CN113996287B - 一种超声波耦合微波制备结构化固体酸催化剂的方法 - Google Patents

一种超声波耦合微波制备结构化固体酸催化剂的方法 Download PDF

Info

Publication number
CN113996287B
CN113996287B CN202111268447.3A CN202111268447A CN113996287B CN 113996287 B CN113996287 B CN 113996287B CN 202111268447 A CN202111268447 A CN 202111268447A CN 113996287 B CN113996287 B CN 113996287B
Authority
CN
China
Prior art keywords
acid
carrier
ultrasonic waves
heteropoly
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111268447.3A
Other languages
English (en)
Other versions
CN113996287A (zh
Inventor
张劲松
矫义来
范晓雷
高鑫
沈恒宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202111268447.3A priority Critical patent/CN113996287B/zh
Publication of CN113996287A publication Critical patent/CN113996287A/zh
Application granted granted Critical
Publication of CN113996287B publication Critical patent/CN113996287B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

本发明属于化工过程强化领域,具体为一种超声波耦合微波制备结构化固体酸催化剂的方法。首先,将具有微波吸收性能的多孔材料载体浸渍于磷钨酸、磷钼酸、硅钨酸、硅钼酸等杂多酸或磷钨酸盐、磷钼酸盐、硅钨酸盐、硅钼酸盐等杂多酸盐或氧化锆等超强酸的溶液中,利用超声波的空化作用,促进上述活性组分负载于载体孔道内部;之后,将浸渍处理后的载体在微波炉中进行干燥处理,利用活性炭、碳化硅等对微波的吸收性能,快速脱除水分,均匀杂多酸、杂多酸盐或超强酸在涂层中或活性炭载体中的分布。本发明超声波结合微波干燥负载杂多酸、杂多酸盐和超强酸,具有活性组分在载体中分布均匀、晶粒细小、比表面积高、活性高、稳定性好的优点。

Description

一种超声波耦合微波制备结构化固体酸催化剂的方法
技术领域
本发明属于化工过程强化领域,具体为一种超声波耦合微波制备结构化固体酸催化剂的方法。
背景技术
将杂多酸,如:磷钨酸、磷钼酸、硅钨酸、硅钼酸等;或杂多酸盐,如:磷钨酸盐、磷钼酸盐、硅钨酸盐、硅钼酸盐等;或氧化锆、氧化钨和氧化铌等;负载于规整结构化载体表面制成结构化固体酸催化剂,具有以下优点:解决杂多酸回收、分离问题,兼具催化与分离效果,该类型结构化固体酸催化剂在催化精馏和固定床反应器中具有广阔的应用前景。但是,如何将杂多酸、杂多酸盐或超强酸负载于多孔载体表面是一个亟待解决的问题。
现有在多孔载体上负载上述催化剂的方法分为以下几类:一是通过离子交换法将杂多酸负载于多孔载体表面。但是该方法的缺点是杂多酸、杂多酸盐和超强酸负载量小,且负载量不易控制,同时产生大量废水。二是采用浸渍方法,该方法将多孔载体浸渍于杂多酸、杂多酸盐和超强酸的溶液中,待吸附饱和后除去多余溶液。该方法虽然可以控制浸渍杂多酸、杂多酸盐和超强酸的量,但是上述活性组分在多孔载体表面分布不均匀,杂多酸、杂多酸盐和超强酸的颗粒尺寸较大、比表面积较小。
发明内容
为了解决上述离子交换法和浸渍法负载固体酸的局限性,本发明的目的在于提供一种超声波耦合微波制备结构化固体酸催化剂的方法,可以控制负载量,且活性组分在多孔载体表面分布均匀。
本发明的技术方案是:
一种超声波耦合微波制备结构化固体酸催化剂的方法,首先,将具有微波吸收性能的多孔材料载体浸渍于活性组分杂多酸、杂多酸盐、氧化锆、氧化钨和氧化铌的溶液中,利用超声波的空化作用,促进上述活性组分负载于载体孔道内部;之后,将浸渍处理后的载体在微波炉中进行干燥处理,利用多孔材料载体和过度金属氧化物对微波的吸收性能,快速脱除水分,均匀活性组分杂多酸、杂多酸盐、氧化锆、氧化钨和氧化铌纳米颗粒在多孔材料载体中的分布。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,杂多酸为磷钨酸、磷钼酸、硅钨酸或硅钼酸,杂多酸盐为磷钨酸盐、磷钼酸盐、硅钨酸盐或硅钼酸盐。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,多孔材料载体为碳化硅、堇青石、氧化铝、氧化硅、活性炭、碳纳米管或石墨烯;或者,多孔材料载体为表面涂覆二次载体的多孔碳化硅,二次载体为分子筛、活性炭、氧化钛或氧化硅。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,二次载体在多孔材料载体中的质量分数为5~50%。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,多孔材料载体的孔体积分数为60~90%,平均孔径为0.5~5mm。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,活性组分的负载量为1~50wt%,负载于多孔碳化硅载体或多孔碳载体孔道内部。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,超声波频率为20~80Hz,处理时间1~60分钟。
所述的超声波耦合微波制备结构化固体酸催化剂的方法,在微波炉中进行干燥处理1~30分钟。
本发明的设计思想是:
利用两种过程强化方法来改善杂多酸或超强酸在载体中的分布和粒径。具体为,当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。这些小空洞迅速胀大和闭合,导致液体微粒之间发生猛烈的撞击作用,从而产生高达100MPa的压强。同时,微粒间这种剧烈的相互作用,会使液体的温度骤然升高,起到很好的搅拌作用,从而使两种不相溶的液体(如:水和油)发生乳化,并且加速溶质溶解,加速化学反应,实现杂多酸、杂多酸盐、氧化钨、氧化锆和氧化铌等在载体中的均匀分布。浸渍杂多酸或超强酸的载体干燥过程中,若采用常规加热手段如火焰、热风、电热、蒸汽等。利用热传导、对流、热辐射将热量首先传递给被加热催化剂表面,再通过热传导逐步使催化剂中心温度升高。利用常规加热使催化剂床层中心部位达到所需的反应温度,就需要较长的热传递时间,而对热导率差的催化剂所需要的加热时间就更长,过程消耗能量较高。由于不能均匀加热,容易造成杂多酸或超强酸分布不均匀、;颗粒长大、聚集等问题。微波是一种电磁波,波长范围为1mm至1m(频率为300MHz~300GHz),介于红外与无线电波之间,常用于微波加热的频率为2.45GHz,波长为12cm。微波加热是一种特殊的加热方法,与常规加热的热传递机制不同,微波可以穿透物料使其极性组分高频振动摩擦产生热量,并以离子传导和偶极子转动两种方式直接作用于分子。它能突破传统加热中热传导过程的时空局限,实现对物质进行内外同时加热,具有选择性加热、加热速度快、加热均匀、节能高效、热惯性小,易于控制的特点。在食品药品加工、材料和化工生产等领域中可替代传统的加热方式,有效提升电能使用效率。将微波加热的方式用于催化剂干燥过程,利用碳化硅、活性炭、石墨烯和过渡金属氧化钨等材料对微波的吸收性能,便可实现选择性地加热固体催化剂,并且这种微波选择性加热现象有望实现能源效率的显著提升,同时避免干燥过程中杂多酸和超强酸离子的聚集长大:
(1)碳化硅、活性炭、碳纳米管、石墨烯等载体具有微波吸收性能;(2)超声波的空化作用,促进磷钨酸、磷钼酸、硅钨酸、硅钼酸等杂多酸或磷钨酸盐、磷钼酸盐、硅钨酸盐、硅钼酸盐等杂多酸盐或氧化锆、氧化铌、氧化钨等负载于多孔碳化硅载体或多孔碳载体孔道内部;(3)微波具有选择性加热和体加热特征,将浸渍处理后的载体在微波炉中进行干燥处理,利用活性炭、碳化硅等对微波的吸收性能,快速脱除水分,均匀杂多酸、杂多酸盐或超强酸在涂层中或活性炭载体中的分布。
本发明具有如下优点及有益效果:
(1)本发明通过超声波处理,促进杂多酸和超强酸在载体中分布。
(2)本发明将浸渍处理后的载体在微波炉中进行干燥处理,快速脱除水分,均匀杂多酸、杂多酸盐或超强酸分布。该方法具有杂多酸、杂多酸盐或超强酸负载量大、负载均匀、晶粒细小、比表面积高的特点,如:活性组分的负载量为1~50wt%,晶粒大小为1纳米~5纳米,比表面积为50~300m2/g。
附图说明
图1为泡沫碳化硅载体表面分子筛涂层内部磷钨酸盐分布电子能谱线扫描图片。其中,上图为负载Y型分子筛修饰泡沫碳化硅载体负载磷钨酸后的截面图,下图为磷、钨、硅、氧元素在涂层中分布的元素能谱线扫描图。
图2(a)-图2(b)为泡沫碳化硅载体表面分子筛涂层表面不同方法负载的磷钨酸盐扫描电子显微形貌图。其中,图2(a)微波干燥,图2(b)常规鼓风加热干燥。
图3为分子筛晶体内部磷钨酸盐的扫描透射电子显微镜形貌图。
具体实施方式
在具体实施过程中,本发明方法以具有微波吸收性能的多孔材料(如:碳化硅、活性炭、碳纳米管、石墨烯等)为载体。首先,将上述载体浸渍于:磷钨酸、磷钼酸、硅钨酸、硅钼酸等杂多酸,或磷钨酸盐、磷钼酸盐、硅钨酸盐、硅钼酸盐等杂多酸盐,或氧化锆等超强酸的溶液中,利用超声波的空化作用,促进上述活性组分负载于载体孔道内部;之后,将浸渍处理后的载体在微波炉中进行干燥处理,利用活性炭、碳化硅等对微波的吸收性能,快速脱除水分,均匀杂多酸、杂多酸盐或超强酸在涂层中或活性炭载体中的分布。
下面,通过实施例对本发明进一步详细阐述。
实施例1
本实施例中,以涂覆活性炭涂层的泡沫氧化铝为载体:泡沫氧化铝载体具有三维连通孔道结构,孔径1毫米,孔体积分数70%。泡沫氧化铝表面涂覆活性炭涂层,活性炭涂层厚度50微米,质量分数为10%。
将直径50毫米,高度50毫米,表面涂覆活性炭涂层的泡沫氧化铝载体浸渍于浓度为10g/升的磷钨酸溶液当中,通过频率为40Hz的超声波对上述溶液处理30分钟。之后取出载体材料,离心除去多余溶液。最后将上述载体在家用微波炉中加热5分钟;或在电热鼓风干燥箱中100℃加热2小时。
实施例2
本实施例中,以规整蜂窝状活性炭为载体:规整蜂窝状活性炭载体具有直孔道结构,孔径2毫米,孔体积分数70%。
将直径50毫米,高度50毫米,规整蜂窝状活性炭为载体浸渍于浓度为50g/升的磷钼酸溶液当中,通过频率为40Hz的超声波对上述溶液处理30分钟。之后取出载体材料,离心除去多余溶液。最后将上述载体在家用微波炉中加热5分钟;或在电热鼓风干燥箱中100℃加热2小时。
实施例3
本实施例中,以涂覆分子筛的多孔碳化硅为载体:多孔载体具有三维连通孔道结构,孔径2毫米,孔体积分数80%。多孔碳化硅载体表面涂覆分子筛涂层,分子筛涂层厚度30微米,质量分数为15%。
将直径50毫米,高度50毫米,表面涂覆分子筛涂层的多孔碳化硅浸渍于浓度为10g/升的硅钨酸溶液当中,通过频率为40Hz的超声波对上述溶液处理30分钟。之后取出载体材料,离心除去多余溶液。最后将上述载体在家用微波炉中加热5分钟;或在电热鼓风干燥箱中100℃加热2小时。
实施例4
本实施例中,以涂覆分子筛的多孔碳化硅为载体:多孔载体具有三维连通孔道结构,孔径2毫米,孔体积分数80%。多孔碳化硅载体表面涂覆分子筛涂层,分子筛涂层厚度30微米,质量分数为15%。
将直径50毫米,高度50毫米,表面涂覆分子筛涂层的多孔碳化硅浸渍于浓度为10g/升的硅钼酸溶液当中,通过频率为40Hz的超声波对上述溶液处理30分钟。之后取出载体材料,离心除去多余溶液。最后将上述载体在家用微波炉中加热5分钟;或在电热鼓风干燥箱中100℃加热2小时。
应用例
本应用例采用实施例1-4中得到的结构化固体酸作为催化剂,以乳酸和乙醇反应合成乳酸乙酯作为探针反应,反应条件如下:温度65℃,反应时间2小时,搅拌速度500转/分钟,结果见表1。
表1催化剂性能表
Figure BDA0003327775980000051
如图1所示,从泡沫碳化硅载体表面分子筛涂层内部磷钨酸盐分布电子能谱线扫描图片可以看出,组成磷钨酸的元素,磷、钨在Y型分子筛涂层中均匀分布,表明超声波结合微波的催化活性组分负载方式有利于实现活性组分在涂层中的均匀分布。
如图2(a)-图2(b)所示,从泡沫碳化硅载体表面分子筛涂层表面不同方法负载的磷钨酸盐扫描电子显微形貌图可以看出,采用微波干燥负载的杂多酸粒径较小且均匀;而采用常规干燥负载的杂多酸粒径分布不均匀,存在较多大颗粒杂多酸颗粒。
如图3所示,从分子筛晶体内部磷钨酸盐的扫描透射电子显微镜形貌图可以看出,1纳米~3纳米的杂多酸粒子被限域锚定在Y型分子筛晶体内部的介孔之中。
实施例结果表明,相对于传统浸渍结合常规干燥方法,本发明超声波结合微波干燥负载杂多酸、杂多酸盐和超强酸,具有活性组分在载体中分布均匀、晶粒细小、比表面积高、活性高、稳定性好的优点。

Claims (7)

1.一种超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,首先,将具有微波吸收性能的多孔材料载体浸渍于活性组分杂多酸、杂多酸盐、氧化锆、氧化钨和氧化铌的溶液中,利用超声波的空化作用,促进上述活性组分负载于载体孔道内部;之后,将浸渍处理后的载体在微波炉中进行干燥处理,利用多孔材料载体和过渡 金属氧化物对微波的吸收性能,快速脱除水分,均匀活性组分杂多酸、杂多酸盐、氧化锆、氧化钨和氧化铌纳米颗粒在多孔材料载体中的分布;其中,多孔材料载体为表面涂覆二次载体的多孔碳化硅,二次载体为分子筛、活性炭、氧化钛或氧化硅。
2.按照权利要求1所述的超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,杂多酸为磷钨酸、磷钼酸、硅钨酸或硅钼酸,杂多酸盐为磷钨酸盐、磷钼酸盐、硅钨酸盐或硅钼酸盐。
3.按照权利要求1所述的超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,二次载体在多孔材料载体中的质量分数为5~50%。
4.按照权利要求1所述的超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,多孔材料载体的孔体积分数为60~90%,平均孔径为0.5~5mm。
5.按照权利要求1所述的超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,活性组分的负载量为1~50wt%,负载于多孔碳化硅载体孔道内部。
6.按照权利要求1所述的超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,超声波频率为20~80Hz,处理时间1~60分钟。
7.按照权利要求1所述的超声波耦合微波制备结构化固体酸催化剂的方法,其特征在于,在微波炉中进行干燥处理1~30分钟。
CN202111268447.3A 2021-10-29 2021-10-29 一种超声波耦合微波制备结构化固体酸催化剂的方法 Active CN113996287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111268447.3A CN113996287B (zh) 2021-10-29 2021-10-29 一种超声波耦合微波制备结构化固体酸催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111268447.3A CN113996287B (zh) 2021-10-29 2021-10-29 一种超声波耦合微波制备结构化固体酸催化剂的方法

Publications (2)

Publication Number Publication Date
CN113996287A CN113996287A (zh) 2022-02-01
CN113996287B true CN113996287B (zh) 2022-10-11

Family

ID=79924933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111268447.3A Active CN113996287B (zh) 2021-10-29 2021-10-29 一种超声波耦合微波制备结构化固体酸催化剂的方法

Country Status (1)

Country Link
CN (1) CN113996287B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116173942A (zh) * 2022-12-30 2023-05-30 南通立洋化学有限公司 一种新型乙腈催化剂及其制备方法
CN116410087A (zh) * 2023-04-14 2023-07-11 泰兴金江化学工业有限公司 一种丙烯酸丁酯生产废水处理工艺
CN117065766B (zh) * 2023-10-16 2023-12-26 昆明理工大学 一种微米级磺酸型硅基固体酸的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI272123B (en) * 2002-12-20 2007-02-01 Showa Denko Kk Heteropolyacid and/or its salt supported catalyst, production process of the catalyst and production process of compound using the catalyst
GB0410603D0 (en) * 2004-05-12 2004-06-16 Bp Chem Int Ltd Ester synthesis
CN100457263C (zh) * 2007-06-06 2009-02-04 北京理工大学 一种用于合成低级羧酸酯的催化剂
CN101857462B (zh) * 2009-04-07 2012-07-25 中国科学院金属研究所 一种多孔碳化硅陶瓷表面分子筛涂层材料的制备方法
CN103483162B (zh) * 2013-09-06 2015-12-23 中国科学院金属研究所 一种结构化催化剂强化甲醇制取二甲醚的方法
CN103447077B (zh) * 2013-09-06 2015-06-24 中国科学院金属研究所 一种zsm-5/泡沫碳化硅结构化催化剂的原位改性方法
CN106008188B (zh) * 2016-05-30 2018-05-29 浙江工业大学 一种甘油催化脱水制备丙烯醛的新方法
CN109745971B (zh) * 2017-11-08 2022-01-14 中国科学院金属研究所 一种基于中空泡沫材料的结构化催化剂及其应用
CN112742454B (zh) * 2019-10-31 2022-08-12 中国石油化工股份有限公司 一种负载型杂多酸催化剂的制备方法

Also Published As

Publication number Publication date
CN113996287A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN113996287B (zh) 一种超声波耦合微波制备结构化固体酸催化剂的方法
CN106185937B (zh) 一种碳纳米颗粒/二维层状碳化钛复合材料的制备方法
CN100531901C (zh) 高活性纳米晶铂炭催化剂的制备方法
CN107497377A (zh) 一种形貌均一金属有机骨架化合物/氧化石墨烯复合微球的制备方法
Zhang et al. Na 2 HPO 4-modified NaY nanocrystallites: efficient catalyst for acrylic acid production through lactic acid dehydration
CN105271193B (zh) 一种超低密度、超高比表面积弹性导电气凝胶的制备方法
CN104028294B (zh) 一种适用微波辅助反应的固体酸催化剂及其制备方法
CN105236385A (zh) 一种高密度活化碳气凝胶及其制备方法
CN107731546B (zh) 一种活性炭电极及其制备方法
CN106395802B (zh) 一种石墨烯多孔膜的制备方法
CN110217774A (zh) 一种淀粉基中空碳微球材料及其制备方法和储热应用
CN107469789A (zh) 一种放射状多级孔结构的石墨烯/氢氧化镍/聚合物复合微球及其制备方法和应用
CN106430144A (zh) 一种基于片状氧化镁模板制备沥青基多级孔碳片的方法及其应用
Kang et al. Microwave one-pot synthesis of CNT-supported amorphous Ni–P alloy nanoparticles with enhanced hydrogenation performance
CN102836747B (zh) 一种氧化铝载体的制备方法
CN110980719A (zh) 一种多孔石墨化空心碳微球的制备方法
CN111477890A (zh) 一种碳纤维包覆纳米Co3O4的氧还原催化剂及其制法
CN105080444A (zh) 一种制备单分散磁性蜜胺树脂微球的方法
CN109970056B (zh) 一种生物质基有序微孔碳材料的制备方法及其应用
CN110368971A (zh) 一种固体废弃物微波辅助解聚用SiC基复合催化剂及其制备方法
CN108046317B (zh) 可提高纳米材料活性的靶向微波预处理方法及纳米材料
CN114849766B (zh) 一种固体酸催化剂及其制备方法和应用
CN106430147B (zh) 一种超声-微波法制备具有开放结构的功能化介孔空心碳球
CN112427039B (zh) 低温高活性且高导热的甲烷化催化剂制备方法
CN112742454B (zh) 一种负载型杂多酸催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant