CN113930803B - 一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法 - Google Patents

一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法 Download PDF

Info

Publication number
CN113930803B
CN113930803B CN202111298395.4A CN202111298395A CN113930803B CN 113930803 B CN113930803 B CN 113930803B CN 202111298395 A CN202111298395 A CN 202111298395A CN 113930803 B CN113930803 B CN 113930803B
Authority
CN
China
Prior art keywords
ruthenium
cobalt
nitrogen
solution
full
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111298395.4A
Other languages
English (en)
Other versions
CN113930803A (zh
Inventor
黄剑锋
陈俊生
冯永强
曹丽云
冯伟航
王海
胡郁竹
雒甜蜜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202111298395.4A priority Critical patent/CN113930803B/zh
Publication of CN113930803A publication Critical patent/CN113930803A/zh
Application granted granted Critical
Publication of CN113930803B publication Critical patent/CN113930803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法,通过溶剂热法合成CoRu‑ZIF‑67前驱体,然后在氢氩气气氛中热解生成CoRu/NC全解水电催化剂,制备出微观形貌为规则的十二面体,棱角分明,表面粗糙,面微向内凹陷的氮碳负载钴钌纳米粒子全解水电催化材料,该方法制备的CoRu/NC电催化剂具有高效的活性,具备良好的稳定性,并且合成方法简单,条件温和,在实现低负载贵金属钌的同时,表现出低于商业贵金属催化剂铂和氧化铱全解水的过电位,成本对比纯贵金属电催化剂有大幅度降低,具有很好的应用前景和极大的商业化潜力。

Description

一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法
技术领域
本发明属于电催化全解水的技术领域,具体涉及一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法。
背景技术
目前应用最广泛的能源物质石油、煤和天然气等不可再生的化石能源,这些化石能源的大量消耗引起了一些环境问题,能源危机也随之到来,为应对这些危机与问题,急需寻找一种可再生清洁能源。
氢气能量密度大,来源广泛且对环境友好,是一种理想的可再生清洁能源。目前工业制氢技术中,化石燃料制氢、工业副产物制氢以及甲醇重整制氢,虽然工艺较成熟,但是制氢原料不可再生,且制氢过程产生的副产物对环境不友好,而电解水制氢技术,制氢原料为可再生的水,制氢纯度高,制氢过程无污染,并且所用电能来源广泛,潮汐能、地热能、水的势能等可再生能源转化的电能均可用于发电,所以电解水制氢技术是一项具有巨大应用前景的制氢技术,但是电解水过程中的析氢析氧反应缓慢的动力学限制了其电解速率,所以需要使用电催化剂来提高反应动力学从而提高电解水速率。
目前商用的电催化剂主要为贵金属铂、铱、钌及其氧化物,虽然其具有卓越的电催化活性,但是其低储量和高昂的价格限制了其大规模应用。开发低成本高活性的电催化剂成为当下研究热点。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法,该方法制备的CoRu/NC电催化剂具有极低的电解水过电位,具备高效的活性和良好的稳定性,并且合成方法简单,条件温和,与商用贵金属电催化剂相比具有低成本优势,表现出突出的工业化应用优势。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种氮碳负载钴钌纳米粒子全解水电催化材料的制备方法,包括如下步骤:
1)首先称取分析纯的钴源、钌源和2-甲基咪唑溶于40~80ml的甲醇中搅拌至溶解形成钴离子浓度为0.05~0.5mol/L,钌离子浓度为0.005~0.25mol/L和2-甲基咪唑浓度为0.1~2mol/L的溶液A;
2)在A溶液中加入1~3g十六烷基三甲基溴化铵并用保鲜膜密封后移入水热釜,在120~200℃下溶剂热6~18h,水热釜冷却至室温后抽滤并洗涤、冷冻干燥,合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取200~500mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以2~5℃/min的升温速率,自室温升温至600~900℃,保温1~3h,以10℃/min的降温速率降至300℃,然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
本发明还具有以下技术特征:
优选的,所述的钴源为硝酸钴、氯化钴或乙酰丙酮钴;
所述的钌源为乙酰丙酮钌、十二羰基三钌或二茂钌。
优选的,所述步骤1)中的搅拌为在30~50℃温度下磁力搅拌。
优选的,所述步骤2)中洗涤为用无水乙醇和去离子水各洗涤2~4遍。
优选的,所述步骤2)中冷冻干燥为在-30~-40℃温度下冷冻干燥24~48h。
本发明还保护一种如上所述的制备方法制备的氮碳负载钴钌纳米粒子全解水电催化材料,微观形貌为规则的十二面体,棱角分明,表面粗糙,面微向内凹陷。
本发明与现有技术相比,具有如下技术效果:
本发明制备的CoRu/NC材料,采用溶剂热法合成的CoRu-ZIF-67前躯体具备尺寸均一,形貌可调控等优点,在氢氩气保护气氛中对前驱体进行热解生成CoRu/NC电催化剂,该制备方法条件温和,工艺可靠,实现工业化生产的可行性高;
本发明所提出的制备方法合成的CoRu/NC,CoRu纳米粒子的协同增强作用提高了电催化全解水的活性,降低了反应过电位,表现出高的全解水效率,氮掺杂的多孔碳基底具有较强的电子传输能力,有利于水分子的吸附,促进了电解水反应进行,表现出高效的活性,并且碳的包覆为活性中心提供了一定的保护,增强了电解水过程中催化剂的结构稳定性;
本发明所提出的制备方法合成的CoRu/NC,在实现低负载贵金属钌的同时,表现出低于商业贵金属催化剂铂和氧化铱全解水的过电位,成本对比纯贵金属电催化剂有大幅度降低,具有很好的应用前景和极大的商业化潜力。
附图说明
图1为实施例1制备的CoRu/NC的X射线衍射图;
图2为实施例1制备的CoRu/NC的SEM图;
图3为实施例1制备的CoRu/NC的全解水LSV图。
具体实施方式
以下结合实施例对本发明的具体内容做进一步详细解释说明。
实施例1:
1)首先,称取0.582g分析纯的Co(NO3)2•6H2O、0.07968g分析纯的C15H21O6Ru和0.3284g C4H6N2溶于40ml的甲醇中在30℃磁力搅拌形成溶液A;
2)在A溶液中加入1g十六烷基三甲基溴化铵(CTAB)并用保鲜膜密封在40℃磁力搅拌60min后移入水热釜,在120℃下溶剂热18h,水热釜冷却至室温后抽滤并用无水乙醇和去离子水各洗涤2遍后在-30℃冷冻干燥24h合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取200mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以2℃/min的升温速率,自室温升温至600℃保温3h,以10℃/min的降温速率降至300℃然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
实施例2:
1)首先,称取3.492g分析纯的Co(NO3)2•6H2O、3.586g分析纯的C15H21O6Ru和4.105gC4H6N2溶于60ml的甲醇中在40℃磁力搅拌形成溶液A;
2)在A溶液中加入1.5g十六烷基三甲基溴化铵(CTAB)并用保鲜膜密封在50℃磁力搅拌40min后移入水热釜,在160℃下溶剂热12h,水热釜冷却至室温后抽滤并用无水乙醇和去离子水各洗涤3遍后在-35℃冷冻干燥36h合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取300mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以3℃/min的升温速率,自室温升温至700℃保温2h,以10℃/min的降温速率降至300℃然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
实施例3:
1)首先,称取11.641g分析纯的Co(NO3)2•6H2O、7.968g分析纯的C15H21O6Ru和13.136g C4H6N2溶于80ml的甲醇中在50℃磁力搅拌形成溶液A;
2)在A溶液中加入2g十六烷基三甲基溴化铵(CTAB)并用保鲜膜密封在60℃磁力搅拌60min后移入水热釜,在200℃下溶剂热6h,水热釜冷却至室温后抽滤并用无水乙醇和去离子水各洗涤4遍后在-38℃冷冻干燥48h合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取500mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以5℃/min的升温速率,自室温升温至900℃保温1h,以10℃/min的降温速率降至300℃然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
实施例4:
1)首先,称取11.641g分析纯的Co(NO3)2•6H2O、7.968g分析纯的C15H21O6Ru和13.136g C4H6N2溶于70ml的甲醇中在50℃磁力搅拌形成溶液A;
2)在A溶液中加入3g十六烷基三甲基溴化铵(CTAB)并用保鲜膜密封在50℃磁力搅拌30min后移入水热釜,在180℃下溶剂热8h,水热釜冷却至室温后抽滤并用无水乙醇和去离子水各洗涤3遍后在-40℃冷冻干燥30h合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取400mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以5℃/min的升温速率,自室温升温至800℃保温1.5h,以10℃/min的降温速率降至300℃然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
实施例5:
1)首先,称取5.1928g分析纯的氯化钴、4.2633g分析纯的十二羰基三钌和13.136gC4H6N2溶于80ml的甲醇中在50℃磁力搅拌形成溶液A;
2)在A溶液中加入2g十六烷基三甲基溴化铵(CTAB)并用保鲜膜密封在60℃磁力搅拌60min后移入水热釜,在200℃下溶剂热6h,水热釜冷却至室温后抽滤并用无水乙醇和去离子水各洗涤4遍后在-38℃冷冻干燥48h合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取500mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以5℃/min的升温速率,自室温升温至900℃保温1h,以10℃/min的降温速率降至300℃然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
实施例6:
1)首先,称取14.2482g分析纯的乙酰丙酮钴、4.6252g分析纯的二茂钌和13.136gC4H6N2溶于70ml的甲醇中在50℃磁力搅拌形成溶液A;
2)在A溶液中加入3g十六烷基三甲基溴化铵(CTAB)并用保鲜膜密封在50℃磁力搅拌30min后移入水热釜,在180℃下溶剂热8h,水热釜冷却至室温后抽滤并用无水乙醇和去离子水各洗涤3遍后在-40℃冷冻干燥30h合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取400mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以5℃/min的升温速率,自室温升温至800℃保温1.5h,以10℃/min的降温速率降至300℃然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒(CoRu/NC)。
图1为实施例1制备的CoRu/NC的X射线衍射图,CoRu/NC的X射线衍射图显示在25°附近出现一个凸起,这是因为石墨化碳的生成,38.4°和42.1°的衍射峰分别归属于Ru(PDF#06-0663)的(100)晶面和(002)晶面,44.1°左右的衍射峰归属于Co(PDF#15-0806)的(111)晶面和Ru(PDF#06-0663)的(101)晶面,说明有Co和Ru的生成。
图2为实施例1制备的CoRu/NC的SEM图,从CoRu/NC的SEM图中可以看出微观形貌为规则的十二面体,棱角分明,表面粗糙,面微向内凹陷,这是由于升温过程中结合水的挥发、有机溶剂的挥发造成、碳的石墨化过程中键的断裂造成,表面粗糙度增加有利于亲水和吸附,有利于催化反应的进行。
图3为实施例1制备的CoRu/NC的全解水LSV图,CoRu/NC的全解水LSV曲线显示10mA cm-2(该标准对应的太阳能制氢效率为12.3%)的过电位仅为270mV,小于商业铂碳和氧化铱全解水(10 mA cm-2的过电位为357mV),说明CoRu/NC的全解水催化性能优于商业化铂碳和氧化铱,具有更高的全解水效率。
需要说明的是,以上内容是对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定的保护范围。

Claims (5)

1.一种氮碳负载钴钌纳米粒子全解水电催化材料的制备方法,其特征在于,包括如下步骤:
1)首先称取分析纯的钴源、钌源和2-甲基咪唑溶于40~80ml的甲醇中搅拌至溶解形成钴离子浓度为0.05~0.5mol/L,钌离子浓度为0.005~0.25mol/L和2-甲基咪唑浓度为0.1~2mol/L的溶液A;
2)在A溶液中加入1~3g十六烷基三甲基溴化铵并用保鲜膜密封后移入水热釜,在120~200℃下溶剂热6~18h,水热釜冷却至室温后抽滤并洗涤、冷冻干燥,合成的蓬松的深紫色粉末为CoRu-ZIF-67前驱体;
3)取200~500mg的CoRu-ZIF-67粉体铺在刚玉瓷舟中置于充满氢氩气气氛的管式炉中,以2~5℃/min的升温速率,自室温升温至600~900℃,保温1~3h,以10℃/min的降温速率降至300℃,然后自然降温至室温,生成的黑色粉体为氮掺杂碳负载的钴钌纳米颗粒;
所述的钴源为硝酸钴、氯化钴或乙酰丙酮钴;
所述的钌源为乙酰丙酮钌、十二羰基三钌或二茂钌。
2.如权利要求1所述的氮碳负载钴钌纳米粒子全解水电催化材料的制备方法,其特征在于,所述步骤1)中的搅拌为在30~50℃温度下磁力搅拌。
3.如权利要求1所述的氮碳负载钴钌纳米粒子全解水电催化材料的制备方法,其特征在于,所述步骤2)中洗涤为用无水乙醇和去离子水各洗涤2~4遍。
4.如权利要求1所述的氮碳负载钴钌纳米粒子全解水电催化材料的制备方法,其特征在于,所述步骤2)中冷冻干燥为在-30~-40℃温度下冷冻干燥24~48h。
5.一种如权利要求1-4中任一项所述的制备方法制备的氮碳负载钴钌纳米粒子全解水电催化材料,其特征在于,微观形貌为规则的十二面体,棱角分明,表面粗糙,面微向内凹陷。
CN202111298395.4A 2021-11-04 2021-11-04 一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法 Active CN113930803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111298395.4A CN113930803B (zh) 2021-11-04 2021-11-04 一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111298395.4A CN113930803B (zh) 2021-11-04 2021-11-04 一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113930803A CN113930803A (zh) 2022-01-14
CN113930803B true CN113930803B (zh) 2024-04-05

Family

ID=79285618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111298395.4A Active CN113930803B (zh) 2021-11-04 2021-11-04 一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113930803B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094470B (zh) * 2022-06-15 2023-09-26 青岛科技大学 一种多级孔碳负载钴钌纳米合金材料及其制备方法
CN115110099A (zh) * 2022-06-22 2022-09-27 苏州大学 一种碱性电催化析氢催化剂及其制备方法与应用
CN115475646A (zh) * 2022-09-20 2022-12-16 哈尔滨工业大学(深圳) 一种碳纳米管基催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170325A (zh) * 2019-06-02 2019-08-27 上海纳米技术及应用国家工程研究中心有限公司 用于丙烷治理的中空结构钴氧化物/碳纳米管的制备及其产品和应用
CN110336048A (zh) * 2019-06-12 2019-10-15 青岛科技大学 一种低负载量钌包覆zif-67衍生物及其制备方法和在锂-空气电池中的应用
CN113314721A (zh) * 2021-06-10 2021-08-27 广东省武理工氢能产业技术研究院 一种分级透气结构的掺杂型氧还原催化剂及其制备方法
CN113546637A (zh) * 2020-04-22 2021-10-26 中国科学院大连化学物理研究所 一种高价态金属原子可控掺杂羟基氧化钴及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170325A (zh) * 2019-06-02 2019-08-27 上海纳米技术及应用国家工程研究中心有限公司 用于丙烷治理的中空结构钴氧化物/碳纳米管的制备及其产品和应用
CN110336048A (zh) * 2019-06-12 2019-10-15 青岛科技大学 一种低负载量钌包覆zif-67衍生物及其制备方法和在锂-空气电池中的应用
CN113546637A (zh) * 2020-04-22 2021-10-26 中国科学院大连化学物理研究所 一种高价态金属原子可控掺杂羟基氧化钴及其制备方法与应用
CN113314721A (zh) * 2021-06-10 2021-08-27 广东省武理工氢能产业技术研究院 一种分级透气结构的掺杂型氧还原催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Construction of noble-metal alloys of cobalt confined N-doped carbon polyhedra toward efficient water splitting";Bidushi Sarkar et. al.;《Green Chem.》;第22卷;7884 *
RuCo alloy bimodal nanoparticles embedded in Ndoped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction;Feifei Zhang et. al.;《J. Mater. Chem. A》;第8卷;12810 *

Also Published As

Publication number Publication date
CN113930803A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN113930803B (zh) 一种氮碳负载钴钌纳米粒子全解水电催化材料及其制备方法
Mei et al. Step-scheme porous g-C3N4/Zn0. 2Cd0. 8S-DETA composites for efficient and stable photocatalytic H2 production
Mu et al. Synergistic effect of molybdenum nitride nanoparticles and nitrogen-doped carbon on enhanced photocatalytic hydrogen evolution performance of CdS nanorods
CN107308990B (zh) 一种TiO2/卟啉/MOFs超薄异质体的制备方法
Wang et al. In situ grown heterojunction of Bi2WO6/BiOCl for efficient photoelectrocatalytic CO2 reduction
CN109806879A (zh) 一种CeO2-NiCo2O4/NF复合电催化材料及其制备方法和应用
CN113699554B (zh) 一种稀土金属和过渡金属共掺杂碳基材料的制备方法及其应用
CN113481534B (zh) 低结晶度的锆掺杂的钴铁层状双氢氧化物的制备方法及其应用于电解水制氢
CN112958116A (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
Xue et al. C3N4 nanosheets loaded with the CuWO4 activated NiS co-catalyst: A stable noble metal-free photocatalyst with dramatic photocatalytic activity for H2 generation and high salinity tolerant
Zhu et al. Carbon nitride derived carbon and nitrogen Co-doped CdS for stable photocatalytic hydrogen evolution
Liu et al. Highly efficient visible-light-driven photocatalytic hydrogen production on Cu7S4/Zn0. 2Cd0· 8S pn binary heterojunctions
CN108043440B (zh) 高活性多孔的g-C3N4光催化剂及其制备方法与应用
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN111203219A (zh) 一种用于二氧化碳制甲酸的铜基催化剂、制备方法及应用
CN111525142A (zh) 一种用于光催化燃料电池的CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极
CN113441144B (zh) 一种光催化产氢助催化剂、光催化系统及产氢方法
CN115710712A (zh) 一种电解水催化剂的改性方法
CN113930802A (zh) 用于析氢、析氧和氧还原多功能电催化的氮掺杂碳负载卤氮共配位钌单原子及其制备方法
CN115125547A (zh) Mo/Nb双掺杂Co中空介孔碳纳米盒催化剂的制备及应用
CN112295581B (zh) 一种电催化剂材料及其应用
Xiang et al. Co-doped CeO2/N–C nanorods as a bifunctional oxygen electrocatalyst and its application in rechargeable Zn-air batteries
Zeng et al. A binder-and carbon-free hydrogen evolution electro-catalyst in alkaline media based on nitrogen-doped Ni (OH) 2 nanobelts/3D Ni foam
CN110639530A (zh) 一种复合纳米析氧催化剂及其制备方法和应用
CN114318408B (zh) 一种自支撑Cu3P基异质结电催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant