CN112427039B - 低温高活性且高导热的甲烷化催化剂制备方法 - Google Patents

低温高活性且高导热的甲烷化催化剂制备方法 Download PDF

Info

Publication number
CN112427039B
CN112427039B CN202011257264.7A CN202011257264A CN112427039B CN 112427039 B CN112427039 B CN 112427039B CN 202011257264 A CN202011257264 A CN 202011257264A CN 112427039 B CN112427039 B CN 112427039B
Authority
CN
China
Prior art keywords
catalyst
solution
preparation
powder
precursor salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011257264.7A
Other languages
English (en)
Other versions
CN112427039A (zh
Inventor
张大洲
卢文新
刘佳
胡媛
吕庆元
夏吴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Wuhuan Engineering Co Ltd
Original Assignee
China Wuhuan Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Wuhuan Engineering Co Ltd filed Critical China Wuhuan Engineering Co Ltd
Priority to CN202011257264.7A priority Critical patent/CN112427039B/zh
Publication of CN112427039A publication Critical patent/CN112427039A/zh
Application granted granted Critical
Publication of CN112427039B publication Critical patent/CN112427039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种低温高活性且高导热的甲烷化催化剂制备方法包括以下步骤:将纳米导热材料高速搅拌并超声分散于盐溶液中,形成悬浊液,并升温至50‑80℃保温备用;将前驱体盐分散于去离子水中,形成前驱体盐溶液,将前驱体盐溶液和沉淀剂溶液分别升温至50‑80℃,并流滴加至所述悬浊液中进行沉淀反应并持续搅拌;滴加完成后进行老化,将老化后所得沉淀经压滤、打浆、洗涤、干燥、焙烧,得到催化剂粉体;将催化剂粉体中加入润滑剂、成型助剂后球磨过筛,再经造粒、过筛、打片、养护、焙烧后得到成型催化剂。工艺简单、易于操作、生产成本低,制备的催化剂导热性好、传热效率高、低温反应活性好、高温热稳定性好。

Description

低温高活性且高导热的甲烷化催化剂制备方法
技术领域
本发明涉及一种催化剂的制备方法,具体的说是一种低温高活性且高导热的甲烷化催化剂制备方法。
背景技术
煤制天然气过程中,目前国内商业化运行的大唐克旗、新疆庆华、内蒙古汇能均采用引进技术,其中的关键技术是甲烷化催化剂,由于甲烷化反应的特点是强放热,反应生成水,高浓度一氧化碳在反应器中绝热温升高,需要催化剂具有较强的抗烧结性能和耐水热性能。此外,高浓度一氧化碳在绝热反应器中反应产生的绝热温升大,若不采取有效措施,将会导致设备超温和催化剂烧结失活。
现有甲烷化催化剂开发主要集中从反应性能的角度优化催化剂配方组成,但甲烷化反应属于强放热反应,催化剂的导热性会影响整个系统的移热效率,尤其是采用移热式反应器时,除了考虑反应工艺,催化剂本身的结构设计及材料选择对系统的移热效率影响较大。为了降低设备投资,移热式反应器一般采用低于绝热式反应器的操作温度,因此匹配移热式反应器的低温高活性催化剂的开发也是重要内容之一。
专利号201310204782.6公开了一种用于合成气甲烷化的碳化硅基整体催化剂及制备方法,是将将硅粉、炭粉和成型助剂混捏、练泥后挤出蜂窝素坯,经干燥、反应烧结和氧化处理后得到载体,再进行负载得到催化剂。这种挤出工艺会导致原料混合不均,使得导热不均和活性组分不易控制的问题;还有文献公开了采用碳化硅直接负载的方式,但存在催化剂比表面积小,低温活性欠佳的问题,该催化剂仅适用于高温甲烷化工艺,且为绝热式反应器。
发明内容
本发明的目的是为了解决上述技术问题,提供一种工艺简单、易于操作、生产成本低,制备的催化剂导热性好、传热效率高、低温反应活性好、高温热稳定性好、具有优异的抗烧结性能和稳定性的低温高活性且高导热的甲烷化催化剂制备方法。
技术方案包括以下步骤:
(1)催化剂粉体制备:将纳米导热材料高速搅拌并超声分散于盐溶液中,形成悬浊液,并升温至50-80℃保温备用;将催化剂前驱体盐溶液和沉淀剂溶液分别升温至50-80℃,并流滴加至所述悬浊液中进行沉淀反应并持续搅拌;滴加完成后进行老化,将老化后所得沉淀经压滤、打浆、洗涤、干燥、焙烧,得到催化剂粉体;
(2)成型催化剂制备:向步骤(1)中制备的催化剂粉体中加入润滑剂、成型助剂、结构助剂后球磨过筛,取大于250目的粉体进行造粒、过筛、打片、养护、焙烧后得到成型催化剂。
所述步骤1)中,所述纳米导热材料选自石墨烯、氧化铝粉、碳化硅或碳纳米管中的一种,尺寸>500目;所述悬浊液的固液比为1:20~1:50。
所述步骤1)中,所述盐溶液选自硝酸钠溶液或硫酸钠溶液或两者的混合溶液,其盐质量浓度为0.5~5%;控制超声波频率40~80kHZ,功率为200-800kW。
所述步骤1)中,所述前驱体盐由硝酸镍、硝酸钇、硝酸铝和硝酸镁组成,各组份质量比值为1:0.042:2.78:0.53。
所述步骤1)中,所述沉淀剂为碳酸钠、碳酸钾、碳酸氢钠或碳酸氢钾中的至少一种。
所述步骤1)中,所述催化剂前驱体盐、沉淀剂的摩尔比为(0.1~10):1;纳米粉体材料与催化剂前驱体盐质量比为(0.01~0.1):1。
所述步骤1)中,所述老化时间为3-8h。
所述步骤1)中,所述沉淀经多次循环压滤、打浆、洗涤至滤液的电导率在50~5000μS/cm后再进行干燥。
所述步骤2)中,所述成型催化剂为中空圆柱形或多孔圆柱形。
所述中空圆柱形成型催化剂的外径3.5~5.5mm,内径为1.5~2.5mm,高度为2.5~4.5mm;所述多孔圆柱形成型催化剂的外径为5.0~7.5mm,内孔数量为4个、5个或7个,高度为3.5~5.5mm。磨耗小于2wt%。
所述润滑剂可以选自石墨、多元羟酸、硅树脂或田菁粉等,添加量优选为催化剂粉体质量的1%~10%;所述成型助剂可以选自水泥、黏土、聚乙烯醇、干淀粉、石蜡等,添加量优选为催化剂粉体质量的1%~15%。
针对背景技术中存在的问题,为了解决导入纳米导热材料存在的混合不均的问题,发明人采用沉淀法将纳米导热材料原位引入催化剂中,通过将纳米导热材料分散在盐溶液中形成悬浊液,通过向所述悬浊液中同步并流滴加前驱体盐溶液和沉淀剂溶液,可以使纳米导热材料在沉淀反应中与沉淀形成的晶粒同步结合、长大,达到导热材料均匀分散于催化剂体相中的效果,由此方法最终制备的催化剂具有纳米导热材料分布均匀,导热效果好,且保留催化剂原有活性位分布的优点,相较于普通挤压混合的导入方法而言,能够在保留催化剂低温高活性的同时,提高催化剂的导热性能,尤其适用于可移热的甲烷化反应体系;进一步的,滴加速度优选为50-80min内滴加完成,过快会导致晶体形成不均匀,不利于导热材料与催化剂晶相的结合,过慢会会导致生产效率降低,老化不均匀,搅拌速度优选为100-600rpm,过快会破坏纳米导热材料与催化剂晶相的结合,催化剂结构强度欠佳,过慢会导致催化剂晶粒尺寸不均一,影响催化剂的低温甲烷化反应性能。。
进一步的,所述前驱体盐由硝酸镍、硝酸钇、硝酸铝和硝酸镁组成,各组份比值为1:0.042:2.78:0.53,其中硝酸镍作为催化剂活性组分的前驱体,硝酸钇作为催化剂低温活性助剂的前驱体,硝酸铝作为活性组分分散载体的前驱体,硝酸镁作为催化剂的结构助剂;
所述纳米导热材料选自石墨烯、氧化铝粉、碳化硅或碳纳米管中的一种,尺寸>500目,上述几种材料具有价廉易得特点,可以有效作为甲烷化催化剂体相的导热组分;所述悬浊液的固液比为1:20~1:50,过高不利于纳米导热粉体的分散,过低会影响沉淀过程催化剂晶核的形成;
所述催化剂前驱体盐、沉淀剂的摩尔比为(0.1~10):1;纳米粉体材料与催化剂前驱体盐质量比为(0.01~0.1):1。,导热纳米材料的含量过高会导致催化剂强度欠佳,过低会影响催化剂的导热性能。
所述沉淀经多次循环压滤、打浆、洗涤至滤液的电导率在50~5000μS/cm后再进行干燥。控制滤液电导率的目的是提高催化剂的低温反应性能,过高会导致催化剂低温性能欠佳,过低会提高催化剂的生产成本。
本发明的优点是:
(1)成型催化剂的活性组分Ni有效分散,焙烧后的Ni晶粒小,反应起活温度低,具有较好的低温反应活性,特别适用甲烷化移热式反应器,可有效降低反应器设备投资和操作费用。
(2)所制备的催化剂导热性好,具有传热效率高、高温热稳定性好等特性,能够避免催化剂床层的热积累,延长催化剂的使用寿命,在高碳浓度甲烷化反应过程中表现出良好的抗烧结性能和稳定性。
具体实施方式
实施例1:
将纳米粉体材料碳化硅(尺寸>500目)67.68g高速分散于硝酸钠盐溶液中(硝酸钠盐溶液质量浓度为5%,控制超声波频率为40kHz,功率为800kW),形成悬浊液(所述悬浊液的固液质量比为1:20);然后将悬浊液升温至50℃。将硝酸镍155.6g、硝酸钇6.5g、硝酸铝431.8g、硝酸镁82.9g配置成前驱体溶液,将碳酸钠配置为沉淀剂溶液(取前驱体盐与碳酸钠摩尔比为0.1:1),采用电加热方式预热至80℃,随后并流滴加至悬浊液中(滴加速度选为50min内滴加完成,搅拌速度为600rpm),开始沉淀反应,并持续搅拌老化3h。沉淀经多次循环压滤、打浆、洗涤至滤液的电导率在50μS/cm后再进行干燥,随后经焙烧,得到催化剂粉体。向催化剂粉体中,加入石墨、多元羟酸(为催化剂粉体质量的1%)和干淀粉、石蜡(为催化剂粉体质量的15%),球磨,取大于250目粉体,加入除盐水后造粒、过筛,随后打片为中空圆柱型催化剂,外径为3.5mm,内径为1.5mm,高度为3.5mm,磨耗小于2wt%。将上述催化剂于500℃还原10h后进行甲烷化反应性能评价。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-283℃,CO转化率大于99.2%,CH4选择性大于98.0%。连续运行超过100h催化剂性能没有衰减;反应后催化剂平均径向侧压强度>173N/cm。
实施例2:
将纳米粉体材料碳纳米管(尺寸>500目)6.77g高速超声分散于硝酸钠盐溶液中(硝酸钠盐溶液质量浓度为0.5%,控制超声波频率为80kHz,功率为200kW),形成悬浊液(所述悬浊液的固液质量比为1:50),升温至80℃。将硝酸镍155.6g、硝酸钇6.5g、硝酸铝431.8g、硝酸镁82.9g配置成前驱体溶液,将碳酸钠、碳酸氢钠溶液配置为的沉淀剂溶液(取前驱体盐与碳酸钠摩尔比为0.1:10),采用电加热方式预热至50℃,随后并流滴加至悬浊液中,开始沉淀反应(滴加速度选为80min内滴加完成,搅拌速度为100rpm),并持续搅拌老化8h。沉淀经多次循环压滤、打浆、洗涤至滤液的电导率在1000μS/cm后再进行干燥,随后经焙烧,得到催化剂粉体。向催化剂粉体中,加入硅树脂、田菁粉(为催化剂粉体质量的10%)和水泥、黏土、聚乙烯醇(为催化剂粉体质量的1%),球磨,取大于250目粉体,加入除盐水后造粒、过筛,随后打片为中空圆柱型催化剂,外径为5.5mm,内径为2.5mm,高度为4.5mm,磨耗小于2wt%。将上述催化剂于500℃还原10h后进行甲烷化反应性能评价。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-275℃,CO转化率大于98.23%,CH4选择性大于97.5%。连续运行超过100h催化剂性能没有衰减;反应后催化剂平均径向侧压强度>165N/cm。
实施例3:
催化剂粉体制备类似实施例1。其中,碳化硅(尺寸>500目)113.25g,所述悬浊液固液质量比为1:50,所用硝酸钠盐溶液质量浓度为1%,控制超声波频率为60kHz,功率为400kW,采用电加热方式预热至70℃。将碳酸钾、碳酸氢钾溶液配置为的沉淀剂溶液,前驱体盐与沉淀剂摩尔比为0.1:3,前驱体盐溶液和沉淀剂分别升温至70℃,随后并流滴加至悬浊液中,开始沉淀反应,滴加完成时间为80min,并持续搅拌老化5h,搅拌速度为600rpm。焙烧得到的催化剂粉体中,加入硅树脂、田菁粉(为催化剂粉体质量的5%)和水泥、聚乙烯醇(为催化剂粉体质量的4%),催化剂成型形状为多孔圆柱形,成型催化剂的外径为5.0mm,内孔数量为4个,高度为3.5mm。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-313℃,CO转化率大于97.23%,CH4选择性大于98.5%。连续运行超过100h催化剂性能没有衰减;反应后催化剂平均径向侧压强度>188N/cm。
实施例4:
催化剂粉体制备和成型同实施例3。其中,取前驱体盐与沉淀剂摩尔比为0.1:5,滴加完成时间为60min,搅拌速度为300rpm,。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-323℃,CO转化率大于97.54%,CH4选择性大于98.1%。连续运行超过100h催化剂性能没有衰减;反应后催化剂平均径向侧压强度>177N/cm。
实施例5:
催化剂粉体制备和成型同实施例3。其中,搅拌速度为450rpm。多孔圆柱形催化剂的外径为7.5mm,内孔数量为5个,高度为5.5mm。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-312℃,CO转化率大于88.23%,CH4选择性大于96.43%。连续运行超过100h催化剂性能没有衰减;反应后催化剂平均径向侧压强度仅为>113N/cm。
实施例6:
催化剂粉体制备和成型同实施例2。其中,沉淀经多次循环压滤、打浆、洗涤至滤液的电导率在5000μS/cm后再进行干燥。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-332℃,CO转化率大于75.3%,CH4选择性大于98.11%。
对比例1:
催化剂粉体制备同实施例1。向催化剂粉体中,加入石墨,球磨,取大于250目粉体,加入除盐水后造粒、过筛,随后打片为实心圆柱状。将上述催化剂于500℃还原10h后进行甲烷化反应性能评价。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-385℃,床层温度梯度较大;CO转化率大于98.5%,CH4选择性大于97.9%。连续运行超过55h后CO转化率出现快速下降趋势;反应后催化剂平均径向侧压强度为>193N/cm。
对比例2:
将硝酸镍115.6g、硝酸钇6.5g、硝酸铝431.8g、硝酸镁82.9g配置成前驱体溶液,将碳酸钠配置为1mol/L的沉淀剂溶液,体系中未加入纳米粉体,随后并流滴加至悬浊液中,开始沉淀反应,并持续搅拌老化3h。将所得沉淀经板框压滤、打浆、洗涤、干燥、焙烧,得到催化剂粉体。向催化剂粉体中,加入石墨、硬脂酸镁助剂和润滑剂,球磨,取大于250目粉体,加入除盐水后造粒、过筛,随后打片为中空圆柱型催化剂,外径为4.5mm,内径为1.8mm,高度为3.5mm,磨耗小于2wt%。将上述催化剂于500℃还原10h后进行甲烷化反应性能评价。反应评价设定反应温度为250℃,反应压力2.5MPa,原料气组成为20%-CO,70%-H2,10%-N2,反应评价结果为床层温度范围250-321℃,CO初始转化率大于99.2%,CH4初始选择性大于97.8%,连续运行28h后观察到CO转化率降至93.5%。反应后催化剂平均径向侧压强度仅为>143N/cm。
对比例3:
硝酸镍155.6g、硝酸钇6.5g、硝酸铝431.8g、硝酸镁82.9g配置成前驱体溶液,将碳酸钠配置为1mol/L的沉淀剂溶液,采用电加热方式预热至65℃,随后并流滴加至悬浊液中,沉淀反应,将所得沉淀经板框压滤、打浆、洗涤、干燥、焙烧,得到催化剂粉体。
直接将纳米导热粉体碳化硅、催化剂粉体、石墨、硬脂酸镁助剂和润滑剂,球磨,取大于250目粉体,加入除盐水后造粒、过筛,随后打片为中空圆柱型催化剂,外径为4.5mm,内径为1.8mm,高度为3.5mm,磨耗小于2wt%。评价条件同实施例1,反应评价结果为床层温度范围250-394℃,床层温度梯度较大;CO转化率大于93.2%,CH4选择性大于97.3%,连续运行67h后催化剂CH4选择性降至76.5%。
对比例4:
硝酸镍155.6g、硝酸钇6.5g、硝酸铝431.8g、硝酸镁82.9g配置成前驱体溶液,纳米导热材料碳化硅放置于前驱体溶液中,经浸渍、干燥、焙烧,得到催化剂粉体。将催化剂分粉体采用实施例2的方式,打片为中空圆柱型催化剂,外径为4.5mm,内径为1.8mm,高度为3.5mm,磨耗小于2wt%。评价条件同实施例2,反应评价结果为床层温度范围250-334℃,CO转化率约64.3%,CH4选择性约98.3%。

Claims (7)

1.一种低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,包括以下步骤:
(1)催化剂粉体制备:将纳米导热材料高速搅拌并超声分散于盐溶液中,形成悬浊液,并升温至50-80℃保温备用;将前驱体盐溶解于去离子水中,形成前驱体盐溶液,将前驱体盐溶液和沉淀剂溶液分别升温至50-80℃,并流滴加至所述悬浊液中进行沉淀反应并持续搅拌;滴加完成后进行老化,将老化后所得沉淀经压滤、打浆、洗涤、干燥、焙烧,得到催化剂粉体;
其中,所述纳米导热材料选自石墨烯、氧化铝粉、碳化硅或碳纳米管中的一种,其尺寸>500目;所述悬浊液的固液比为1:20~1:50;所述盐溶液选自硝酸钠溶液或硫酸钠溶液或两者的混合溶液,其盐质量浓度为0.5~5%;控制超声波频率40~80kHZ,功率为200-800kW;
(2)成型催化剂制备:向步骤(1)中制备的催化剂粉体中加入润滑剂、成型助剂、结构助剂后球磨过筛,取大于250目的粉体进行造粒、过筛、打片、养护、焙烧后得到成型催化剂;所述前驱体溶液中的前驱体盐由硝酸镍、硝酸钇、硝酸铝和硝酸镁组成,各组份质量比值为1:0.042:2.78:0.53。
2.如权利要求1所述的低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,所述步骤1)中,所述沉淀剂为碳酸钠、碳酸钾、碳酸氢钠或碳酸氢钾中的至少一种。
3.如权利要求1或2所述的低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,所述步骤1)中,所述催化剂前驱体盐、沉淀剂的摩尔比为(0.1~10):1;纳米粉体材料与催化剂前驱体盐质量比为(0.01~0.1):1。
4.如权利要求1所述的低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,所述步骤1)中,所述老化时间为3-8h。
5.如权利要求1或4所述的低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,所述步骤1)中,所述沉淀经多次循环压滤、打浆、洗涤至滤液的电导率在50~5000μS/cm后再进行干燥。
6.如权利要求1或4所述的低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,所述步骤2)中,所述成型催化剂为中空圆柱形或多孔圆柱形。
7.如权利要求6所述的低温高活性且高导热的甲烷化催化剂制备方法,其特征在于,所述中空圆柱形成型催化剂的外径3.5~5.5mm,内径为1.5~2.5mm,高度为2.5~4.5mm;所述多孔圆柱形成型催化剂的外径为5.0~7.5mm,内孔数量为4个、5个或7个,高度为3.5~5.5mm,磨耗小于2wt%。
CN202011257264.7A 2020-11-11 2020-11-11 低温高活性且高导热的甲烷化催化剂制备方法 Active CN112427039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011257264.7A CN112427039B (zh) 2020-11-11 2020-11-11 低温高活性且高导热的甲烷化催化剂制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011257264.7A CN112427039B (zh) 2020-11-11 2020-11-11 低温高活性且高导热的甲烷化催化剂制备方法

Publications (2)

Publication Number Publication Date
CN112427039A CN112427039A (zh) 2021-03-02
CN112427039B true CN112427039B (zh) 2022-06-28

Family

ID=74700850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011257264.7A Active CN112427039B (zh) 2020-11-11 2020-11-11 低温高活性且高导热的甲烷化催化剂制备方法

Country Status (1)

Country Link
CN (1) CN112427039B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845854A (zh) * 2022-11-28 2023-03-28 高潞空气化工产品(上海)能源科技有限公司 一种高导热性耐高温催化剂及其制备方法和用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736491B (zh) * 2014-01-17 2015-10-07 河北工业大学 一种复合石墨烯的甲烷催化剂及其制备方法
CN103769106B (zh) * 2014-02-20 2015-08-05 厦门大学 原位生长碳纳米管促进的镍基甲烷化催化剂及其制备方法
CN107206356B (zh) * 2014-12-19 2021-07-06 庄信万丰股份有限公司 催化剂制造方法
CN105233834B (zh) * 2015-10-30 2017-12-15 四川天一科技股份有限公司 一种预还原型高温合成气甲烷化催化剂及其制备方法
CN107537504A (zh) * 2016-06-29 2018-01-05 华东师范大学 一种自支撑镍催化剂及其制备和应用
CN106622256B (zh) * 2016-11-11 2019-06-18 中国五环工程有限公司 一种高浓度co甲烷化催化剂的制备方法
CN109529840B (zh) * 2018-11-29 2020-05-12 西南化工研究设计院有限公司 一种co2低温甲烷化催化剂、制备及应用

Also Published As

Publication number Publication date
CN112427039A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
CN112844476B (zh) 一种生物质基碳材料负载纳米镍催化剂及其制备方法和应用
CN104174420B (zh) 一种用于合成气甲烷化的碳化硅基整体催化剂及制备方法
CN104028294B (zh) 一种适用微波辅助反应的固体酸催化剂及其制备方法
WO2011050691A1 (zh) 一种介孔炭担载的碳化钨催化剂及其制备和应用
CN107731546B (zh) 一种活性炭电极及其制备方法
CN109092326B (zh) 一种核壳状钨酸镍微球负载钯催化剂及其制备方法和应用
CN112427039B (zh) 低温高活性且高导热的甲烷化催化剂制备方法
WO2012079505A1 (zh) 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN106378135A (zh) 一种合成气制低碳烯烃的铁基催化剂及其制备方法和应用
CN109745993A (zh) 一种介孔本体型Mo-Ni加氢脱氧催化剂的制备方法
CN114345396B (zh) 分子筛原位封装活性组分型载氧体及其制备方法和应用
CN114768820A (zh) 一种铁基催化加氢制低碳烯烃催化剂的压片成型方法
CN111468153A (zh) 一种(Ru/WC)或(Pd/WC-P)复合助催化剂及制备和应用
CN112547067A (zh) 用于浆态床甲烷合成反应催化剂的制备方法
CN113600223A (zh) 一种Fe2P/氮空位g-C3N4纳米片光催化剂的制备方法与用途
CN107376936B (zh) 一种铂-钴/凹凸棒石催化剂及其制备方法和应用
CN111151301B (zh) 一种双官能团非均相Pd@MIL-101@SGO复合材料及其制备方法和应用
CN102703134B (zh) 一种利用微波辐射制备中高温煤气脱硫剂的方法
CN113117716B (zh) 用于生物焦油裂解催化剂载体、催化剂及制法
CN113731422A (zh) 一种浆态床甲烷合成催化剂的制备方法
CN113797948A (zh) 一种以天然粘土矿物为原料制备的催化剂载体及其制备方法
CN112642439A (zh) 用于低温浆态床甲烷化催化剂的制备方法
CN114100616B (zh) 烃类蒸汽转化催化剂及其制备方法
CN115999554A (zh) 一种以金属有机框架为前驱体的甲醇催化剂及制备方法
CN114632522B (zh) 一种富氢气体脱除co钴基催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant