WO2017166955A1 - 真空袋压成型组件及真空袋压成型方法、纤维复合材料 - Google Patents

真空袋压成型组件及真空袋压成型方法、纤维复合材料 Download PDF

Info

Publication number
WO2017166955A1
WO2017166955A1 PCT/CN2017/074442 CN2017074442W WO2017166955A1 WO 2017166955 A1 WO2017166955 A1 WO 2017166955A1 CN 2017074442 W CN2017074442 W CN 2017074442W WO 2017166955 A1 WO2017166955 A1 WO 2017166955A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
vacuum bag
rubber
sealing film
layer
Prior art date
Application number
PCT/CN2017/074442
Other languages
English (en)
French (fr)
Inventor
宫清
林信平
李志海
李刚
徐述荣
谢剑梅
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017166955A1 publication Critical patent/WO2017166955A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/544Details of vacuum bags, e.g. materials or shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing

Definitions

  • the invention relates to a vacuum bag press forming assembly and a vacuum bag press forming method, and a fiber composite material.
  • the existing vacuum bag process is a closed preform cavity formed by combining a single-sided rigid preform mold and a vacuum bag made of an elastic soft film, which is pre-impregnated with fiber cloth.
  • the formed prepreg is filled in the preforming cavity, and then the vacuum is pre-formed in the preforming cavity, and the resin adsorbed in the prepreg is better combined with the fiber cloth by vacuum suction, and the resin is applied to the fabric by vacuum suction. Impregnated liquid molding technology.
  • the prepreg is filled in the preforming cavity, and after vacuum pressing and preforming, it is further required to be heated in an oven to solidify the resin in the prepreg. This is ultimately shaped into the desired composite material.
  • the above method has low molding efficiency, and it takes about 3 hours to complete a mold product, and the energy consumption is high, and the power consumption per square meter of product is about 22 yuan.
  • the above molding method is difficult to produce a larger size product, which greatly limits the scope of use of the method.
  • the technical problem to be solved by the present invention is to provide a vacuum bag compression molding assembly for the vacuum bag compression molding method in the prior art, which has high energy consumption, low efficiency, and is unable to produce a large-sized product due to space limitation of the drying equipment. .
  • a vacuum bag press molding assembly including a mold, a surface heating member, and a flexible sealing film; the sealing film is sealingly coupled to the mold, and a sealed seal is formed between the sealing film and the mold for forming a sealing cavity that is subjected to a molding process; the surface heating member is disposed in the sealing cavity and covers the surface of the component to be molded to heat the surface of the component to be molded.
  • the present invention also provides a vacuum bag press forming method comprising the following steps:
  • the present invention provides a fiber composite material which is produced by the above-described vacuum bag compression molding method.
  • the surface forming member is heated and solidified by the surface heating member covering the surface of the member to be molded, and the large drying device is not required for curing, thereby greatly reducing energy consumption.
  • the cost is low; at the same time, its heat curing efficiency is high.
  • the vacuum bag press forming assembly and the vacuum bag press forming method provided by the invention have a wide range of use.
  • FIG. 1 is a schematic cross-sectional structural view showing a state in which a vacuum bag press molding assembly according to a first embodiment of the present invention is used;
  • FIG. 2 is a schematic cross-sectional structural view showing a state in which a vacuum bag press molding assembly according to a second embodiment of the present invention is used;
  • FIG. 3 is a schematic cross-sectional structural view showing a state in which a vacuum bag press molding assembly according to a third embodiment of the present invention is used;
  • FIG. 4 is a schematic view showing the layout of a resistance wire on a soaking layer in a vacuum bag compression molding assembly provided by the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the invention provides a vacuum bag compression molding assembly.
  • the vacuum bag press molding assembly includes a mold, a surface heating member, and a flexible sealing film; the sealing film may be sealingly coupled to the mold to form a sealed seal between the sealing film and the mold a sealing cavity for molding the molded article; the surface heating member is disposed in the sealing cavity and covering the surface of the component to be molded to heat the surface of the component to be molded.
  • the mold is a mold in a conventional vacuum bag forming process, and the present invention has no special requirements.
  • the mold surface has a cavity for forming the desired shape.
  • a part to be molded such as a prepreg, is placed in the cavity.
  • the mold surface around the cavity can be used for sealing connection with the sealing film.
  • the sealing film is used for connection with a mold, and a seal is formed between the sealing film and the mold for forming the molded article.
  • Type treated sealed chamber is used for connection with a mold, and a seal is formed between the sealing film and the mold for forming the molded article.
  • the above sealing film is a flexible film.
  • the sealing film can be a bag film.
  • the sealing film has an air suction port, and the air suction port has a valve body that can close the air suction port.
  • the sealing chamber between the sealing film and the mold is vacuumed through the suction port, and the air bubbles in the sealed cavity are discharged to ensure the density of the part to be molded (for example, prepreg), and the external atmospheric pressure is passed through the flexible sealing film pair.
  • the part to be molded in the sealed chamber is pressed, and the part to be molded (for example, a prepreg) is pressed against the surface of the mold.
  • the sealing film used in the present invention may be a conventional sealing film used in the prior art.
  • the vacuum bag press molding assembly further has a surface heating member.
  • the above-mentioned surface heating member heats the molded article by its surface.
  • the surface heating member is used to heat the molded article in the sealed chamber, thereby achieving low-cost, high-efficiency curing.
  • the above-mentioned surface heating member structure may be various, and it is only required to heat the molding member through the entire surface thereof.
  • the surface heating member includes a heat equalizing layer, a heating layer, and a heat insulating layer disposed in this order from bottom to top.
  • the above heating layer is used for heat generation.
  • the heating layer may be electrically heated to generate heat when energized.
  • the heating layer may be a variety of conventional materials.
  • the heating layer is made of a flexible material.
  • the heating layer is a heating wire, and the heating wire is made of one of a resistance wire, a conductive paste, and a PTC.
  • the heating wire can be distributed in various forms, and only the uniform heating of the soaking layer can be achieved.
  • the heating wire is "bow" type on the surface of the soaking layer. distributed.
  • the heating wire has a cross-sectional area of from 0.5 to 2 mm 2 . The pitch and width of the heating wires can be adjusted according to actual needs, and the specific adjustment methods are known in the prior art.
  • the heating wire is preferably a resistance wire.
  • the electric resistance of the electric resistance wire can be adjusted according to actual needs.
  • the electric resistance of the electric resistance wire is preferably 4.5 to 7.5 ⁇ /m.
  • the soaking layer is used to cover the surface of the part to be molded to transfer heat generated by the heating layer to the part to be molded. It can be understood that, in the present invention, preferably, the soaking layer can homogenize the heat generated by the heating layer to have substantially the same temperature everywhere on the soaking layer, and then efficiently transfer the heat to the member to be molded.
  • the function of the soaking layer is to transfer heat uniformly and efficiently.
  • the material of the above-mentioned soaking layer can be variously used.
  • the soaking layer is a flexible material.
  • the soaking layer is made of thermally conductive silica gel, thermally conductive styrene butadiene rubber, and heat conducting EPDM.
  • Various materials used for the above-mentioned soaking layer may be conventional, for example, adding a conductive material to a material such as silica gel or rubber having poor thermal conductivity. Hot filler, giving it excellent thermal conductivity.
  • thermally conductive fillers include alumina, silica, magnesia, zinc oxide, aluminum nitride, boron nitride, silicon carbide, and the like. In the present invention, it is preferable to use a thermally conductive silica gel for the above-mentioned soaking layer.
  • the thermally conductive silica gel it can be obtained by curing the thermally conductive composition.
  • the above thermally conductive composition may include a vinyl silicone oil, a hydrogen-containing silicone oil, an alumina 65-90 wt%, a silane coupling agent, a catalyst, an inhibitor, and the like.
  • the heat insulating layer is used for insulating heat transfer between the heating layer and the space above it, thereby reducing heat loss, and at the same time, protecting the sealing film to prevent the sealing film from being subjected to excessively high temperature of the heating layer. Damage, thereby further avoiding damage to the airtightness in the sealed chamber.
  • the thermal conductivity of the above thermal insulation layer is preferably as low as possible.
  • the thermal conductivity of the thermal insulation layer is 0.2 W/mK or less.
  • the heat insulating layer can adopt various conventional heat insulating materials, for example, heat insulating cotton, heat insulating silica gel, heat insulating styrene butadiene rubber, heat insulating EPDM rubber, heat insulating natural rubber, heat insulating butyl rubber, heat insulating nitrile rubber One of the insulation SBS rubber and the insulated SEBS rubber.
  • the organic material substrate used in the heat insulating layer may be the same as the above-mentioned heat equalizing layer, and for example, styrene-butadiene rubber, EPDM rubber, natural rubber, butyl rubber, nitrile rubber, SBS rubber, or the like may be used.
  • SEBS rubber the difference is that in order to achieve good thermal insulation effect, there is no thermal conductive filler in the above thermal insulation layer, or a hollow addition hollow can be added to the above various organic materials as a matrix to improve the thermal insulation effect.
  • the addition amount is 5-50% by weight of the total mass of the heat insulating layer, and the blowing agent is added in an amount of 1-5 wt% of the total mass of the heat insulating layer.
  • the above foaming agent may be various conventional materials, for example, an N-nitroso derivative (such as a blowing agent H, a nitrosophthalamide) or an azo blowing agent (azo dimethyl hydride) may be used.
  • the heat insulating layer is preferably a heat insulating silica gel.
  • the heat insulating silica gel it can be cured by a heat insulating composition. It is obtained, for example, that the above heat insulating composition may include vinyl silicone oil, hydrogen-containing silicone oil, a catalyst, and an inhibitor.
  • the heat insulating layer is preferably made of a flexible material.
  • the surface heating member is flexible.
  • the flexible surface heating member can effectively contact the surface of the member to be molded to improve the heating effect.
  • the surface of the part to be molded (such as prepreg) may locally shrink or change.
  • the flexible surface heating element can be closely attached to the surface of the part to be molded, with the part to be molded. The surface moves synchronously, which helps to improve heating efficiency and quality.
  • the surface heating member, the mold, and the sealing film in the above-described vacuum bag press molding assembly are separated from each other before the vacuum bag forming process is performed.
  • the respective members may be sequentially assembled.
  • the surface heating member can be prepared for the product of a certain structure before the vacuum bag forming process is performed for the first time.
  • the first production is prepared by vacuum forming the surface heating member using the finished surface heating member. After the product, simply remove the surface heating member and remove the sealing film.
  • the above-described surface heating member can be reused in the subsequent production of the product of the structure.
  • the above-mentioned surface heating member can be prepared by various existing methods, for example, the sheet obtained by molding the above-mentioned heat-conductive composition is laid on the surface of the mold having the part to be molded in the cavity, or the above-mentioned heat conduction combination is The object is applied to the surface of the mold having the part to be molded in the cavity, and then the thermally conductive composition is cured.
  • a resistance wire is laid on the surface thereof.
  • the sheet formed by the heat insulating composition or the heat insulating composition is applied and cured to form a heat insulating layer.
  • the heat-insulating layer is prepared by coating and curing, it can be coated and cured first, and then coated and cured as many times as needed to form a certain thickness (for example, 3-5 mm) of thermal insulation layer, thereby achieving excellent performance. Insulation effect.
  • Fig. 1 shows the state of use of the vacuum bag press molding assembly of the first embodiment provided by the present invention.
  • the vacuum bag press molding assembly includes a mold 1, a surface heating member 2, and a sealing film 4.
  • the surface of the mold 1 has a cavity (not shown).
  • the part to be molded 2 is placed in a cavity.
  • the surface heating member 3 includes a soaking layer 31, a heating layer 32, and a heat insulating layer 33 which are disposed in this order from the bottom to the top.
  • the soaking layer 31 is a thermally conductive silica gel.
  • the heating layer 32 is a resistance wire 7. As shown in FIG. 4, the electric resistance wire 7 as the heating layer 32 is reciprocally distributed in a "bow" shape on the surface of the soaking layer 31. Both ends of the electric resistance wire 7 are taken out through the lead wires 8 and electrically connected to an external power source.
  • the heat insulating layer 33 is a heat insulating silica gel. At this time, on the lower surface of the heat insulating layer 33, a portion other than the area covered by the electric resistance wire 7 is directly bonded to the soaking layer 31.
  • the soaking layer 31 of the surface heating member 3 covers the surface of the member 2 to be molded.
  • the sealing film 4 (which can be used as a bag film) covers both the surface heating member 3 and the surface of the mold 1.
  • the sealing film 4 and the surface of the mold 1 are hermetically connected by a sealant or the like, and a sealed sealed cavity is formed between the sealing film 4 and the mold 1.
  • the lead 8 electrically connected to the resistance wire 7 is electrically connected to the external power source through the sealing film 4.
  • the lead 8 is sealed through the sealing film 4 to ensure a seal within the sealed chamber.
  • the surface heating member may further include only the heat equalizing layer and the heating layer.
  • the structure and material of the soaking layer and the heating layer are the same as those of the soaking layer and the heating layer in the first embodiment, and are not described herein again.
  • the sealing film is a flexible heat insulating sealing film, and specifically, a heat insulating material is used.
  • the material of the heat insulating sealing film having the heat insulating effect at this time may be the same as the heat insulating layer in the surface heating member in the first embodiment, and has a low thermal conductivity (0.2 W/mK or less), preferably.
  • the heat-insulating sealing film is heat-insulating silica gel, heat-insulating styrene-butadiene rubber, heat-preserving EPDM rubber, heat-insulating natural rubber, heat-insulating butyl rubber, heat-insulating nitrile rubber, heat-insulating SBS rubber,
  • One of the insulating SEBS rubbers is more preferably a heat insulating silica gel.
  • the area of the heat insulating sealing film is the same as that of the conventional heat insulating film described above.
  • the surface heating member is integrated with the heat insulating sealing film. Specifically, the heating layer of the surface heating member is provided on a lower surface of the heat insulating sealing film.
  • the vacuum bag press molding assembly in the present embodiment can be regarded as a structure in which the heat insulating layer in the surface heating member in the first embodiment is formed into a sealing film, and the sealing film is replaced by the heat insulating layer, The function of the conventional sealing film and the above-mentioned heat insulating layer is achieved.
  • the surface heating element in the embodiment is produced in substantially the same manner as the surface heating element in the first embodiment, and the only difference is that the method for preparing the heat insulating layer in the first embodiment is used in the preparation of the embodiment. Insulation sealing film.
  • the heat insulating sealing film integrally connected to the surface heating member can be reused, which simplifies the process and further reduces the cost.
  • Fig. 2 is a view showing the state of use of the vacuum bag press molding assembly of the second embodiment provided by the present invention.
  • the vacuum bag press molding assembly includes a mold 1, a surface heating member 2, and a sealing film 4.
  • the surface of the mold 1 has a cavity (not shown).
  • the part to be molded 2 is placed in a cavity.
  • the surface heating member 3 includes a soaking layer 31 and a heating layer 32 which are disposed in this order from the bottom to the top.
  • the soaking layer 31 is a thermally conductive silica gel.
  • the heating layer 32 is a resistance wire 7. As shown in FIG. 4, the electric resistance wire 7 as the heating layer 32 is reciprocally distributed in a "bow" shape on the surface of the soaking layer 31. Both ends of the electric resistance wire 7 are taken out through the lead wires 8 and electrically connected to an external power source.
  • the soaking layer 31 of the surface heating member 3 covers the surface of the member 2 to be molded.
  • the upper surface of the surface heating member 3 is combined with the heat insulating sealing film 6. Specifically, since the electric resistance wire 7 covers only the surface portion of the heating layer 32, the portion of the upper surface of the heating layer 32 outside the area covered by the electric resistance wire 7 is directly bonded to the heat insulating sealing film 6.
  • the heat insulating sealing film 6 is a heat insulating silica gel.
  • the heat insulating sealing film 6 covers both the surface heating member 3 and the surface of the mold 1.
  • the heat insulating sealing film 6 and the surface of the mold 1 are hermetically sealed by a sealant or the like to form a sealed sealed cavity between the heat insulating sealing film 6 and the mold 1.
  • the lead 8 electrically connected to the resistance wire 7 is electrically connected to the external power source through the heat insulating sealing film 6.
  • the lead 8 is sealed through the insulating sealing film 6 to ensure a seal in the sealed chamber.
  • the auxiliary sealing film can be added to the first or second embodiment described above.
  • the auxiliary sealing film can specifically employ the sealing film of the first embodiment.
  • the auxiliary sealing film is disposed in the sealing cavity and is sealingly connected with the mold to form a sealed isolation cavity between the auxiliary sealing film and the mold; the to-be-molded part is located in the isolation cavity, and the surface is heated The piece is located outside the isolation chamber.
  • Fig. 3 is a view showing the state of use of the vacuum bag press molding assembly of the third embodiment provided by the present invention.
  • the auxiliary sealing film 5 is added in the third embodiment as compared with the first embodiment.
  • the vacuum bag press molding assembly includes a mold 1, a surface heating member 2, a sealing film 4, and an auxiliary sealing film 5.
  • the surface of the mold 1 has a cavity (not shown).
  • the part to be molded 2 is placed in a cavity.
  • the auxiliary sealing film 5 (which can be used as a bag film) covers both the member 2 to be molded and the surface of the mold 1.
  • the auxiliary sealing film 5 is sealedly connected with the surface of the mold 1 by a sealant or the like, and a sealed isolation chamber is formed between the auxiliary sealing film 5 and the mold 1, and the to-be-molded member 2 is located in the isolation chamber.
  • the surface heating member 3 includes a soaking layer 31, a heating layer 32, and a heat insulating layer 33 which are disposed in this order from the bottom to the top.
  • the soaking layer 31 is a thermally conductive silica gel.
  • the heating layer 32 is a resistance wire 7. As shown in FIG. 4, the electric resistance wire 7 as the heating layer 32 is reciprocally distributed in a "bow" shape on the surface of the soaking layer 31. Both ends of the electric resistance wire 7 are taken out through the lead wires 8 and electrically connected to an external power source.
  • the heat insulating layer 33 is a heat insulating silica gel. At this time, on the lower surface of the heat insulating layer 33, a portion other than the area covered by the electric resistance wire 7 is directly bonded to the soaking layer 31.
  • the soaking layer 31 of the surface heating member 3 covers the surface of the auxiliary sealing film 5 above the member 2 to be molded.
  • the sealing film 4 (which can be used as a bag film) covers both the surface heating member 3 and the surface of the mold 1.
  • the sealing film 4 and the surface of the mold 1 are hermetically connected by a sealant or the like, and a sealed sealed cavity is formed between the sealing film 4 and the mold 1.
  • the lead 8 electrically connected to the resistance wire 7 is electrically connected to the external power source through the sealing film 4.
  • the lead 8 is sealed through the sealing film 4 to ensure a seal within the sealed chamber.
  • the present invention also provides a vacuum bag press forming method comprising the following steps:
  • step S1 is a conventional step in the prior art, and will not be described in detail in the present invention.
  • step S2 when vacuum bag forming is performed for the first time for a product of a certain structure, a surface heating member is required.
  • the surface heating element can be reused when the product is subsequently produced repeatedly.
  • the sealing film can be arranged in a conventional manner to form a hermetic sealing cavity between the sealing film and the mold. Since the surface heating member needs to be energized, the connecting surface heating member and the external power supply lead wire are required to pass through the above sealing film, and the sealing wire is sealed when passing through the sealing film. Specific sealing processes and methods are available.
  • step S4 the vacuum is sealed in the sealed chamber through the suction port on the sealing film to compress the sealing film at atmospheric pressure. And gradually press the surface heating member and the member to be molded.
  • the opposite heating element is energized to make it heat, and the molded part is heated to be solidified.
  • the sealing film is peeled off, the surface heating layer is removed, the product is taken out, and the new sealing film is replaced, and the above operation is repeated. Just fine.
  • the heat insulating sealing film is removed together with the surface heating layer, and the product is taken out, and the above operation can be repeated.
  • the vacuum bag forming assembly of the second embodiment it is only necessary to cover the surface of the part to be molded with the auxiliary sealing film before the step S2 after the step S1, and to seal the auxiliary sealing film with the mold.
  • a sealed isolation chamber is formed between the auxiliary sealing film and the mold.
  • the part to be molded is located in the isolation cavity. The rest of the operation is the same as in the first embodiment.
  • the vacuum bag forming assembly and the vacuum bag forming method and the conventional oven heating and curing method provided by the present invention are as shown in Table 1:
  • the present invention also provides a vacuum bag forming method using the above first to third embodiments.
  • Fiber composites Taking a conventional prepreg as a member to be molded, the fiber composite material includes a fiber cloth and a resin attached to the fiber cloth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

一种真空袋压成型组件及真空袋压成型方法、纤维复合材料,其中,真空袋压成型组件包括模具(1)、面加热件(3)和柔性的密封膜(4);密封膜(4)与模具(1)密封连接,在密封膜(4)和模具(1)之间形成密闭的用于对待成型件进行成型处理的密封腔;面加热件(3)设置于密封腔内并覆盖待成型件表面,以对待成型件的表面进行加热。

Description

真空袋压成型组件及真空袋压成型方法、纤维复合材料 技术领域
本发明涉及一种真空袋压成型组件及真空袋压成型方法,以及一种纤维复合材料。
背景技术
现有的真空袋压成型(Vacuum bag process)工艺是一种使用由单面刚性预成型模和由弹性软膜制成的真空袋组合而成的闭合的预成型腔,将由纤维布预浸树脂而形成的预浸料填充于预成型腔内,然后对预成型腔内抽真空,借助负压抽吸使预浸料中吸附的树脂与纤维布更好的结合,通过真空吸力实现树脂对织物浸渍的液体模塑成型技术。
通常,按照上述真空袋压成型的方法,将预浸料填充于预成型腔内,并抽真空压制预成型后,还需要将其整体置于烘箱中加热,使预浸料中的树脂固化,从而最终成型为所需复合材料。
但是,上述方法成型效率低,完成一模产品需要约3小时,并且能耗高,每平方米产品耗电约22元。重要的是,受烘干设备空间限制,上述成型方法难以制作较大尺寸产品,大大限制了该方法的使用范围。
发明内容
本发明所要解决的技术问题是针对现有技术中的真空袋压成型方法能耗高、效率低、受烘干设备空间限制而无法制作较大尺寸产品的问题,提供一种真空袋压成型组件。
本发明解决上述技术问题所采用的技术方案如下:
提供一种真空袋压成型组件,包括模具、面加热件和柔性的密封膜;所述密封膜与所述模具密封连接,在所述密封膜和所述模具之间形成密闭的用于对待成型件进行成型处理的密封腔;所述面加热件设置于所述密封腔内并覆盖所述待成型件表面,以对所述待成型件的表面进行加热。
同时,本发明还提供了一种真空袋压成型方法,包括如下步骤:
S1、将待成型件置于模具上;
S2、将面加热件覆盖于所述待成型件表面;
S3、将密封膜与所述模具密封连接,在所述密封膜和所述模具之间形成密闭的密封腔;所述待成型件和所述面加热件均位于所述密封腔内;
S4、对所述密封腔内抽真空,采用所述面加热件对所述待成型件进行加热,将所述待成型件固化成型。
另外,本发明还提供了一种纤维复合材料,所述纤维复合材料通过上述真空袋压成型方法制备得到。
采用本发明提供的真空袋压成型组件进行真空袋压成型时,通过覆盖于待成型件表面的面加热件对待成型件进行加热固化,无需采用大型的烘干设备进行固化,大大降低了能耗,成本低;同时其加热固化效率高。
重要的是,采用上述面加热件对待成型件进行固化时,不受空间约束,对于常规烘干设备无法处理的大尺寸产品而言,上述面加热件仍可有效的进行处理。本发明提供的真空袋压成型组件和真空袋压成型方法使用范围广。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明第一种实施方式提供的真空袋压成型组件使用状态的剖面结构示意图;
图2是本发明第二种实施方式提供的真空袋压成型组件使用状态的剖面结构示意图;
图3是本发明第三种实施方式提供的真空袋压成型组件使用状态的剖面结构示意图;
图4是本发明提供的真空袋压成型组件中,均热层上电阻丝的布局示意图。
说明书附图中的附图标记如下:
1、模具;
2、待成型件;
3、面加热件;31、均热层;32、加热层;33、隔热层;
4、密封膜;
5、辅助密封膜;
6、隔热密封膜;
7、电阻丝;
8、引线。
发明详细描述
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明的一个方面,本发明提供了一种真空袋压成型组件。根据本发明的实施例,所述真空袋压成型组件包括模具、面加热件和柔性的密封膜;所述密封膜可与所述模具密封连接,在密封膜和模具之间形成密闭的用于对待成型件进行成型处理的密封腔;所述面加热件设置于所述密封腔内并覆盖所述待成型件表面,以对所述待成型件的表面进行加热。
本发明提供的真空袋压成型组件中,模具为常规真空袋压成型工艺中的模具,本发明对其没有特殊要求。如本领域技术人员所公知的,模具表面具有用于成型得到所需形状的型腔。成型时,将待成型件(例如预浸料)置于该型腔内。同时,如常规的,型腔四周的模具表面可用于与密封膜密封连接。
上述密封膜用于与模具连接,在密封膜和模具之间形成密闭的用于对待成型件进行成 型处理的密封腔。
可以理解的,上述密封膜为柔性薄膜,通常,该密封膜可采用袋膜。如现有的,密封膜上具有抽气口,抽气口上具有可封闭抽气口的阀体。通过该抽气口对密封膜和模具之间的密封腔进行抽真空处理,排出密封腔内的气泡,保证待成型件(例如预浸料)的致密度,通过外界大气压力经柔性的密封膜对密封腔内的待成型件进行压制,将待成型件(例如预浸料)压贴在模具表面。
本发明中采用的密封膜可以为现有技术中所采用的常规密封膜。
根据本发明的实施例,上述真空袋压成型组件中还具有面加热件。上述面加热件通过其表面对待成型件进行加热。
本发明中,面加热件用于在密封腔内对待成型件进行加热,从而实现低成本、高效的固化。
具体的,上述面加热件结构可以为各种,只需能实现通过其整体表面对待成型件进行加热即可。
本发明提供的第一种实施方式中,所述面加热件包括从下至上依次设置的均热层、加热层和隔热层。
上述加热层用于发热。加热层可采用电加热材料,在通电的状态下进行发热。加热层可采用常规的各种材料,优选情况下,加热层采用柔性材质。本发明中,所述加热层为加热丝,所述加热丝材质为电阻丝、导电胶、PTC中的一种。采用加热丝作为加热层时,加热丝可呈各种形态进行分布,只需能实现对均热层进行均匀加热即可,优选情况下,所述加热丝在均热层表面呈“弓”型分布。进一步优选情况下,所述加热丝的横截面积为0.5-2mm2。加热丝的间距及宽度可根据实际使用需要进行调整,具体调整方式为现有技术中所知晓的。
为便于加工和操作,优选情况下,加热丝为电阻丝。电阻丝的电阻根据实际使用需要可进行调整,例如,本发明中,优选情况下,上述电阻丝的电阻率为4.5-7.5Ω/m。
所述均热层用于覆盖所述待成型件表面,以将加热层发出的热量传递至所述待成型件。可以理解的,本发明中,优选情况下,均热层可将加热层发出的热量均匀化,使均热层上各处具有大致相同的温度,然后将热量高效的传递至待成型件。
均热层的作用在于均匀高效的传递热量,本发明中,均热层的热导率越高越好,优选情况下,所述均热层的热导率大于1W/mK,例如可以为1-2W/mK。
上述均热层材质可以采用常规的各种,优选情况下,所述均热层为柔性材料,进一步优选情况下,所述均热层材质为导热硅胶、导热丁苯橡胶、导热三元乙丙橡胶、导热天然橡胶、导热丁基橡胶、导热丁腈橡胶、导热SBS橡胶、导热SEBS橡胶中的一种。上述均热层所用的各种材质均可以为现有的,例如,在导热性较差的硅胶或橡胶等材料中添加导 热填料,从而赋予其优异的导热性能。常用的导热填料包括氧化铝、氧化硅、氧化镁、氧化锌、氮化铝、氮化硼、碳化硅等。本发明中,对于上述均热层,优选采用导热硅胶。
对于导热硅胶,可通过导热组合物固化得到,例如,上述导热组合物可以包括乙烯基硅油、含氢硅油、氧化铝65-90wt%、硅烷偶联剂、催化剂、抑制剂等组分。
本发明中,上述隔热层用于隔绝加热层与其上方空间之间的热量传递,减小热量流失,同时,还可对密封膜进行保护,避免密封膜受到加热层局部过高的温度而发生损伤,从而进一步避免密封腔内气密性受到破坏。
可以理解的,上述隔热层的热导率越低越好,优选情况下,隔热层的热导率为0.2W/mK以下。所述隔热层可采用常规的各种隔热保温材料,例如可以为保温棉、保温硅胶、保温丁苯橡胶、保温三元乙丙橡胶、保温天然橡胶、保温丁基橡胶、保温丁腈橡胶、保温SBS橡胶、保温SEBS橡胶中的一种。本发明中,上述隔热层所采用的有机材料基体可以与上述均热层相同,例如均可采用丁苯橡胶、三元乙丙橡胶、天然橡胶、丁基橡胶、丁腈橡胶、SBS橡胶、SEBS橡胶,不同的是,为实现良好的隔热保温效果,上述隔热层中无导热填料,或者,可在上述各种作为基体的有机材料中添加用于提高隔热保温效果的中添加空心微珠或者发泡剂,以便在隔热层内形成空心或多孔结构,起到隔热保温效果。对于上述空心微珠,其添加量为隔热层总体质量的5-50wt%,发泡剂的添加量为隔热层总体质量的1-5wt%。上述发泡剂可采用常规的各种物质,例如可采用N-亚硝基衍生物(如发泡剂H、亚硝基对苯二甲酰胺)、偶氮类发泡剂(偶氮二甲酰胺、偶氮二异丁腈等)、磺酰肼类发泡剂(OBSH、3,3-二磺酰肼二苯砜、苯磺酰肼(BSH)、对甲苯磺酰肼(TSH)、2,4-甲苯二磺酰肼、对(N-甲氧基甲酰氨基)苯磺酰肼等。本发明中,隔热层优选为保温硅胶。对于保温硅胶,可通过隔热组合物固化得到,例如,上述隔热组合物可以包括乙烯基硅油、含氢硅油、催化剂、抑制剂。
本发明中,上述隔热层优选采用柔性材料。当均热层、加热层和隔热层均为柔性材料时,面加热件即为柔性。柔性的面加热件可有效的与待成型件表面接触,提高加热效果。同时,在真空袋压成型过程中,待成型件(如预浸料)表面会发生局部收缩或变化,此时,柔性的面加热件可紧紧贴附于待成型件表面,随待成型件表面同步运动,从而利于实现提高加热效率和质量。
根据本发明的实施例,可以理解的,在进行真空袋压成型处理前,上述真空袋压成型组件中的面加热件、模具和密封膜相互分离。在进行真空袋压成型处理时,将各个部件依次装配即可。
对于上述真空袋压成型组件,针对某一结构的产品,可在首次进行真空袋压成型处理前,制备上述面加热件。采用制作完成的面加热件通过真空袋压成型处理制备得到首个产 品后,只需将面加热件取下,将密封膜去除。在后续生产该结构的产品时,上述面加热件可重复使用。
具体的,上述面加热件可通过现有的各种方法制备得到,例如,将前述的导热组合物成型得到的片材铺设于型腔内具有待成型件的模具表面,或者,将上述导热组合物涂覆于型腔内具有待成型件的模具表面,然后将导热组合物固化即可。
形成上述均热层后,在其表面铺设电阻丝。
再铺设由隔热组合物成型得到的片材或涂覆隔热组合物并固化,形成隔热层。采用涂覆固化的方式制备隔热层时,可先涂覆一层并固化,然后再根据需要涂覆并固化多次,形成一定厚度(例如3-5mm)的隔热层,从而达到优异的隔热效果。
在上述结构下,面加热件与密封膜相互分离。每次真空袋压成型处理后,需更换新的密封膜。
图1示出了本发明提供的第一种实施方式下真空袋压成型组件的使用状态。
具体的,该真空袋压成型组件包括模具1、面加热件2和密封膜4。
模具1表面具有型腔(图中未示出)。
待成型件2置于型腔内。
面加热件3包括从下至上依次设置的均热层31、加热层32和隔热层33。均热层31为导热硅胶。加热层32为电阻丝7。如图4所示,作为加热层32的电阻丝7在均热层31表面呈“弓”字型往复分布。电阻丝7的两端通过引线8引出,并与外界电源电连接。隔热层33为保温硅胶。此时,隔热层33下表面上,电阻丝7覆盖区域以外的部分直接与均热层31结合。
面加热件3的均热层31覆盖于待成型件2表面。
密封膜4(可采用袋膜)同时覆盖面加热件3和模具1表面。密封膜4与模具1表面之间通过密封胶等方式密封连接,在密封膜4与模具1之间形成密闭的密封腔。
与电阻丝7电连接的引线8穿过密封膜4与外界电源电连接。引线8穿过密封膜4处密封,保证密封腔内的密封。
根据本发明的实施例,在提供的第二种实施方式中,上述面加热件还可以仅包括均热层和加热层。均热层和加热层的结构和材质与第一种实施方式下的均热层和加热层相同,此处不再赘述。
同时,本实施方式中,密封膜为柔性的隔热密封膜,其具体采用隔热材料。例如,此时具有隔热效果的隔热密封膜材质可与第一种实施方式中的面加热件中的隔热层相同,其具有低的热导率(0.2W/mK以下),优选情况下,所述隔热密封膜为保温硅胶、保温丁苯橡胶、保温三元乙丙橡胶、保温天然橡胶、保温丁基橡胶、保温丁腈橡胶、保温SBS橡胶、 保温SEBS橡胶中的一种,更优选为保温硅胶。同时,该隔热密封膜面积与前文所述的常规隔热膜相同。
并且,上述面加热件与隔热密封膜结合为一体,具体的,上述面加热件的加热层设置于所述隔热密封膜的下表面。
此时,本实施方式中的真空袋压成型组件可视为将第一种实施方式中的面加热件中的隔热层制成密封膜的结构,并以该隔热层取代密封膜,同时实现常规密封膜和上述隔热层的作用。
本实施方式中的面加热件的制作方式与第一种实施方式中的面加热件的制作方式基本相同,区别仅在于采用制备第一种实施方式中隔热层的方法制备本实施方式中的隔热密封膜。
此时,在进行真空袋压成型处理时,与面加热件连接为一体的隔热密封膜可重复使用,简化了工艺,并进一步降低了成本。
图2示出了本发明提供的第二种实施方式下真空袋压成型组件的使用状态。
具体的,该真空袋压成型组件包括模具1、面加热件2和密封膜4。
模具1表面具有型腔(图中未示出)。
待成型件2置于型腔内。
面加热件3包括从下至上依次设置的均热层31和加热层32。均热层31为导热硅胶。加热层32为电阻丝7。如图4所示,作为加热层32的电阻丝7在均热层31表面呈“弓”字型往复分布。电阻丝7的两端通过引线8引出,并与外界电源电连接。
面加热件3的均热层31覆盖于待成型件2表面。
面加热件3的上表面与隔热密封膜6结合。具体的,由于电阻丝7仅覆盖加热层32表面部分区域,因此,加热层32上表面上,电阻丝7覆盖区域以外的部分直接与隔热密封膜6结合。隔热密封膜6为保温硅胶。
隔热密封膜6同时覆盖面加热件3和模具1表面。隔热密封膜6与模具1表面之间通过密封胶等方式密封连接,在隔热密封膜6与模具1之间形成密闭的密封腔。
与电阻丝7电连接的引线8穿过隔热密封膜6与外界电源电连接。引线8穿过隔热密封膜6处密封,保证密封腔内的密封。
根据本发明,在提供的第三种实施方式中,可在前述的第一种或第二种实施方式基础上增加辅助密封膜。辅助密封膜具体可采用第一种实施方式中的密封膜。
所述辅助密封膜设置于所述密封腔内并与所述模具密封连接,在辅助密封膜和模具之间形成密闭的隔离腔;所述待成型件位于所述隔离腔内,所述面加热件位于所述隔离腔外。
图3示出了本发明提供的第三种实施方式下真空袋压成型组件的使用状态。
与第一种实施方式相比,第三种实施方式中增加了辅助密封膜5。
具体的,该真空袋压成型组件包括模具1、面加热件2、密封膜4和辅助密封膜5。
模具1表面具有型腔(图中未示出)。
待成型件2置于型腔内。
辅助密封膜5(可采用袋膜)同时覆盖待成型件2和模具1表面。辅助密封膜5与模具1表面之间通过密封胶等方式密封连接,在辅助密封膜5与模具1之间形成密闭的隔离腔,上述待成型件2位于该隔离腔内。
面加热件3包括从下至上依次设置的均热层31、加热层32和隔热层33。均热层31为导热硅胶。加热层32为电阻丝7。如图4所示,作为加热层32的电阻丝7在均热层31表面呈“弓”字型往复分布。电阻丝7的两端通过引线8引出,并与外界电源电连接。隔热层33为保温硅胶。此时,隔热层33下表面上,电阻丝7覆盖区域以外的部分直接与均热层31结合。
面加热件3的均热层31覆盖于待成型件2上方的辅助密封膜5表面。
密封膜4(可采用袋膜)同时覆盖面加热件3和模具1表面。密封膜4与模具1表面之间通过密封胶等方式密封连接,在密封膜4与模具1之间形成密闭的密封腔。
与电阻丝7电连接的引线8穿过密封膜4与外界电源电连接。引线8穿过密封膜4处密封,保证密封腔内的密封。
同时,在本发明的第二个方面,本发明还提供了真空袋压成型方法,包括如下步骤:
S1、将待成型件置于模具上;
S2、将面加热件覆盖于所述待成型件表面;
S3、将密封膜与所述模具密封连接,在所述密封膜和模具之间形成密闭的密封腔;所述待成型件和面加热件均位于所述密封腔内;
S4、对密封腔内抽真空,采用面加热件对所述待成型件进行加热,将所述待成型件固化成型。
上述步骤S1为现有技术中的常规步骤,本发明中不再赘述。
对于上述步骤S2,如前所述,当针对某一结构的产品,首次进行真空袋压成型时,需制作面加热件。后续重复制作该产品时,可重复使用该面加热件。
上述面加热件的具体结构和制作方法如前文所述,此处不再赘述。
对于上述步骤S3,可按常规方法布置密封膜,从而在所述密封膜和模具之间形成密闭的密封腔。由于面加热件需通电,连通面加热件和外界电源的引线需穿过上述密封膜,在引线穿过密封膜之处需密封。具体密封工艺和方法为现有的。
如步骤S4,通过密封膜上的抽气口催密封腔内进行抽真空处理,使大气压缩密封膜, 并逐渐对面加热件和待成型件施压。
并且对面加热件通电,使其发热,对待成型件进行加热,使其固化成型。
以第一种实施方式结构的真空袋压成型组件为例,经真空袋压成型得到产品后,将密封膜揭下,将面加热层取下,取出产品,更换新的密封膜后重复上述操作即可。
以第二种实施方式结构的真空袋压成型组件为例,经真空袋压成型得到产品后,将隔热密封膜连同面加热层取下,取出产品,重复上述操作即可。
以第二种实施方式结构的真空袋压成型组件为例,只需在上述步骤S1之后S2之前将辅助密封膜覆盖于所述待成型件表面,并将辅助密封膜与所述模具密封连接,在所述辅助密封膜和模具之间形成密闭的隔离腔。所述待成型件位于所述隔离腔内。其余操作与第一种实施方式相同。经真空袋压成型得到产品后,将密封膜揭下,将面加热层取下,再揭下辅助密封膜,取出产品,更换新的密封膜和辅助密封膜后重复上述操作即可。
对于上述第一至第三种实施方式下的真空袋压成型组件的结构,前文已详细描述,此处不再赘述。
以预浸料为待成型件为例,本发明提供的真空袋压成型组件及真空袋压成型方法与常规烘箱加热固化方法对比如表1所示:
表1
项目 本发明 烘箱加热
面积(m2) 0.16 8
功率(W) 490 72000
时间(h) 0.75 2.5
实际耗电量(度) 0.3675 180
单位面积耗电量(度/m2) 2.296875 22.5
单位面积电费(元/m2) 2.296875 22.5
通过表1可以看出,本发明提供的真空袋压成型组件及真空袋压成型方法可明显提高成型效率,降低能耗,并且占用面积小,使用方便。
并且,通过普通烘箱加热这一工艺进行成型时,受限于烘箱尺寸,难以制备大件。目前市面上大多工业烤箱尺寸为4-10m2,该规格温度上限可达150℃。更大规格的为烤房,通常温度只能到40-50℃。若待成型件(如预浸料)通过该烤房固化,则生产效率非常低。而本发明提供的真空袋压成型组件及真空袋压成型方法不受烤箱规格限制,可方便的制备大件制品。
同时,本发明还提供了采用上述第一至第三种实施方式的真空袋压成型方法制备得到 的纤维复合材料。以常用的预浸料作为待成型件为例,上述纤维复合材料包括纤维布及附着于纤维布上的树脂。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (41)

  1. 一种真空袋压成型组件,其特征在于,包括模具、面加热件和柔性的密封膜;
    所述密封膜与所述模具密封连接,在所述密封膜和所述模具之间形成密闭的用于对待成型件进行成型处理的密封腔;
    所述面加热件设置于所述密封腔内并覆盖所述待成型件表面,以对所述待成型件的表面进行加热。
  2. 根据权利要求1所述的真空袋压成型组件,其特征在于,所述面加热件包括从下至上依次设置的均热层、加热层和隔热层。
  3. 根据权利要求1或2所述的真空袋压成型组件,其特征在于,所述均热层用于覆盖所述待成型件表面,以将所述加热层发出的热量传递至所述待成型件。
  4. 根据权利要求1-3中任一项所述的真空袋压成型组件,其特征在于,所述均热层为导热硅胶、导热丁苯橡胶、导热三元乙丙橡胶、导热天然橡胶、导热丁基橡胶、导热丁腈橡胶、导热SBS橡胶、导热SEBS橡胶中的一种。
  5. 根据权利要求1-4中任一项所述的真空袋压成型组件,其特征在于,所述隔热层为保温棉、保温硅胶、保温丁苯橡胶、保温三元乙丙橡胶、保温天然橡胶、保温丁基橡胶、保温丁腈橡胶、保温SBS橡胶、保温SEBS橡胶中的一种。
  6. 根据权利要求1-5中任一项所述的真空袋压成型组件,其特征在于,所述加热层为加热丝,所述加热丝材质为电阻丝、导电胶、PTC中的一种。
  7. 根据权利要求1所述的真空袋压成型组件,其特征在于,所述密封膜为柔性的隔热密封膜;
    所述面加热件包括均热层和加热层;
    所述加热层设置于所述密封膜的下表面;
    所述均热层设置于所述加热层的下表面;所述均热层用于覆盖所述待成型件表面,以将所述加热层发出的热量传递至所述待成型件。
  8. 根据权利要求7所述的真空袋压成型组件,其特征在于,所述均热层为导热硅胶、导热丁苯橡胶、导热三元乙丙橡胶、导热天然橡胶、导热丁基橡胶、导热丁腈橡胶、导热SBS橡胶、导热SEBS橡胶中的一种。
  9. 根据权利要求7或8所述的真空袋压成型组件,其特征在于,所述隔热密封膜为保温硅胶、保温丁苯橡胶、保温三元乙丙橡胶、保温天然橡胶、保温丁基橡胶、保温丁腈橡胶、保温SBS橡胶、保温SEBS橡胶中的一种。
  10. 根据权利要求7-9中任一项所述的真空袋压成型组件,其特征在于,所述隔热密封 膜的热导率为0.2W/mK以下。
  11. 根据权利要求7-10中任一项所述的真空袋压成型组件,其特征在于,所述加热层为加热丝,所述加热丝材质为电阻丝、导电胶、PTC中的一种。
  12. 根据权利要求1-11中任一项所述的真空袋压成型组件,其特征在于,所述加热丝在所述均热层表面呈“弓”型分布。
  13. 根据权利要求1-12中任一项所述的真空袋压成型组件,其特征在于,所述加热丝的横截面积为0.5-2mm2
  14. 根据权利要求1-13中任一项所述的真空袋压成型组件,其特征在于,所述均热层的热导率大于1W/mK。
  15. 根据权利要求1-14中任一项所述的真空袋压成型组件,其特征在于,所述加热丝为电阻丝,所述电阻丝的电阻率为4.5-7.5Ω/m。
  16. 根据权利要求1-15中任一项所述的真空袋压成型组件,其特征在于,所述面加热件为柔性。
  17. 根据权利要求1-16中任一项所述的真空袋压成型组件,其特征在于,所述真空袋压成型组件还包括辅助密封膜;
    所述辅助密封膜设置于所述密封腔内并与所述模具密封连接,在所述辅助密封膜和所述模具之间形成密闭的隔离腔;
    所述待成型件位于所述隔离腔内,所述面加热件位于所述隔离腔外。
  18. 一种真空袋压成型方法,其特征在于,包括如下步骤:
    S1、将待成型件置于模具上;
    S2、将面加热件覆盖于所述待成型件表面;
    S3、将密封膜与所述模具密封连接,在所述密封膜和所述模具之间形成密闭的密封腔;所述待成型件和所述面加热件均位于所述密封腔内;
    S4、对所述密封腔内抽真空,采用所述面加热件对所述待成型件进行加热,将所述待成型件固化成型。
  19. 根据权利要求18所述的真空袋压成型方法,其特征在于,所述面加热件包括从下至上依次设置的均热层、加热层和隔热层。
  20. 根据权利要求18或19所述的真空袋压成型方法,其特征在于,所述步骤S2中,使所述均热层覆盖于所述待成型件表面。
  21. 根据权利要求18-20中任一项所述的真空袋压成型方法,其特征在于,所述步骤S3中,将所述密封膜覆盖于所述模具和所述面加热件表面,并将所述密封膜与所述模具密封连接。
  22. 根据权利要求18-21中任一项所述的真空袋压成型方法,其特征在于,所述均热层为导热硅胶、导热丁苯橡胶、导热三元乙丙橡胶、导热天然橡胶、导热丁基橡胶、导热丁腈橡胶、导热SBS橡胶、导热SEBS橡胶中的一种。
  23. 根据权利要求18-22中任一项所述的真空袋压成型方法,其特征在于,所述隔热层为保温棉、保温硅胶、保温丁苯橡胶、保温三元乙丙橡胶、保温天然橡胶、保温丁基橡胶、保温丁腈橡胶、保温SBS橡胶、保温SEBS橡胶中的一种。
  24. 根据权利要求18-23中任一项所述的真空袋压成型方法,其特征在于,所述加热层为加热丝,所述加热丝材质为电阻丝、导电胶、PTC中的一种。
  25. 根据权利要求18-24中任一项所述的真空袋压成型方法,其特征在于,所述均热层的热导率大于1W/mK;隔热层的热导率为0.2W/mK以下。
  26. 根据权利要求18-25中任一项所述的真空袋压成型方法,其特征在于,所述加热丝为电阻丝,所述电阻丝的电阻率为4.5-7.5Ω/m。
  27. 根据权利要求18所述的真空袋压成型方法,其特征在于,所述密封膜为柔性的隔热密封膜;
    所述面加热件包括均热层和加热层;所述加热层设置于所述密封膜的下表面;所述均热层设置于所述加热层的下表面。
  28. 根据权利要求27所述的真空袋压成型方法,其特征在于,所述步骤S2中,使所述均热层覆盖于所述待成型件表面,并且设置于加热层上表面的密封膜边缘覆盖于模具表面。
  29. 根据权利要求27或28所述的真空袋压成型方法,其特征在于,所述步骤S3中,将所述密封膜边缘与模具表面密封连接。
  30. 根据权利要求27-29中任一项所述的真空袋压成型方法,其特征在于,所述均热层为导热硅胶、导热丁苯橡胶、导热三元乙丙橡胶、导热天然橡胶、导热丁基橡胶、导热丁腈橡胶、导热SBS橡胶、导热SEBS橡胶中的一种。
  31. 根据权利要求27-30中任一项所述的真空袋压成型方法,其特征在于,所述隔热密封膜为保温硅胶、保温丁苯橡胶、保温三元乙丙橡胶、保温天然橡胶、保温丁基橡胶、保温丁腈橡胶、保温SBS橡胶、保温SEBS橡胶中的一种。
  32. 根据权利要求27-31中任一项所述的真空袋压成型方法,其特征在于,所述加热层为加热丝,所述加热丝材质为电阻丝、导电胶、PTC中的一种。
  33. 根据权利要求27-32中任一项所述的真空袋压成型方法,其特征在于,所述均热层的热导率大于1W/mK;所述隔热密封膜的热导率为0.2W/mK以下。
  34. 根据权利要求27-33中任一项所述的真空袋压成型方法,其特征在于,所述加热丝 为电阻丝,所述电阻丝的电阻率为4.5-7.5Ω/m。
  35. 根据权利要求18-34中任一项所述的真空袋压成型方法,其特征在于,所述加热丝在均热层表面呈“弓”型分布。
  36. 根据权利要求18-35中任一项所述的真空袋压成型方法,其特征在于,所述加热丝的横截面积为0.5-2mm2
  37. 根据权利要求18-36中任一项所述的真空袋压成型方法,其特征在于,所述面加热件为柔性。
  38. 根据权利要求18-37中任一项所述的真空袋压成型方法,其特征在于,所述步骤S1之后S2之前还包括:将辅助密封膜覆盖于所述待成型件表面,并使所述辅助密封膜与所述模具密封连接,在所述密封膜和所述模具之间形成密闭的隔离腔;所述待成型件和面加热件均位于所述隔离腔内。
  39. 根据权利要求18-38中任一项所述的真空袋压成型方法,其特征在于,所述步骤S2包括将所述面加热件覆盖于所述待成型件上方的辅助密封膜上。
  40. 根据权利要求18-39中任一项所述的真空袋压成型方法,其特征在于,所述步骤S3包括将所述密封膜与所述模具密封连接,在所述密封膜和所述模具之间形成密闭的密封腔;所述待成型件、所述辅助密封膜和所述面加热件均位于所述密封腔内。
  41. 一种纤维复合材料,其特征在于,通过权利要求18-40中任一项所述的真空袋压成型方法制备得到。
PCT/CN2017/074442 2016-03-30 2017-02-22 真空袋压成型组件及真空袋压成型方法、纤维复合材料 WO2017166955A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610192311.1 2016-03-30
CN201610192311.1A CN107283874A (zh) 2016-03-30 2016-03-30 一种真空袋压成型组件及真空袋压成型方法、纤维复合材料

Publications (1)

Publication Number Publication Date
WO2017166955A1 true WO2017166955A1 (zh) 2017-10-05

Family

ID=59963392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074442 WO2017166955A1 (zh) 2016-03-30 2017-02-22 真空袋压成型组件及真空袋压成型方法、纤维复合材料

Country Status (2)

Country Link
CN (1) CN107283874A (zh)
WO (1) WO2017166955A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109693398A (zh) * 2018-05-28 2019-04-30 苏州华特时代碳纤维有限公司 碳纤维真空袋压成型模及其热压工艺
WO2021083712A1 (fr) 2019-10-30 2021-05-06 Stelia Aerospace Système de fabrication de pièces thermoplastiques
WO2023177293A2 (en) 2022-03-15 2023-09-21 Curve Works Holding B.V. A stretchable layer for a reconfigurable mold, a stretchable heating blanket, a membrane, an apparatus for making a three-dimensionally curved object, and a stretchable layer fabrication method
NL2032624B1 (en) * 2022-03-15 2023-09-27 Curve Works Holding B V A stretchable layer for a reconfigurable mold, a stretchable heating blanket, a membrane, an apparatus for making a three-dimensionally curved object, and a stretchable layer fabrication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112046121A (zh) * 2020-09-16 2020-12-08 广州市玻璃先生实业有限公司 一种新型的玻璃夹胶工艺
CN114919206A (zh) * 2022-05-09 2022-08-19 南京航空航天大学 一种使用柔性电热薄膜的树脂基复合材料固化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102765198A (zh) * 2012-07-13 2012-11-07 中国人民解放军国防科学技术大学 复合材料真空辅助模压成型系统及成型方法
CN103770341A (zh) * 2014-01-16 2014-05-07 北京航空航天大学 碳纤维增强复合材料的加工系统及其采用液体成型工艺的可控碳纤维自加热方法
CN105058812A (zh) * 2015-07-15 2015-11-18 北京航空航天大学 一种可折叠纤维增强树脂基复合材料管的成型方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717518B (zh) * 2012-06-25 2015-03-04 江苏大学 碳纤维复合材料一体化制造、试验装置及试验方法
CN102975374B (zh) * 2012-09-29 2015-09-23 航天材料及工艺研究所 风机叶片用碳纤维复合材料主梁帽的制造方法及制造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102765198A (zh) * 2012-07-13 2012-11-07 中国人民解放军国防科学技术大学 复合材料真空辅助模压成型系统及成型方法
CN103770341A (zh) * 2014-01-16 2014-05-07 北京航空航天大学 碳纤维增强复合材料的加工系统及其采用液体成型工艺的可控碳纤维自加热方法
CN105058812A (zh) * 2015-07-15 2015-11-18 北京航空航天大学 一种可折叠纤维增强树脂基复合材料管的成型方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109693398A (zh) * 2018-05-28 2019-04-30 苏州华特时代碳纤维有限公司 碳纤维真空袋压成型模及其热压工艺
CN109693398B (zh) * 2018-05-28 2023-12-29 苏州华特时代碳纤维有限公司 碳纤维真空袋压成型模及其热压工艺
WO2021083712A1 (fr) 2019-10-30 2021-05-06 Stelia Aerospace Système de fabrication de pièces thermoplastiques
FR3102705A1 (fr) * 2019-10-30 2021-05-07 Stelia Aerospace Système de fabrication de pièces thermoplastiques
US11890824B2 (en) 2019-10-30 2024-02-06 Airbus Atlantic System for manufacturing thermoplastic parts
WO2023177293A2 (en) 2022-03-15 2023-09-21 Curve Works Holding B.V. A stretchable layer for a reconfigurable mold, a stretchable heating blanket, a membrane, an apparatus for making a three-dimensionally curved object, and a stretchable layer fabrication method
NL2032624B1 (en) * 2022-03-15 2023-09-27 Curve Works Holding B V A stretchable layer for a reconfigurable mold, a stretchable heating blanket, a membrane, an apparatus for making a three-dimensionally curved object, and a stretchable layer fabrication method
WO2023177293A3 (en) * 2022-03-15 2023-10-26 Curve Works Holding B.V. A stretchable layer for a reconfigurable mold, a stretchable heating blanket, a membrane, an apparatus for making a three-dimensionally curved object, and a stretchable layer fabrication method

Also Published As

Publication number Publication date
CN107283874A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2017166955A1 (zh) 真空袋压成型组件及真空袋压成型方法、纤维复合材料
CN105914427B (zh) 应用于储能装置的均温结构及装置
CN108329893A (zh) 一种柔性热界面相变复合薄片材料及其制备方法
CN110901201A (zh) 一种动力电池缓冲隔热垫的制备工艺
CN108943921A (zh) 一种多层绝缘热界面材料及其制备方法
WO2022227463A1 (zh) 一种柔性导热绝缘粘性相变散热片及其制备方法与电池热管理系统
US8313682B2 (en) Method of manufacturing a foam
CN111923524A (zh) 振膜及发声装置
CN211641268U (zh) 一种层压设备
CN117227277A (zh) 一种蜂窝夹层组合结构热防护材料及其制备方法
WO2024078234A1 (zh) 一种加热器及其制备方法和应用
CN209747456U (zh) 贴膜机构
CN111438964A (zh) 复合材料片材的成型模具及成型方法
CN110171180B (zh) 电子产品组件气囊式层压夹具、层压装置及其防残气的层压方法
CN113979769B (zh) 一种刚性超薄隔热材料及其制备方法
CN210190819U (zh) 电子产品组件机械式层压装置
CN110171181B (zh) 电子产品组件机械式层压装置及其防残气的层压方法
WO2022110374A1 (zh) 一种音膜成型装置及成型方法
JP2014042024A (ja) 電子デバイスケーシングの製造方法
CN111345698A (zh) 一种便携式加热容器
CN207441784U (zh) 一种模组电芯硅胶垫
CN112060725A (zh) 一种布料用的网状胶膜及其制备工艺
CN111675880A (zh) 一种新型软性绝缘导热垫
CN219660241U (zh) 一种无硅油导热硅胶片
CN113524582A (zh) 一种散热风扇的框叶注塑成型模具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772986

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17772986

Country of ref document: EP

Kind code of ref document: A1