CN113913561A - 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法 - Google Patents

基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法 Download PDF

Info

Publication number
CN113913561A
CN113913561A CN202111527238.6A CN202111527238A CN113913561A CN 113913561 A CN113913561 A CN 113913561A CN 202111527238 A CN202111527238 A CN 202111527238A CN 113913561 A CN113913561 A CN 113913561A
Authority
CN
China
Prior art keywords
primer
cov
dpo
sars
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111527238.6A
Other languages
English (en)
Other versions
CN113913561B (zh
Inventor
许文涛
杜再慧
朱龙佼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN202111527238.6A priority Critical patent/CN113913561B/zh
Publication of CN113913561A publication Critical patent/CN113913561A/zh
Application granted granted Critical
Publication of CN113913561B publication Critical patent/CN113913561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于引物设计和铜纳米簇的SARS‑CoV‑2德尔塔变异株检测方法。该方法结合DPO引物和AT引物成功区分了单碱基缺失的SARS‑CoV‑2德尔塔变异株和SARS‑CoV‑2野生菌株。并且DPO引物和AT引物的PCR产物可以作为CuNCs的生成模板,在紫外照射下实现SARS‑CoV‑2德尔塔变异株的可视化检测。本申请利用常规实验条件,借助PCR仪将DPO引物和AT引物结合扩增,使其SARS‑CoV‑2德尔塔变异株检测具有特异性、高灵敏、可视化的优势。

Description

基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测 方法
技术领域
本发明属于生物传感器领域,具体涉及基于合理引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法。
背景技术
SARS-Cov-2是一类单链RNA病毒,病毒粒子多呈圆形,有囊膜,外周有冠状排列的纤突,固因此而得名冠状病毒。病毒进入人体后首先和人体表面富含“血管紧张素转换酶2(ACE2)受体的细胞结合,进而影响人的肺、心血管、肾脏,甚至是大脑。并且可以通过气溶胶进行人传人。虽然致死率比埃博拉、MERS低,但是其传播性和致病性却很难攻克。目前世界卫生组织公布的值得关注的变异株就有阿尔法、贝塔、伽马、德尔塔,以及上个月在南非发现的奥密克戎。这些变异株无论是与细胞表面的结合能力,还是免疫逃逸、传染性等方面都在不断的变强。本研究检测的德尔塔变异株最早在2020年9月就有测序记录,经过一年多的变异,目前主要传播的德尔塔一代变异株有111种;二代变异株有30种;三代变异株有2种。目前检测新冠病毒的主要检测方法包括抗原、抗体检测,以及核酸检测。其中抗原检测检出率低;抗体检测操作便捷、检测迅速,但易出现“假阳性”和“假阴性”;核酸检测多用于早期诊断,灵敏度和特异性高,被认为是新冠检测的金标准。核酸检测包括病毒核酸特异基因检测和病毒基因组测序。
特异性基因检测可以通过恒温扩增技术和变温扩增技术实现,其中恒温扩增技术虽然降低了反应条件,但是易受气溶胶污染,假阳性率高,对检测环境要求高;而变温扩增技术虽然需要变温的PCR仪,但是能明显提高检测的特异性,并且普通的PCR仪是分子生物学实验室常备设备,因此基于变温扩增的检测方法也是易于实现的。其中,反转录荧光定量PCR(RT-PCR)被认为是最准确的检测方法之一,即为变温扩增技术。
PCR扩增结合双启动寡聚核苷酸引物(Dual priming Oligonucleotide, DPO)其扩增的特异性能够明显提升。而目前PCR产物的信号输出通常采用琼脂糖凝胶电泳、荧光染料、荧光探针、金纳米粒子、侧流层析等检测方法进行信号输出。上述方法不是操作步骤复杂,就是需要碱基修饰,提高检测复杂度和成本。因此,需要开发新的方法实现PCR产物的可视化检测。铜纳米簇(Copper nanoclusters, CuNCs)虽然可以以核酸为模板合成,但对核酸序列中碱基排布有要求。同时CuNCs在紫外照射下能够发出红色荧光。因此,本申请提供一种SARS-CoV-2德尔塔变异株检测的方法,依赖DPO引物和AT引物的结合,实现高特异性PCR扩增,并且PCR产物直接生成CuNCs,实现靶标的特异性可视化检测。
发明内容
本发明解决其技术问题所采用的技术方案是:
一方面,构建一种SARS-CoV-2德尔塔变异株的检测方法,包括:(1)引物设计;(2)PCR扩增;(3)还原剂法生成铜纳米簇;(4)可视化检测;
所述引物设计包括DPO引物设计和AT引物设计;
所述PCR扩增,体系为1×SuperMix, 300~700 nM 引物和H2O;
优选地,25 μL PCR扩增体系包括1×SuperMix, 600 nM 引物和补足ddH2O;
所述还原剂法生成铜纳米簇,步骤为PCR 产物、CuSO4、MOPS buffer和SA混合均匀,立即测定荧光;
所述MOPS buffer是由10~20 mM MOPS, 100~200 mM NaCl, pH 6~8组成;
优选地,10 μL PCR 产物与10 μL 1 mM CuSO4、 60 μL MOPS buffer(pH 7.6)和20 μL 10 mM SA混合,2min后测定荧光;
所述可视化检测是指在紫外线照射的条件下CuNCs呈现红色荧光。
所述DPO引物是由次黄嘌呤碱基链接的两段引物序列,两段引物序列与靶标序列互补,且5’端的碱基序列含有20~30 nt碱基,3’端的碱基序列的GC含量在40%~60%;
优选地,DPO引物为R-1-down(DPO)-6I:CACAAGTAAATGTACCATGCTTAAIIIIIIACTGACAG (SEQ ID NO.15);
所述AT引物是由富AT碱基的序列和特异性序列组成,5’端为富AT碱基,3’端为与靶标序列互补的碱基;
优选地,AT引物为F-1-30AT:ATATATATATATATATATATATATATATATCTTGTGGACAACAGCAGACAAC (SEQ ID NO.8)。
另一方面,一种含有DPO引物和AT引物的SARS-CoV-2检测试剂盒。
所述DPO引物是由次黄嘌呤碱基链接的两段引物序列,两段引物序列与靶标序列互补,且5’端的碱基序列含有20~30 nt碱基,3’端的碱基序列的GC含量在40%~60%;
优选地,DPO引物为R-1-down(DPO)-6I:CACAAGTAAATGTACCATGCTTAAIIIIIIACTGACAG (SEQ ID NO.15);
所述AT引物是由富AT碱基的序列和特异性序列组成,5’端为富AT碱基,3’端为与靶标序列互补的碱基;
优选地,AT引物为F-1-30AT:ATATATATATATATATATATATATATATATCTTGTGGACAACAGCAGACAAC (SEQ ID NO.8)。
另一方面,一种含有铜纳米簇可视化SARS-CoV-2检测试剂盒。
所述铜纳米簇具体步骤为PCR 产物、CuSO4、MOPS buffer和SA混合均匀,立即测定荧光;
所述MOPS buffer是由10~20 mM MOPS, 100~200 mM NaCl, pH 6~8组成;
优选地,10 μL PCR 产物与10 μL 1 mM CuSO4、 60 μL MOPS buffer(pH 7.6)和20 μL 10 mM SA混合,2min后测定荧光;
所述可视化是指在紫外线照射的条件下CuNCs呈现红色荧光。
另一方面,引物设计、检测方法在SARS-CoV-2或SARS-CoV-2德尔塔变异株检测方法、检测试剂以及试剂盒中的应用。
与现有技术相比,本发明的有益效果是:
1. 本申请利用常规实验条件,借助PCR仪将DPO引物和AT引物结合扩增,开发了一种SARS-CoV-2 德尔塔变异株的特异性、高灵敏、可视化检测新方法。
2.本申请中DPO 引物实现了单碱基缺失的SNP检测,且具有高特异性,且首次将DPO引物应用到SARS-CoV-2德尔塔检测。
3.本申请中AT引物增加了PCR引物5’端的AT碱基个数,促使PCR产物的AT含量增加,使其适合于CuNCs的模板要求,可以在2min内实现PCR产物的可视化检测。
4.本申请AT引物还增加了反应的特异性,与DPO引物结合,增大了ΔCt值。
5.本申请的可视化定量检出限达0.5pg/μl (约4拷贝/反应), 50 ng/μl-0.5 pg/μl范围内, Y=9.080*X + 74.28, R2=0.9893。
附图说明
图1 SARS-Cov-2 德尔塔变异菌株的快速检测方法。
图2 DPO引物检测SARS-CoV-2 德尔塔变异株的可行性。
图3 PCR产物的琼脂糖凝胶电泳结果. A是F-1 + R-1 和 F-1 + R-1-down (PT)的PCR扩增产物,B 是F-1 + R-1-down (DPO) 和F-2 + R-2的PCR扩增产物,C是F-2-up(PT) + R-2 and F-2-up (DPO) + R-2的PCR扩增产物。泳道1-3 是野生型SRAS-CoV-2,泳道 4-6 是德尔塔变体, 泳道7-9 是阴性对照,泳道10-12是野生型SRAS-CoV-2,泳道 13-15 是德尔塔变体, 泳道16-18 是阴性对照。
图4 退火温度优化。
图5 F-1和 R-1-down (DPO)引物浓度的优化。
图6 DPO引物3’端碱基个数优化。
图7 互补次黄嘌呤碱基个数的优化。
图8 非互补次黄嘌呤碱基个数的优化。
图9 AT引物的优化。
图10 PCR产物的CuNCs荧光。
图11 PCR产物CuNCs生成条件优化。
图12 PCR产物CuNCs的生成过程。
图13 检测方法的灵敏度和特异性。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1. 基于合理引物设计和铜纳米簇实现SARS-CoV-2 德尔塔变异株检测的设计原理
为了更灵敏的检测新冠病毒的变异菌株,本研究基于引物设计和CuNCs开发了一种SARS-CoV-2 德尔塔变异株的精准检测方法。其中引物设计包括PCR的上游引物和下游引物两部分。首先,为了提高检测的特异性,采用DPO引物进行突变位点的识别,其中DPO引物为聚次黄嘌呤连接的特异性引物,将单碱基缺失的突变位点设计在3’端,然后通过非特异性互补的次黄嘌呤连接引物5’端和3’端的互补碱基。同时,在5’端人为增加引物的AT碱基含量,组建AT引物以提高CuNCs的荧光值,使其更易于可视化检测。根据SARS-CoV-2 德尔塔变异株的单碱基缺失位点设计引物,后续用到的引物如表1所示。整个反应的过程如图1所示,即DPO引物与AT引物对靶标进行PCR扩增,其PCR产物在还原剂存在的条件下即可生成CuNCs,在紫外照射下即可出现红色荧光,实现可视化检测。需要注意的是根据新冠病毒传播特性、致病性和临床资料等信息,该病毒按照第二类病原微生物进行管理,对其检测实验室要求应符合生物安全三级及以上标准。实验条件和实验安全性的考虑,本申请采用假病毒的形式,替代真实样品。取SARS-CoV-2 Delta变异株(Genebank: OK091006.1)与SARS-CoV-2 (Genebank: NC_045512.2 )相同的部分序列,即在OFR 1ab基因的第5700碱基仅有一个C缺失的碱基为靶标序列。
表1 实验中用到的核酸序列
Figure 268353DEST_PATH_IMAGE002
注:“n”代表的是次黄嘌呤碱基(I)。
实施例2.实验可行性验证
采用PCR的方法,证明DPO引物区分野生型和单碱基缺失的德尔塔变异株的可行性。25 μL PCR反应体系包含 1×SuperMix, 600 nM 引物,和蒸馏水。扩增程序为93℃ 3min;30循环95 ℃ 30 s, 65 ℃ 30 s, 72 ℃ 30 s。共分成6对引物:F-1和R-1、F-2和R-2、F-1和R-1-down(PT)、F-2-up(PT)和R-2、F-1和R-1-down(DPO)、F-2-up(DPO)和R-2。其中F-1和R-1、F-2和R-2是通过NCBI设计的普通PCR引物;F-1和R-1-down(PT)、F-2-up(PT)和R-2是普通引物,引物长度与F-1和R-1-down(DPO)、F-2-up(DPO)和R-2完全一致,只是后者中间部分是次黄嘌呤链接,而前者是与靶标完全互补的碱基链接。F-1和R-1-down(DPO)、F-2-up(DPO)和R-2两对引物的主要不同是突变位置设计不同,其中F-1和 R-1-down (DPO)的突变位点设计在下游引物的3’端,而F-2-up (DPO) 和 R-2的突变位点设计在上游引物的3’端。由图2A和2D可知普通引物在PCR扩增过程中很难区分野生型和突变型,而图2C和2F可知DPO引物可以区分单碱基缺失的突变菌株和野生菌株,并且图2B和2E不能明显区分野生型和突变型,因此可知DPO引物中的次黄嘌呤是提高特异性的主要原因。
实施例3 具体实验条件优化
1.退火温度优化
退火温度是实现特异性检测的关键因素,因此为了将上述现象更加明显的区分,同时对F-1和 R-1-down (DPO)、F-2-up (DPO) 和 R-2两对引物进行退火温度优化。结果如图3,3A-3F为F-1和 R-1-down (DPO)的退火温度优化的扩增曲线,由图可知随着温度的升高,检测方法的特异性越好;图4中4A-4F为F-2-up (DPO) 和 R-2的退火温度优化的扩增曲线,由图可知随着温度的升高,检测方法的特异性越好;而图3中3G、3H则展示了两对引物随温度变化ΔCt值的变化。虽然F-2-up (DPO) 和 R-2的ΔCt=9.3,大于F-1和 R-1-down(DPO)引物的ΔCt=7.1,但是后续实验显示人工增加AT序列也有利于ΔCt的增加,且F-1和R-1-down (DPO)引物更适合于纳米簇的合成,因此后续以F-1和 R-1-down (DPO)引物继续优化,且退火温度为65℃。
引物浓度优化
F-1和 R-1-down (DPO)的引物浓度决定了扩增的灵敏度,因此选择0 μM、0.2 μM、0.3 μM、0.4 μM、0.5 μM、0.6 μM、0.7 μM的引物浓度进行扩增,由图5可以看出0.6 μM的浓度,扩增效果最好,因此后续选择0.6 μM的F-1和 R-1-down (DPO)引物进行继续优化。
实施例4 DPO引物优化
1.DPO引物3’端碱基个数优化
针对于DPO引物的设计,由于突变位点设计在3’端,因此首先要考虑3’端的碱基个数和GC含量。由下图6所示,首先设计了3条下游引物,与上游引物组成F-1 + R-1-down(DPO)-3’1, F-1 + R-1-down (DPO)-3’2, F-1 + R-1-down (DPO)三对引物。实时定量PCR的结果ΔCt值显示F-1 + R-1-down (DPO)对引物的特异性区分更加明显。其中R-1-down(DPO)引物的3’端包含8个碱基,GC含量在50%,更适合于单碱基缺失碱基的识别。
次黄嘌呤碱基个数的优化
次黄嘌呤碱基个数是DPO引物实现特异性识别的关键因素,因此对次黄嘌呤碱基个数进行优化。由于次黄嘌呤与碱基之间弱的相互作用,因此本研究采用两种方案对其碱基个数进行优化。第一种是设计次黄嘌呤碱基的个数与模板碱基个数完全互补,仅依靠弱氢键作用,实现3’端的高特异性识别,其结果见图7所示。由图可知,R-1-down (DPO)-6I的扩增效果最好,ΔCt=13.7。另外一种是固定3’端和5’端的碱基序列,依靠次黄嘌呤和空间位阻的效果进行实时荧光定量PCR,其结果见图8所示。由图可知,两种方案的趋势一致,6个连续的次黄嘌呤引物R-1-down (DPO)-6I和R-1-down (DPO)-poly6I的扩增效果较好。因此选择R-1-down (DPO)-6I引物继续后面的研究。
实施例4 AT引物的优化
通过上述DPO引物的优化,基本上能够区分单碱基缺失的德尔塔变异株的检测,但是必须依靠实时荧光定量PCR仪,不能实现可视化检测。同时CuNCs能够以双链DNA为模板在短时间内生成红色荧光。因此,希望将PCR产物作为模板生成CuNCs荧光实现可视化检测。但是直接利用PCR产物生成CuNCs的荧光值非常低(虽然引物设计的时候考虑到了AT含量,达到了62%左右),不能实现肉眼识别。因此增加上游引物的AT含量,提供CuNCs的生成效率。由图9可知,AT含量的增加不仅仅提高了CuNCs的荧光,而且对于ΔCt的增加也具有意想不到的促进作用。图10为具体的PCR产物生成的CuNCs效果,随着上游引物AT含量的增加,CuNCs的荧光也逐渐增加;当AT含量达到30个碱基时,PCR产物的AT含量能够达到67%,即可大大增加CuNCs的荧光值,提高信噪比。另一个原因可能是由于人工增加的AT碱基为连续的碱基序列,中间没有其他碱基插入,因此更易于CuNCs的生成。
实施例5 PCR产物CuNCs生成条件优化
为了优化PCR产物生成CuNCs的条件,首先对CuSO4和抗坏血酸钠(sodiumascorbate, SA)的浓度进行优化。10 μL PCR 产物与10 μL 1 mM CuSO4、 60 μL MOPSbuffer (10 mM MOPS, 150 mM NaCl, pH 7.6)和20 μL 10 mM SA混合,2min后测定荧光。由图11可知,1 mM的CuSO4更有利于CuNCs的生成,这主要原因是CuSO4作为CuNCs的前体物质,因此浓度越高越有利于CuNCs的生成;但是当浓度超过5 mM时则不利于CuNCs的生成,主要原因是高浓度的Cu2+会对核酸发生氧化损伤,进而降低核酸模板的浓度,从而不利于CuNCs的生成。SA的浓度只要超过5 mM即可有效的生成CuNCs,且随着SA浓度的怎能增加实现微弱的增加,但是增幅程度不明显,因此选择10 mM的SA作为后续实验浓度。同时,图12还反应了PCR产物在2 min内即可实现CuNCs的生成,且在10 min内能够维持荧光信号的稳定。因此,能够满足PCR产物现场可视化的检测需求。
实施例6 灵敏度和特异性
首先利用实时荧光定量PCR的方法进行灵敏度测定,由图13 A可知,该检测方法在50 ng/μl-50 fg/μl具有良好的线性关系,且定量检测线(LOQ)是50 fg/μl,线性关系为 Y=-3.258*X + 13.97, R2=0.9860。进一步利用CuNCs荧光进行灵敏度测试(图13 B),在50ng/μl-0.5 pg/μl 的线性范围内,线性关系为Y=9.080*X + 74.28, R2=0.9893, 且LOQ为0.5 pg/μl。然后采用上述方法,分别对SARS-CoV-1、FluA、MERS和Rhinovirus病毒进行检测,由图13C、13D所示,只有目标突变德尔塔病毒实现检测,因此证明本方法具有良好的特异性。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 中国农业大学
<120> 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法
<130> 1
<160> 21
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
cttgtggaca acagcagaca ac 22
<210> 2
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
ttcatactga caggtggtgc t 21
<210> 3
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(30)
<223> n is i
<400> 3
cacaagtaaa tgtaccatgc ttaagnnnnn actgacag 38
<210> 4
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
cacaagtaaa tgtaccatgc ttaagttcat actgacag 38
<210> 5
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atatatatat atatacttgt ggacaacagc agacaac 37
<210> 6
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
atatatatat atatatatat cttgtggaca acagcagaca ac 42
<210> 7
<211> 47
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
atatatatat atatatatat atatacttgt ggacaacagc agacaac 47
<210> 8
<211> 52
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
atatatatat atatatatat atatatatat cttgtggaca acagcagaca ac 52
<210> 9
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(30)
<223> n is i
<400> 9
cacaagtaaa tgtaccatgc ttaagnnnnn actgac 36
<210> 10
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(30)
<223> n is i
<400> 10
cacaagtaaa tgtaccatgc ttaagnnnnn actgaca 37
<210> 11
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(30)
<223> n is i
<400> 11
cacaagtaaa tgtaccatgc ttaagnnnnn actgacag 38
<210> 12
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(31)
<223> n is i
<400> 12
cacaagtaaa tgtaccatgc ttaagnnnnn nactgacag 39
<210> 13
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(29)
<223> n is i
<400> 13
cacaagtaaa tgtaccatgc ttaagnnnna ctgacag 37
<210> 14
<211> 36
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (26)..(28)
<223> n is i
<400> 14
cacaagtaaa tgtaccatgc ttaagnnnac tgacag 36
<210> 15
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (25)..(30)
<223> n is i
<400> 15
cacaagtaaa tgtaccatgc ttaannnnnn actgacag 38
<210> 16
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (27)..(30)
<223> n is i
<400> 16
cacaagtaaa tgtaccatgc ttaagtnnnn actgacag 38
<210> 17
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (28)..(30)
<223> n is i
<400> 17
cacaagtaaa tgtaccatgc ttaagttnnn actgacag 38
<210> 18
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
gtcagcacca cctgtcagta 20
<210> 19
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
agtaaagcac cgtctatgca a 21
<210> 20
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<220>
<221> misc_feature
<222> (28)..(32)
<223> n is i
<400> 20
aggagtcacc ttttgttatg atgtcagnnn nncctgtcag 40
<210> 21
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
aggagtcacc ttttgttatg atgtcagcac cacctgtcag 40

Claims (10)

1.一种SARS-CoV-2德尔塔变异株的检测方法,其特征在于:(1)引物设计;(2)PCR扩增;(3)还原剂法生成铜纳米簇;(4)可视化检测;
所述引物设计包括DPO引物设计和AT引物设计;
所述还原剂法生成铜纳米簇,步骤为PCR 产物、CuSO4、MOPS buffer和SA混合均匀,立即测定荧光;
所述可视化检测是指在紫外线照射的条件下CuNCs呈现红色荧光。
2.如权利要求1所述的检测方法,其特征在于,所述DPO引物是由次黄嘌呤碱基链接的两段引物序列,两段引物序列与靶标序列互补,且5’端的碱基序列含有20~30 nt碱基,3’端的碱基序列的GC含量在40%~60%。
3.如权利要求1所述的检测方法,其特征在于,所述AT引物是由富AT碱基的序列和特异性序列组成,5’端为富AT碱基,3’端为与靶标序列互补的碱基。
4.如权利要求1所述的检测方法,其特征在于,所述还原剂法生成铜纳米簇,步骤为PCR产物、CuSO4、MOPS buffer和SA混合均匀,立即测定荧光;
所述MOPS buffer是由10~20 mM MOPS, 100~200 mM NaCl, pH 6~8组成。
5.如权利要求4所述的检测方法,其特征在于,还原剂法生成铜纳米簇包括将10 μLPCR 产物与10 μL 1 mM CuSO4、 60 μL MOPS buffer(pH 7.6)和20 μL 10 mM SA混合,2min后测定荧光。
6.如权利要求1-5任一所述的检测方法,其特征在于, DPO引物为R-1-down(DPO)-6I:CACAAGTAAATGTACCATGCTTAAIIIIIIACTGACAG,如SEQ ID NO.15所示。
7.如权利要求1-5任一所述的检测方法,其特征在于, AT引物为F-1-30AT:ATATATATATATATATATATATATATATATCTTGTGGACAACAGCAGACAAC,如SEQ ID NO.8所示。
8.一种包含如权利要求6和权利要求7的DPO引物和AT引物的SARS-CoV-2检测试剂盒。
9.一种包含如权利要求1-7任一所述的SARS-CoV-2德尔塔变异株的检测方法试剂的SARS-CoV-2检测试剂盒。
10.制备如权利要求8或9所述的SARS-CoV-2检测试剂盒的方法。
CN202111527238.6A 2021-12-15 2021-12-15 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法 Active CN113913561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111527238.6A CN113913561B (zh) 2021-12-15 2021-12-15 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111527238.6A CN113913561B (zh) 2021-12-15 2021-12-15 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法

Publications (2)

Publication Number Publication Date
CN113913561A true CN113913561A (zh) 2022-01-11
CN113913561B CN113913561B (zh) 2022-03-04

Family

ID=79249024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111527238.6A Active CN113913561B (zh) 2021-12-15 2021-12-15 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法

Country Status (1)

Country Link
CN (1) CN113913561B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085928A (zh) * 2022-01-19 2022-02-25 广东和信健康科技有限公司 一种用于新型冠状病毒Omicron突变株分型的快速检测体系
CN116555497A (zh) * 2022-01-27 2023-08-08 深圳联合医学科技有限公司 用于检测新型冠状病毒的试剂盒和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087765A (zh) * 2014-05-16 2015-11-25 深圳先进技术研究院 聚胸腺嘧啶模板、基于聚胸腺嘧啶模板的荧光铜纳米簇及其制备方法、atp的检测方法
CN105886610A (zh) * 2016-03-23 2016-08-24 南昌大学 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法
CN109321672A (zh) * 2018-10-30 2019-02-12 中国农业大学 核苷酸组合物、试剂盒及检测方法
CN110640158A (zh) * 2019-09-24 2020-01-03 西北大学 应用dna纳米带模板法合成的铜纳米簇、合成方法及其应用
CN113281315A (zh) * 2021-05-16 2021-08-20 长沙市食品药品检验所 基于发夹结构dna为模板的铜纳米簇荧光探针快速定量检测溶液中链霉素的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105087765A (zh) * 2014-05-16 2015-11-25 深圳先进技术研究院 聚胸腺嘧啶模板、基于聚胸腺嘧啶模板的荧光铜纳米簇及其制备方法、atp的检测方法
CN105886610A (zh) * 2016-03-23 2016-08-24 南昌大学 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法
CN109321672A (zh) * 2018-10-30 2019-02-12 中国农业大学 核苷酸组合物、试剂盒及检测方法
CN110640158A (zh) * 2019-09-24 2020-01-03 西北大学 应用dna纳米带模板法合成的铜纳米簇、合成方法及其应用
CN113281315A (zh) * 2021-05-16 2021-08-20 长沙市食品药品检验所 基于发夹结构dna为模板的铜纳米簇荧光探针快速定量检测溶液中链霉素的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN CA ET AL.: "Label-Free Fluorescent Copper Nanoclusters for Genotyping of Deletion and Duplication of Duchenne Muscular Dystrophy", 《ANAL CHEM.》 *
JONG-YOON CHUN ET AL: "Dual priming oligonucleotide system for the multiplex detection of respiratory viruses and SNP genotyping of CYP2C19 gene", 《NUCLEIC ACIDS RES》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085928A (zh) * 2022-01-19 2022-02-25 广东和信健康科技有限公司 一种用于新型冠状病毒Omicron突变株分型的快速检测体系
CN114085928B (zh) * 2022-01-19 2022-04-26 广东和信健康科技有限公司 一种用于新型冠状病毒Omicron突变株分型的快速检测体系
CN116555497A (zh) * 2022-01-27 2023-08-08 深圳联合医学科技有限公司 用于检测新型冠状病毒的试剂盒和方法
CN116555497B (zh) * 2022-01-27 2024-03-19 深圳联合医学科技有限公司 用于检测新型冠状病毒的试剂盒和方法

Also Published As

Publication number Publication date
CN113913561B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN110551846B (zh) 一种用于非洲猪瘟病毒核酸快速检测的Cpf1试剂盒及其检测方法
CN113913561B (zh) 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法
CN109321672B (zh) 核苷酸组合物、试剂盒及检测方法
CN102634586B (zh) 一种两核苷酸实时合成dna解码测序方法
CN105734679B (zh) 核酸靶序列捕获测序文库的制备方法
Koo et al. DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: application in simultaneous amplification-free analysis of multiple RNA species
JP7313537B2 (ja) コロナウイルス(SARS-CoV-2)の検出方法
CN111518948A (zh) 逆转录多交叉置换扩增结合纳米生物传感检测SARS-CoV-2的方法
CN106191311B (zh) 一种快速检测豚鼠LCMV、SV、PVM、Reo-3病毒的多重液相基因芯片方法及试剂
CN111521781B (zh) 一种用于新冠肺炎病毒SARS-CoV-2核酸的检测试剂盒及其检测方法
Chu et al. Rapid and sensitive detection of the IS6110 gene sequences of Mycobacterium tuberculosis based on hybridization chain reaction and reusable magnetic particles
CN113025726A (zh) Lfd-rpa可视化快速检测日本血吸虫核酸的引物、探针、试剂盒及方法
CN113388668A (zh) 基于DNA纳米线的局域催化发夹自组装技术检测外泌体miRNA的方法
CN112626209A (zh) 用于卵巢癌诊断的miRNA标志物、其应用及诊断试剂盒
Liu et al. CRISPR-Cas12a coupled with universal gold nanoparticle strand-displacement probe for rapid and sensitive visual SARS-CoV-2 detection
Wang et al. Template-free multiple signal amplification for highly sensitive detection of cancer cell-derived exosomes
CN113684317B (zh) 一种基于CRISPR-Cas12b对乙肝病毒B型和C型的超灵敏快速检测及鉴别系统
Su et al. Sensitive detection of hepatitis C virus using a catalytic hairpin assembly coupled with a lateral flow immunoassay test strip
CN106636454A (zh) 一种同时检测人冠状病毒229e,oc43,nl63和hku1的实时荧光多重rt-pcr方法
TWI377255B (en) Nucleic acid detection
JP5258760B2 (ja) メチル化核酸又は非メチル化核酸を増幅する方法
CN110938708B (zh) 一种基于等温扩增技术检测h7n9禽流感病毒的试剂盒及其应用
TWI402502B (zh) Genome detection system
CN106319091B (zh) 一种快速区分犬瘟病毒、犬细小病毒和狂犬病毒的多重荧光免疫分析方法及试剂盒
CN115029345A (zh) 基于crispr的核酸检测试剂盒及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant