CN113981371B - 高SERS强度的Ag/SiO2共溅射单层膜制备方法 - Google Patents

高SERS强度的Ag/SiO2共溅射单层膜制备方法 Download PDF

Info

Publication number
CN113981371B
CN113981371B CN202111218145.5A CN202111218145A CN113981371B CN 113981371 B CN113981371 B CN 113981371B CN 202111218145 A CN202111218145 A CN 202111218145A CN 113981371 B CN113981371 B CN 113981371B
Authority
CN
China
Prior art keywords
sputtering
silicon wafer
sio
film
monolayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111218145.5A
Other languages
English (en)
Other versions
CN113981371A (zh
Inventor
赵晓宇
梁龙杰
温嘉红
张永军
钟家松
张鉴
孔哲
王雅新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202111218145.5A priority Critical patent/CN113981371B/zh
Publication of CN113981371A publication Critical patent/CN113981371A/zh
Application granted granted Critical
Publication of CN113981371B publication Critical patent/CN113981371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了高SERS强度的Ag/SiO2共溅射单层膜制备方法,包括以下步骤:(1)硅片亲水处理;(2)制备Ag/SiO2共溅射单层膜;(3)利用氢氟酸对Ag/SiO2共溅射单层膜进行腐蚀,得高SERS强度Ag/SiO2共溅射单层膜。本发明设计并制备得到了一种可实现比单层金属膜SERS增强效果更高的金属‑绝缘体共溅射膜(Ag/SiO2),采用较为简单的磁控溅射,从而利用氢氟酸对二氧化硅的腐蚀性,使Ag/SiO2共溅射薄膜中的二氧化硅被不同程度腐蚀,从而留下不同颗粒大小和间隔的银纳米颗粒,提高其单层膜的SERS强度。

Description

高SERS强度的Ag/SiO2共溅射单层膜制备方法
技术领域
本发明涉及纳米材料制备技术领域,尤其是涉及高SERS强度的Ag/SiO2共溅射单层膜制备方法。
背景技术
利用磁控溅射、化学反应等技术可以实现不同程度上改善单层金属膜SERS强度较低的缺陷,制备简单可控,成本较低,可搭载在其他结构上,转移性较好。
磁控溅射是物理气相沉积(Physical Vapor Deposition,PVD)的一种。一般的溅射法可被用于制备金属、半导体、绝缘体等多材料,且具有设备简单、易于控制、镀膜面积大和附着力强等优点。它的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。
表面增强拉曼散射(SERS)技术克服了传统拉曼光谱与生俱来的信号微弱的缺点,可以使得拉曼强度增大几个数量级。其增强因子可以高达1014~1015倍,足以探测到单个分子的拉曼信号,这些都是传统拉曼的灵敏度和测量速度不足以完成的。
目前最常用的金属是金和银,但是单层金属膜的SERS强度有限,其测试范围和大小都有很大的局限性。因此,在改进单层金属膜的SERS强度就有很大的意义,在环境监测、食品安全、临床检验及疾病诊断等众多领域中能有充分应用。
发明内容
本发明是为了解决现有技术的单层金属膜的SERS强度有限,其测试范围和大小都有很大的局限性的问题,提供了一种工艺步骤简单,可操作性强,能使SERS强度增强的高SERS 强度的Ag/SiO2共溅射单层膜制备方法。
为了实现上述目的,本发明采用以下技术方案:高SERS强度的Ag/SiO2共溅射单层膜制备方法,包括以下步骤:
(1)硅片亲水处理:将清洗后的硅片置于烧杯中,加入氨水、过氧化氢和去离子水的混合溶液中,煮至沸腾后保持煮沸,冷却后,倒出混合溶液,硅片用去离子水、无水乙醇反复超声。
(2)制备Ag/SiO2共溅射单层膜:将银靶和二氧化硅靶分别倾斜40°,同时向硅片溅射,在硅片表面生成Ag/SiO2共溅射单层膜。
(3)利用氢氟酸对Ag/SiO2共溅射单层膜进行腐蚀,得高SERS强度Ag/SiO2共溅射单层膜。
作为优选,步骤(1)中,所述清洗后的硅片通过以下步骤制得:用去离子水和无水乙醇分别浸泡干净硅片,超声处理。通过控制氢氟酸腐蚀时间能使二氧化硅产生不同程度的腐蚀,从而留下不同颗粒大小和间隔的银纳米颗粒,控制单层膜的SERS强度。
作为优选,步骤(1)中,混合溶液中,氨水、过氧化氢和去离子水的体积比为1:2:6。
作为优选,步骤(1)中,保持煮沸10~15分钟。
作为优选,超声时间为10~15min。
作为优选,步骤(2)中,开始前背景气压为4.5×10-4Pa,通入25sccm的Ar,溅射时背景气压为1.5Pa,银溅射功率10W,二氧化硅溅射功率为40W,溅射时间为10~120s。10~60s共溅射形成的是颗粒膜,70~120s形成的是连续膜;不同溅射功率下的银纳米颗粒大小不同,通过多次试验发现,银溅射功率10W能得到大小最合适的银颗粒。
因此,本发明具有如下有益效果:本发明设计并制备得到了一种可实现比单层金属膜 SERS增强效果更高的金属-绝缘体共溅射膜(Ag/SiO2),采用较为简单的磁控溅射,从而利用氢氟酸对二氧化硅的腐蚀性,使Ag/SiO2共溅射薄膜中的二氧化硅被不同程度腐蚀,从而留下不同颗粒大小和间隔的银纳米颗粒,提高其单层膜的SERS强度。
附图说明
图1是实施例1中Ag/SiO2共溅射单层膜SEM图。
图2是实施例1中高SERS强度Ag/SiO2共溅射单层膜SEM图。
图3是实施例1中Ag/SiO2共溅射单层膜与高SERS强度Ag/SiO2共溅射单层膜的拉曼对比图。
图4是实施例2中Ag/SiO2共溅射单层膜SEM图。
图5是实施例2中高SERS强度Ag/SiO2共溅射单层膜SEM图。
图6是实施例2中Ag/SiO2共溅射单层膜与高SERS强度Ag/SiO2共溅射单层膜的拉曼对比图。
图7是实施例3中Ag/SiO2共溅射单层膜SEM图。
图8是实施例3中高SERS强度Ag/SiO2共溅射单层膜。
图9是实施例3中Ag/SiO2共溅射单层膜与高SERS强度Ag/SiO2共溅射单层膜的拉曼对比图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述。
实施例1
(1)硅片亲水处理:将清洗后的硅片置于烧杯中,加入氨水、过氧化氢和去离子水的混合溶液中,混合溶液中,氨水、过氧化氢和去离子水的体积比为1:2:6,煮至沸腾后保持煮沸 10~15min,冷却后,倒出混合溶液,硅片用去离子水、无水乙醇反复超声10min;其中清洗后的硅片通过以下步骤制得:用去离子水和无水乙醇分别浸泡干净硅片,超声处理。
(2)制备Ag/SiO2共溅射单层膜:将银靶和二氧化硅靶分别倾斜40°,同时向硅片溅射,在硅片表面生成Ag/SiO2共溅射单层膜;开始前背景气压为4.5×10-4Pa,通入25sccm 的Ar,溅射时背景气压为1.5Pa,银溅射功率10W,二氧化硅溅射功率为40W,溅射时间为 50s,生成的Ag/SiO2共溅射单层膜SEM图如图1所示。
(3)利用质量百分数20%的氢氟酸对Ag/SiO2共溅射单层膜进行腐蚀,腐蚀时间为10s,得高SERS强度Ag/SiO2共溅射单层膜,高SERS强度Ag/SiO2共溅射单层膜的SEM图如图2所示。
Ag/SiO2共溅射单层膜与高SERS强度Ag/SiO2共溅射单层膜的拉曼对比图如图3所示。
实施例2
(1)硅片亲水处理:将清洗后的硅片置于烧杯中,加入氨水、过氧化氢和去离子水的混合溶液中,混合溶液中,氨水、过氧化氢和去离子水的体积比为1:2:6,煮至沸腾后保持煮沸 10~15min,冷却后,倒出混合溶液,硅片用去离子水、无水乙醇反复超声12min;其中清洗后的硅片通过以下步骤制得:用去离子水和无水乙醇分别浸泡干净硅片,超声处理。
(2)制备Ag/SiO2共溅射单层膜:将银靶和二氧化硅靶分别倾斜40°,同时向硅片溅射,在硅片表面生成Ag/SiO2共溅射单层膜;开始前背景气压为4.5×10-4Pa,通入25sccm 的Ar,溅射时背景气压为1.5Pa,银溅射功率10W,二氧化硅溅射功率为40W,溅射时间为 60s;生成的Ag/SiO2共溅射单层膜SEM图如图4所示。
(3)利用质量百分数20%的氢氟酸对Ag/SiO2共溅射单层膜进行腐蚀,腐蚀时间为10s,得高SERS强度Ag/SiO2共溅射单层膜,高SERS强度Ag/SiO2共溅射单层膜的SEM图如图5所示。
Ag/SiO2共溅射单层膜与高SERS强度Ag/SiO2共溅射单层膜的拉曼对比图如图6所示。
实施例3
(1)硅片亲水处理:将清洗后的硅片置于烧杯中,加入氨水、过氧化氢和去离子水的混合溶液中,混合溶液中,氨水、过氧化氢和去离子水的体积比为1:2:6,煮至沸腾后保持煮沸 10~15min,冷却后,倒出混合溶液,硅片用去离子水、无水乙醇反复超声15min;其中清洗后的硅片通过以下步骤制得:用去离子水和无水乙醇分别浸泡干净硅片,超声处理。
(2)制备Ag/SiO2共溅射单层膜:将银靶和二氧化硅靶分别倾斜40°,同时向硅片溅射,在硅片表面生成Ag/SiO2共溅射单层膜;开始前背景气压为4.5×10-4Pa,通入25sccm 的Ar,溅射时背景气压为1.5Pa,银溅射功率10W,二氧化硅溅射功率为40W,溅射时间为 70s;生成的Ag/SiO2共溅射单层膜SEM图如图7所示。
(3)利用质量百分数20%的氢氟酸对Ag/SiO2共溅射单层膜进行腐蚀,腐蚀时间为10s,得高SERS强度Ag/SiO2共溅射单层膜,高SERS强度Ag/SiO2共溅射单层膜的SEM图如图8所示。
Ag/SiO2共溅射单层膜与高SERS强度Ag/SiO2共溅射单层膜的拉曼对比图如图9所示。
以上所述的实施例只是本发明的一种较佳的方案,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (5)

1.一种高SERS强度的Ag/SiO2共溅射单层膜制备方法,其特征在于,包括以下步骤:
(1)硅片亲水处理:将清洗后的硅片置于烧杯中,加入氨水、过氧化氢和去离子水的混合溶液中,煮至沸腾后保持煮沸,冷却后,倒出混合溶液,硅片用去离子水、无水乙醇反复超声;
(2)制备Ag/SiO2共溅射单层膜:将银靶和二氧化硅靶分别倾斜40°,同时向硅片溅射,在硅片表面生成Ag/SiO2共溅射单层膜;
步骤(2)中,开始前背景气压为4.5×10-4Pa,通入25sccm的Ar,溅射时背景气压为1.5Pa,银溅射功率10W,二氧化硅溅射功率为40W,溅射时间为10~60s;
(3)利用氢氟酸对Ag/SiO2共溅射单层膜进行腐蚀,得高SERS强度Ag/SiO2共溅射单层膜。
2.根据权利要求1所述的一种高SERS强度的Ag/SiO2共溅射单层膜制备方法,其特征在于,步骤(1)中,所述清洗后的硅片通过以下步骤制得:用去离子水和无水乙醇分别浸泡干净硅片,超声处理。
3.根据权利要求1所述的一种高SERS强度的Ag/SiO2共溅射单层膜制备方法,其特征在于,步骤(1)中,混合溶液中,氨水、过氧化氢和去离子水的体积比为1:2:6。
4.根据权利要求1所述的一种高SERS强度的Ag/SiO2共溅射单层膜制备方法,其特征在于,步骤(1)中,保持煮沸10~15分钟。
5.根据权利要求1所述的一种高SERS强度的Ag/SiO2共溅射单层膜制备方法,其特征在于,超声时间为10~15min。
CN202111218145.5A 2021-10-20 2021-10-20 高SERS强度的Ag/SiO2共溅射单层膜制备方法 Active CN113981371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111218145.5A CN113981371B (zh) 2021-10-20 2021-10-20 高SERS强度的Ag/SiO2共溅射单层膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111218145.5A CN113981371B (zh) 2021-10-20 2021-10-20 高SERS强度的Ag/SiO2共溅射单层膜制备方法

Publications (2)

Publication Number Publication Date
CN113981371A CN113981371A (zh) 2022-01-28
CN113981371B true CN113981371B (zh) 2024-03-15

Family

ID=79739463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111218145.5A Active CN113981371B (zh) 2021-10-20 2021-10-20 高SERS强度的Ag/SiO2共溅射单层膜制备方法

Country Status (1)

Country Link
CN (1) CN113981371B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105331943A (zh) * 2015-11-09 2016-02-17 上海纳米技术及应用国家工程研究中心有限公司 基于共溅射后腐蚀修饰获得拉曼增强基底的制备方法
CN105403551A (zh) * 2015-10-30 2016-03-16 上海纳米技术及应用国家工程研究中心有限公司 一种具有拉曼增强性能薄膜的制备方法
CN110592545A (zh) * 2019-09-16 2019-12-20 吉林师范大学 一种桥联型SERS活性Ag/SiO2纳米球壳阵列结构复合材料及其制备方法
CN111411335A (zh) * 2020-03-02 2020-07-14 杭州电子科技大学 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403551A (zh) * 2015-10-30 2016-03-16 上海纳米技术及应用国家工程研究中心有限公司 一种具有拉曼增强性能薄膜的制备方法
CN105331943A (zh) * 2015-11-09 2016-02-17 上海纳米技术及应用国家工程研究中心有限公司 基于共溅射后腐蚀修饰获得拉曼增强基底的制备方法
CN110592545A (zh) * 2019-09-16 2019-12-20 吉林师范大学 一种桥联型SERS活性Ag/SiO2纳米球壳阵列结构复合材料及其制备方法
CN111411335A (zh) * 2020-03-02 2020-07-14 杭州电子科技大学 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition:Methods andApplications;Hin On Chu etal;《coatings》;第7卷(第26期);第1-23页 *
复合材料图纹结构中"热点"构建及表面增强拉曼效应研究;赵晓宇;《中国优秀硕士学位论文全文数据库(电子期刊)》(第4期);第10、12-17页 *

Also Published As

Publication number Publication date
CN113981371A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
US8821697B2 (en) Silver selenide sputtered films and method and apparatus for controlling defect formation in silver selenide sputtered films
KR20100135957A (ko) 몰리브덴-니오브 합금, 몰리브덴-니오브 합금을 포함하는 스퍼터링 타겟, 이러한 스퍼터링 타겟의 제조 방법 및 이러한 스퍼터링 타겟으로부터 준비되는 박막 및 그 용도
CN110205587A (zh) 一种模板退火制备大面积规则排布金纳米颗粒阵列的方法
JP4257808B2 (ja) 磁性材料のエッチング方法及びプラズマエッチング装置
Hou et al. Characterization of Sputtered Nano-Au Layer Deposition on Silicon Wafer
CN108545784A (zh) 一种小尺寸金属氧化物纳米片及其制备方法
CN113981371B (zh) 高SERS强度的Ag/SiO2共溅射单层膜制备方法
CN104037320B (zh) 一种大面积氧化锌纳微发电机的制造方法
JP2757546B2 (ja) Feを含む物質のエッチング方法およびエッチング装置
CN101660124A (zh) 一种多孔氧化钨薄膜的制备方法
CN108004506B (zh) 一种基于In合金的贵金属纳米颗粒及其制备方法
US20100206720A1 (en) Method of producing inorganic nanoparticles
CN114231930B (zh) 一种制备超密集热点空间结构的方法
RU2228900C1 (ru) Способ получения углеродных наноструктур
CN114486845B (zh) 一种制备纳米球形蜂窝结构的方法
Matope et al. Micro-material handling employing e-beam generated topographies of copper and aluminium
Sahoo et al. Morphological dependence of field emission properties of silicon nanowire arrays
CN114231928B (zh) 一种环状阶梯纳米结构的制备方法
RU2772770C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ОПТИЧЕСКИХ ТОНКОПЛЕНОЧНЫХ ФУНКЦИОНАЛЬНЫХ ПОКРЫТИЙ Gd2O3 НА ПОДЛОЖКЕ КВАРЦЕВОГО СТЕКЛА
Juremi et al. Nanosphere Lithography: Fabrication of Periodic Arrays of Nanoholes
CN106553992B (zh) 金属电极结构的制造方法
CN113913766A (zh) 一种形貌可控的纳米结构阵列制备方法
CN114231929A (zh) 一种制备纳米圆锥形蜂窝结构的方法
CN105463393B (zh) 一种磁性Fe3Si颗粒膜的制备方法
CN101804962A (zh) 无机材料纳米粒子的制法及应用该制法的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant