复合微波衰减陶瓷及其制备方法 | |
CN113072369B (zh) | 高剩磁比的u型六角铁氧体材料及制备方法 | |
CN114014645B (zh) | 一种微波暗室用镍锌铁氧体吸波片及其制备方法 | |
CN109251028A (zh) | 一种低介高q锂镁铌系微波介质陶瓷及其制备方法 | |
CN106747392B (zh) | 一种Ho/Co复合掺杂Ni-Zn铁氧体陶瓷的制备方法 | |
CN103242037B (zh) | 在l波段内具有高磁损耗的六角铁氧体材料及制备方法 | |
CN115367813B (zh) | 一种尖晶石型镍锌铁氧体及其制备方法和应用 | |
CN116179157A (zh) | 五元高熵合金高分散负载碳海绵吸波材料的制备方法 | |
CN115536376A (zh) | 一种低介低损耗硅酸锌镁体系微波介质陶瓷的制备方法 | |
CN110395976B (zh) | 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法 | |
CN111302795A (zh) | 一种锂镁铌铝钨系微波介质陶瓷及其制备方法 | |
CN108773858A (zh) | 一种p波段表面波吸收材料及其制备方法 | |
CN117326861A (zh) | 一种锰锌铁氧体吸波材料及其制备方法 | |
CN108675794B (zh) | 一种具有可调控负介电性能的陶瓷材料及其制备方法 | |
CN115504769B (zh) | 微波介质陶瓷材料及其制备方法、应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |