CN113979769B - 一种刚性超薄隔热材料及其制备方法 - Google Patents

一种刚性超薄隔热材料及其制备方法 Download PDF

Info

Publication number
CN113979769B
CN113979769B CN202111434736.6A CN202111434736A CN113979769B CN 113979769 B CN113979769 B CN 113979769B CN 202111434736 A CN202111434736 A CN 202111434736A CN 113979769 B CN113979769 B CN 113979769B
Authority
CN
China
Prior art keywords
ceramic
heat insulation
insulation material
rigid
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111434736.6A
Other languages
English (en)
Other versions
CN113979769A (zh
Inventor
刘晓波
杨海生
张凡
高翠雪
孙景景
郭金池
李文静
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN202111434736.6A priority Critical patent/CN113979769B/zh
Publication of CN113979769A publication Critical patent/CN113979769A/zh
Application granted granted Critical
Publication of CN113979769B publication Critical patent/CN113979769B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/84Compounds having one or more carbon-to-metal of carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Insulation (AREA)

Abstract

本发明公开一种刚性超薄隔热材料及其制备方法,属于隔热材料制备技术领域,该刚性超薄隔热材料包括刚性陶瓷隔热材料基体和渗入到基体表面以内的有机硅致密层,基体厚度0.3‑2mm,致密层厚度不大于0.2mm,热导率低,密度小,压缩强度大,弯曲强度大,在300℃高真空环境下不分解、不产气。

Description

一种刚性超薄隔热材料及其制备方法
技术领域
本发明属于隔热材料制备技术领域,具体涉及一种刚性超薄隔热材料及其制备方法。
背景技术
航天领域的电子元器件对隔热材料的耐热温度、高温热分解性能、绝缘性能、力学性能等有着特殊需求,例如某些电子元件的隔热板要求同时满足以下性能:热导率不低于0.08W/(mk),密度小于0.5g/cm3,压缩强度大于2MPa,弯曲强度大于10MPa,表面具有不大于0.2mm的致密化层且整体厚度0.4-0.8mm可调,在300℃高真空环境下不分解、不产气等。目前,市面上没有能够同时满足上述性能需求的材料,且此类材料的制备技术未见文献报道,航天电子领域对具有此类性能的隔热材料需求迫切。常见的隔热材料如气凝胶、聚酰亚胺等皆因存在较大的性能缺陷而不能满足使用需求,例如气凝胶材料存在较严重的掉粉问题,无法在高真空度、高清洁度的真空环境下使用,且力学性能及尺寸精度无法满足使用需求;聚酰亚胺材料的热导率、密度则均不满足要求。已公开专利CN112151918A公开了一种隔热膜及其制备方法及应用,其致密化方式为塑封,所用塑料类材料PE膜、PP膜、PET耐热温度低于200℃,铝膜高导热、导电,且塑封膜包裹在隔热材料外侧,受破坏后会剥离脱落。其隔热材料采用的是模压成形,属于简单物理成形,材料易松散,且不能证明为刚性材料。
发明内容
本发明的目的是为了解决现有隔热材料的各项性能无法同时满足航天电子领域某些元器件对隔热材料的特殊需求,提出一种电子用刚性超薄隔热材料及其制备方法。
本发明采用的技术方案如下:
一种刚性超薄隔热材料,包括刚性陶瓷隔热材料基体和渗入到基体表面以内的有机硅致密层,基体厚度0.3-2mm,致密层厚度不大于0.2mm。
一种刚性超薄隔热材料的制备方法,包括以下步骤:
1)称取短切陶瓷纤维与助剂,在乙醇中充分混合,然后在滤网上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,纤维毡的上方和下方分别平铺不少于2层的陶瓷布;其中纤维毡铺设一层或多层,若为多层,则在每层纤维毡之间平铺不少于2层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至预设厚度,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至700~1100℃,保温1~5h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.1~0.2mm的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,然后整体转移至20-90℃的环境中干燥 6-48小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
进一步地,所述陶瓷纤维优选石英纤维。
进一步地,所述预设厚度为0.3~2mm。
进一步地,所述短切陶瓷纤维与助剂的质量比为100:(1~10)。
进一步地,所述助剂为氮化硼、碳化硼、四硼化硅、六硼化硅中的一种。
进一步地,所述滤网的尺寸与要制备的刚性陶瓷隔热材料基体的平面尺寸相一致。
进一步地,所述陶瓷布为氧化铝布、氧化锆布中的一种。
进一步地,所述陶瓷平板为氧化铝板、碳化硅板、氧化锆板中的一种。
进一步地,所述有机硅胶包括红胶、白胶、黑胶、粉胶、甲基苯基有机硅树脂中的一种,或者为其他有机硅胶;所述有机硅胶无溶剂稀释。
进一步地,所述改制后的刮胶板的改制是指:将刮胶板用于刮胶的一端的锋利边缘进行倒圆角处理,圆角半径不小于2mm。
本发明为原位固化,耐温300℃以上且绝缘,致密材料浸渍于隔热材料基体内部,而非包裹在表面,隔热材料通过烧结成形,是通过化学成形的刚性材料。本发明制备的刚性超薄隔热材料,热导率不高于0.08W/(mk),密度不大于0.5g/cm3,压缩强度不小于2MPa,弯曲强度不小于10MPa,在300℃高真空环境下不分解、不产气,可以在高清洁、高真空环境下使用,不掉粉,性能优异,应用前景广阔。本发明提出的刚性超薄隔热材料的制备方法,流程简单,容易操作,使用现有的马弗炉、烘箱、真空泵等设备即可实现制备,无需新增复杂设备,成本低,可实现大批量生产。
附图说明
图1是本发明的一种刚性超薄隔热材料的结构示意图。
具体实施方式
为使本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图作详细说明如下。
实施例1
制备一种刚性超薄隔热材料,如图1所示,基体厚度0.3mm,致密层厚度0.1mm,密度0.5g/cm3。制备步骤如下:
1)称取6g石英纤维和0.36g氮化硼,在0.22L乙醇中充分混合,然后在滤网(滤网面积 200mm*200mm)上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,铺设一层纤维毡,其上方和下方分别平铺2层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至0.3mm,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至1100℃,保温3h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.1mm 的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,然后整体转移至20℃的环境中干燥48 小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
制备的刚性超薄隔热材料测试的性能为:热导率0.058W/(mK),密度0.49g/cm3,压缩强度2.5MPa,弯曲强度13MPa,在300℃高真空环境下不分解、不产气。
实施例2
制备一种刚性超薄隔热材料,基体厚度2mm,致密层厚度0.1mm,密度0.5g/cm3。制备步骤如下:
1)称取10g石英纤维和0.4g氮化硼,在1.33L乙醇中充分混合,然后在滤网(滤网面积 200mm*200mm)上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,铺设一层纤维毡,其上方和下方分别平铺3层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至2mm,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至1100℃,保温1h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.1mm 的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,然后整体转移至90℃的环境中干燥6小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
制备的刚性超薄隔热材料测试的性能为:热导率0.059W/(mK),密度0.51g/cm3,压缩强度2.6MPa,弯曲强度13.5MPa,在300℃高真空环境下不分解、不产气。
实施例3
制备一种刚性超薄隔热材料,基体厚度2mm,致密层厚度0.2mm,密度0.3g/cm3。制备步骤如下:
1)称取24g石英纤维和1.44g四硼化硅,在0.88L乙醇中充分混合,然后在滤网(滤网面积200mm*200mm)上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,铺设二层纤维毡,其上方和下方分别平铺3层的陶瓷布,二层纤维毡之间平铺2层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至2mm,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至700℃,保温5h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.15mm 的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,然后整体转移至80℃的环境中干燥30 小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
制备的刚性超薄隔热材料测试的性能为:热导率0.048W/(mK),密度0.30g/cm3,压缩强度2.0MPa,弯曲强度10.2MPa,在300℃高真空环境下不分解、不产气。
实施例4
制备一种刚性超薄隔热材料,基体厚度1mm,致密层厚度0.2mm,密度0.4g/cm3。制备步骤如下:
1)称取16g石英纤维和1.6g六硼化硅,在0.59L乙醇中充分混合,然后在滤网(滤网面积200mm*200mm)上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,铺设二层纤维毡,其上方和下方分别平铺2层的陶瓷布,二层纤维毡之间平铺3层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至1mm,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至900℃,保温5h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.2mm 的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,然后整体转移至70℃的环境中干燥24 小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
制备的刚性超薄隔热材料测试的性能为:热导率0.055W/(mK),密度0.41g/cm3,压缩强度2.3MPa,弯曲强度11.5MPa,在300℃高真空环境下不分解、不产气。
虽然本发明已以实施例公开如上,然其并非用以限定本发明,本领域的普通技术人员对本发明的技术方案进行的适当修改或者等同替换,均应涵盖于本发明的保护范围内,本发明的保护范围以权利要求所限定者为准。

Claims (8)

1.一种刚性超薄隔热材料,其特征在于,包括刚性陶瓷隔热材料基体和渗入到基体表面以内的有机硅致密层,基体厚度0.3-2mm,致密层厚度不大于0.2mm;
所述刚性超薄隔热材料通过以下步骤制备得到:
1)称取短切陶瓷纤维与助剂,所述助剂为氮化硼、碳化硼、四硼化硅、六硼化硅中的一种,在乙醇中充分混合,然后在滤网上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,纤维毡的上方和下方分别平铺不少于2层的陶瓷布;其中纤维毡铺设一层或多层,若为多层,则在每层纤维毡之间平铺不少于2层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至预设厚度,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至700~1100℃,保温1~5h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.1~0.2mm的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,所述改制后的刮胶板的改制是指:将刮胶板用于刮胶的一端的锋利边缘进行倒圆角处理,圆角半径不小于2mm;然后整体转移至20-90℃的环境中干燥6-48小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
2.一种刚性超薄隔热材料的制备方法,其特征在于,包括以下步骤:
1)称取短切陶瓷纤维与助剂,所述助剂为氮化硼、碳化硼、四硼化硅、六硼化硅中的一种,在乙醇中充分混合,然后在滤网上进行过滤,得到厚度均匀掺杂助剂的纤维湿毡,再在通风处自然晾干后,得到纤维毡;
2)将纤维毡平铺于高温马弗炉中,纤维毡的上方和下方分别平铺不少于2层的陶瓷布;其中纤维毡铺设一层或多层,若为多层,则在每层纤维毡之间平铺不少于2层的陶瓷布;
3)在平铺好的纤维毡的最上方放置陶瓷平板,使纤维毡厚度被压缩至预设厚度,固定陶瓷平板的位置不动;
4)开启高温马弗炉,将温度升至700~1100℃,保温1~5h后降至室温,将马弗炉中烧结完毕的纤维毡取出,得到所述预设厚度的刚性陶瓷隔热材料基体;
5)将刚性陶瓷隔热材料基体摆放于清洁平台上,基体表面均匀流延覆盖厚度为0.1~0.2mm的有机硅胶;再在基体表面覆盖一层脱模布,然后覆盖一层真空袋,检测完气密性无误后抽真空,使脱模布、真空袋紧密贴合在基体表面;
6)采用改制后的刮胶板在真空袋的外表面反复滑动挤压,使基体表面的有机硅胶在真空压力及滑动挤压力的综合作用下全部浸入基体内部,所述改制后的刮胶板的改制是指:将刮胶板用于刮胶的一端的锋利边缘进行倒圆角处理,圆角半径不小于2mm;然后整体转移至20-90℃的环境中干燥6-48小时,最后将真空袋、脱模布拆除,得到单面致密化的刚性超薄隔热材料。
3.如权利要求2所述的方法,其特征在于,所述陶瓷纤维为石英纤维。
4.如权利要求2所述的方法,其特征在于,所述预设厚度为0.3~2mm。
5.如权利要求2所述的方法,其特征在于,所述短切陶瓷纤维与助剂的质量比为100:(1~10)。
6.如权利要求2所述的方法,其特征在于,所述陶瓷布为氧化铝布、氧化锆布中的一种。
7.如权利要求2所述的方法,其特征在于,所述陶瓷平板为氧化铝板、碳化硅板、氧化锆板中的一种。
8.如权利要求2所述的方法,其特征在于,所述有机硅胶为红胶、白胶、黑胶、粉胶、甲基苯基有机硅树脂中的一种,或者为无溶剂稀释的有机硅胶。
CN202111434736.6A 2021-11-29 2021-11-29 一种刚性超薄隔热材料及其制备方法 Active CN113979769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111434736.6A CN113979769B (zh) 2021-11-29 2021-11-29 一种刚性超薄隔热材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111434736.6A CN113979769B (zh) 2021-11-29 2021-11-29 一种刚性超薄隔热材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113979769A CN113979769A (zh) 2022-01-28
CN113979769B true CN113979769B (zh) 2022-09-23

Family

ID=79732522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111434736.6A Active CN113979769B (zh) 2021-11-29 2021-11-29 一种刚性超薄隔热材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113979769B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259877A (zh) * 2022-07-25 2022-11-01 哈尔滨工业大学 一种低温烧结制备刚性陶瓷纤维隔热瓦的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547628A (en) * 1993-03-09 1996-08-20 Societe Europeenne De Propulsion Method of manufacturing thermal shielding elements for space planes
JP2014196878A (ja) * 2013-03-29 2014-10-16 イソライト工業株式会社 耐火断熱材及びその製造方法
CN108455978A (zh) * 2016-09-14 2018-08-28 航天特种材料及工艺技术研究所 表面韧化的氧化铝纤维刚性隔热瓦多层复合材料、涂层组合物、制备方法及其应用
CN108911776A (zh) * 2018-06-28 2018-11-30 航天特种材料及工艺技术研究所 一种表面抗冲刷柔性隔热复合材料及其制备方法
CN109384459A (zh) * 2018-11-23 2019-02-26 航天特种材料及工艺技术研究所 一种纤维增强二氧化硅隔热陶瓷材料及其制备方法和应用
CN109968757A (zh) * 2019-04-22 2019-07-05 中国人民解放军国防科技大学 一种耐烧蚀轻质防热隔热一体化复合材料及其制备方法
CN111499414A (zh) * 2020-04-10 2020-08-07 中国航天空气动力技术研究院 一种轻质高强度耐冲刷陶瓷防隔热一体化结构及制备方法
CN112552064A (zh) * 2020-12-28 2021-03-26 航天特种材料及工艺技术研究所 一种轻质透波陶瓷隔热材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2560817T3 (pl) * 2010-04-23 2021-04-06 Unifrax I Llc Wielowarstwowy kompozyt termoizolacyjny

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547628A (en) * 1993-03-09 1996-08-20 Societe Europeenne De Propulsion Method of manufacturing thermal shielding elements for space planes
JP2014196878A (ja) * 2013-03-29 2014-10-16 イソライト工業株式会社 耐火断熱材及びその製造方法
CN108455978A (zh) * 2016-09-14 2018-08-28 航天特种材料及工艺技术研究所 表面韧化的氧化铝纤维刚性隔热瓦多层复合材料、涂层组合物、制备方法及其应用
CN108911776A (zh) * 2018-06-28 2018-11-30 航天特种材料及工艺技术研究所 一种表面抗冲刷柔性隔热复合材料及其制备方法
CN109384459A (zh) * 2018-11-23 2019-02-26 航天特种材料及工艺技术研究所 一种纤维增强二氧化硅隔热陶瓷材料及其制备方法和应用
CN109968757A (zh) * 2019-04-22 2019-07-05 中国人民解放军国防科技大学 一种耐烧蚀轻质防热隔热一体化复合材料及其制备方法
CN111499414A (zh) * 2020-04-10 2020-08-07 中国航天空气动力技术研究院 一种轻质高强度耐冲刷陶瓷防隔热一体化结构及制备方法
CN112552064A (zh) * 2020-12-28 2021-03-26 航天特种材料及工艺技术研究所 一种轻质透波陶瓷隔热材料及其制备方法

Also Published As

Publication number Publication date
CN113979769A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN105801146B (zh) 连续密度梯度化低密度多孔碳粘接复合材料及其制备方法
EP1834936B1 (en) End-face heating apparatus, end-face drying method for honeycomb aggregated body, and method for manufacturing honeycomb structured body
CN113979769B (zh) 一种刚性超薄隔热材料及其制备方法
CN104230368B (zh) 沥青基碳纤维无纺毡保温板及其制造方法
CN102199042A (zh) 一种轻质刚性陶瓷隔热瓦及其制备方法
US20120231157A1 (en) Method and device for producing carbon paper
WO2001063983A2 (en) Thermal management system
CN101323536A (zh) 氮化硼多孔陶瓷保温材料、制备方法及其应用
KR20040030605A (ko) 흑연체의 압출
WO2017166955A1 (zh) 真空袋压成型组件及真空袋压成型方法、纤维复合材料
TW201630729A (zh) 複合耐火物及其製造方法
CN114573358A (zh) 石墨烯导热膜、石墨烯导热片、制备方法及模具
CN104261853A (zh) 沥青基碳纤维无纺毡保温筒及其制造方法
CN113771443A (zh) 烧结石墨烯泡沫块增强的石墨烯导热垫片及其制备方法
CN102211766B (zh) 一种高导热碳材料的快速、低成本制备方法
CN117945776A (zh) 一种碳纤维网胎板材及其制备方法和应用
CN204224476U (zh) 沥青基碳纤维无纺毡保温筒
CN116692848A (zh) 一种高密度等静压石墨的制备方法
CN115613212A (zh) 一种碳纤维毡的制备方法
CN104891996A (zh) 高取向石墨复合材料制备工艺
CN204224477U (zh) 沥青基碳纤维无纺毡保温板
EP2479158B1 (en) Method of preparing a silicon carbide honeycomb
Liu et al. A novel way of fabricating CE/Si3N4 composites with excellent mechanical and dielectric properties
JP4948193B2 (ja) ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
CN111470866A (zh) 金刚石-碳化硅复合材料及其制备方法、电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant