CN105886610A - 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法 - Google Patents

一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法 Download PDF

Info

Publication number
CN105886610A
CN105886610A CN201610167371.8A CN201610167371A CN105886610A CN 105886610 A CN105886610 A CN 105886610A CN 201610167371 A CN201610167371 A CN 201610167371A CN 105886610 A CN105886610 A CN 105886610A
Authority
CN
China
Prior art keywords
microrna
cluster
copper nano
poly
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610167371.8A
Other languages
English (en)
Inventor
梁汝萍
迟宝珠
邱建丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610167371.8A priority Critical patent/CN105886610A/zh
Publication of CN105886610A publication Critical patent/CN105886610A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,属于光学生物传感技术领域。基于聚合酶Klenow片段和末端脱氧核苷酸转移酶的共同催化作用,在microRNA存在时,将脱氧三磷酸胸腺嘧啶核苷排列和延伸成长度较长的聚胸腺嘧啶碱基序列,并以聚胸腺嘧啶碱基序列为模板原位生成红色荧光铜纳米簇,铜纳米簇的荧光强度与microRNA浓度的对数成正比,据此实现microRNA的低背景和高灵敏检测。

Description

一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的 microRNA 检测方法
技术领域
本发明涉及一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,属于光学生物传感技术领域。
背景技术
成熟的microRNA是一类单链、非编码蛋白、短的内源性RNA(长度约19-23个核苷酸)。MicroRNA作为重要的基因表达的后转录调控因子,可以调节信使核糖核酸的分裂或翻译抑制。MicroRNA在许多生物进程中起着重要作用,这不仅包括癌症的早期诊断和预后指标,还包括介入治疗以及癌症药物的发现。所以,开发灵敏度高且选择性好的microRNA检测方法非常必要。
体外聚合核苷酸因具有显著的信号放大能力,作为一个强有力的工具广泛应用于生物分析中。在研究microRNA的检测方法方面,体外聚合核苷酸显示出其巨大的应用潜能,如,聚合酶链反应、滚环扩增反应以及链置换反应等。大多数传感器基于荧光分析法,需使用荧光基团或染料标记的探针作为信号源。但是设计合成这些信号源通常操作复杂或昂贵或需要大量、多步、费时的实验。更重要的是,这些信号源一般有较强的非特异性吸附,使得制备的传感器对环境非常敏感,同时也降低了灵敏度。近年来,做为代替荧光基团的理想的候选者,以DNA为模板合成的荧光铜纳米粒子或铜纳米簇(Cu NCs)引起人们越来越多的关注。由于纳米簇具有非常小的尺寸,较弱的毒性,优秀的光学性质和良好的水溶性与生物相容性,在生物化学应用方面显示出巨大的潜力。然而,迄今为止,利用体外聚合核苷酸扩增反应和以单链DNA为模板合成Cu NCs相结合用于microRNA的检测技术尚未见报道。
发明内容
本发明的目的在于提供了一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,该方法对microRNA的检测具有背景低、灵敏和简单快速的优点。
本发明是这样来实现的,一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,其特征在于,向待测样品中加入模板DNA,当microRNA存在时,引物microRNA与模板DNA杂交形成引物-模板复合物;加入聚合酶Klenow片段使其绑定在引物-模板复合物中引物的3'-羟基末端,催化引物延伸反应,生成与模板DNA互补的短DNA序列;加入末端脱氧核苷酸转移酶,将脱氧三磷酸胸腺嘧啶核苷添加到新生成的短DNA序列的3'-羟基末端,催化脱氧三磷酸胸腺嘧啶核苷沿着短DNA序列的5'端向3'端延伸而形成聚胸腺嘧啶碱基序列;加入Cu(NO3)2和抗坏血酸钠,以聚胸腺嘧啶碱基序列为模板原位生成铜纳米簇,铜纳米簇的荧光强度随microRNA浓度的增加而增强,据此实现对microRNA的低背景和高灵敏检测。
具体检测步骤如下:向待测样品中加入模板DNA,microRNA与模板DNA混合,80 °C退火杂交5 min后慢慢冷却至室温,加入含聚合酶Klenow片段、脱氧三磷酸胸腺嘧啶核苷和末端脱氧核苷酸转移酶的缓冲溶液,在37 °C水浴中反应3 h,制成聚胸腺嘧啶碱基序列;将抗坏血酸钠加入到聚胸腺嘧啶碱基序列溶液中,再加入Cu(NO3)2,室温下反应5 min,制成以聚胸腺嘧啶碱基序列为模板的红色荧光铜纳米簇;测试铜纳米簇的荧光强度,根据铜纳米簇的荧光强度判断microRNA浓度。
本发明中,还提供了一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的制备方法:
(1)双聚合酶延伸胸腺嘧啶序列:将microRNA与模板DNA混合,80 °C退火杂交5 min后慢慢冷却至室温,加入含聚合酶Klenow片段、脱氧三磷酸胸腺嘧啶核苷和末端脱氧核苷酸转移酶的缓冲溶液,在37 °C水浴中反应3 h,制成聚胸腺嘧啶碱基序列;
(2)合成荧光铜纳米簇:将抗坏血酸钠加入到步骤(1)的聚胸腺嘧啶碱基序列溶液中,再加入Cu(NO3)2,室温下反应5 min,制成以聚胸腺嘧啶碱基序列为模板的红色荧光铜纳米簇。
上述方法中,所述的缓冲溶液为20 mM三羟甲基氨基甲烷醋酸盐,pH 7.9,含50 mM KAc、10 mM Mg(Ac)2和0.25 mM CoCl2
本发明的技术效果是:本发明利用聚合酶Klenow片段和脱氧核苷酸转移酶对脱氧三磷酸胸腺嘧啶核苷在microRNA-DNA复合物上的延伸作用,形成聚胸腺嘧啶碱基序列,加入Cu(NO3)2和抗坏血酸钠后原位生成以聚胸腺嘧啶碱基序列为模板的铜纳米簇,铜纳米簇的荧光强度与microRNA浓度呈正相关,据此实现对microRNA的检测,该方法具有背景低、灵敏和简单快速的优点。
附图说明
图1是基于双聚合酶延伸胸腺嘧啶碱基序列原位合成Cu NCs的microRNA检测方法示意图。
图2是(A)荧光发射和激发光谱,(a)含和(b)不含microRNA-21的发射光谱,(c)含microRNA-21的最大激发光谱。内插图:凝胶电泳图。条带M:ladder marker;条带0和1分别是(0)不含和(1)含microRNA-21的样品。(B)紫外-可见吸收光谱,内插图为(1)不含和(2)含microRNA-21的样品在紫外灯照射下的照片。
图3是Cu NCs的(A)透射电子显微镜图和(B)原子力显微镜图。
图4是(A)不同浓度microRNA-21(0,1,2,5,10,20,50,100,200,500,1000 pM)存在时的荧光光谱图。(B)荧光强度与microRNA-21浓度的关系曲线,内插图为荧光强度与microRNA-21浓度的对数关系曲线。
图5是(A)分析方法的特异性。(B)实际样品检测,内插图为紫外灯下得到的相对应的细胞溶解产物的照片。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此。
实施例 1
(1)双聚合酶延伸胸腺嘧啶序列:将microRNA与模板DNA(pDNA)混合,80 °C退火杂交5 min后慢慢冷却至室温,加入含聚合酶Klenow片段(KFexo-)、脱氧三磷酸胸腺嘧啶核苷(dTTPs)和末端脱氧核苷酸转移酶(TdTase)的缓冲溶液,在37 °C水浴中反应3 h,制成聚胸腺嘧啶碱基序列。
(2)合成荧光铜纳米簇:将抗坏血酸盐(ascorbate)加入到步骤(1)的聚胸腺嘧啶碱基序列溶液中,再加入Cu(NO3)2,室温下反应5 min,制成以聚胸腺嘧啶碱基序列为模板的红色荧光铜纳米簇。检测原理如图1所示。
由图2A可见,当存在microRNA-21时,以双聚合酶延伸胸腺嘧啶形成的聚胸腺嘧啶碱基序列为模板原位合成的Cu NCs在600 nm处有强的荧光发射峰(曲线a),最佳激发波长为340 nm(曲线c)。然而,在没有microRNA-21存在时,则没有明显的荧光发射峰出现(曲线b),表明,在没有生成Cu NCs。采用琼脂糖凝胶电泳对双聚合酶延伸胸腺嘧啶的反应产物进行分析(内插图),当存在microRNA-21时,反应产物呈现出明显的长拖尾现象(条带1),表明反应合成了高分子量的聚胸腺嘧啶碱基结构;而当没有microRNA-21存在时,则未获得高分子量的产物(如条带0所示)。Cu NCs的紫外-可见特征吸收峰(图2B)与其最佳激发波长(图2A曲线c)的位置一致,均为340 nm。在紫外灯照射下,含有microRNA-21的样品呈现出明亮的红色荧光,而未含有microRNA-21的样品则无色(图2B内插图)。由以上结果可见,microRNA-21与Cu NCs能否生成直接相关,据此可建立基于Cu NCs荧光的microRNA-21定量分析方法。
实施例 2
采用透射电子显微镜和原子力显微镜对制备Cu NCs进行形貌表征。由图3A可见,原位生成的Cu NCs是球形,平均粒径约3 nm。该结果与原子力显微镜中的Cu NCs的高度相符合,由图3B可见,Cu NCs周围紧紧地包裹着聚胸腺嘧啶碱基序列,Cu NCs顺着胸腺嘧啶延伸的方向生长。
实施例 3
我们考察了荧光发射光谱强度随着microRNA-21浓度的变化规律。由图4A可见,Cu NCs的荧光强度随microRNA-21浓度的增加而增强,在microRNA-21浓度为1 pM到1 nM范围内,Cu NCs的荧光强度与microRNA-21浓度的对数呈线性关系(图4B),对microRNA-21的检测限为100 fM。
为了评估本方法对microRNA-21检测的特异性,我们开展了一系列对照实验,包括采用两种microRNA(microRNA-210和microRNA-141)和单碱基错配(SM)microRNA-21为阴性对照,以及不含microRNA-21的样品为空白对照(blank),结果如图5A所示。结果表明,microRNA-210和microRNA-141存在时的荧光强度与空白对照的荧光强度相比没有显著增加;单碱基错配microRNA-21存在时的荧光强度与空白对照的荧光强度相比有较小增强;然而,完全互补(PM)microRNA-21存在时的荧光强度与空白对照的荧光强度相比显著增强。由此可见,本方法可以区别完全互补和非互补的microRNA,即使它们只有一个碱基的差异也能区别出来,具有良好的特异性。
为了探讨本方法在复杂生物基质中定量检测microRNA的可行性,我们将本方法应用于定量检测从人类乳腺癌细胞(MCF-7)和人类肺癌表皮细胞(A549)提取的细胞溶解产物中microRNA-21的表达含量。由图5B可见,A549细胞溶解产物中的荧光强度比空白对照的荧光强度有所增加,表明在A549肺癌细胞中含有少量microRNA-21。而MCF-7细胞溶解产物中的荧光强度与空白对照的荧光强度相比显著增强,表明MCF-7乳腺癌细胞中microRNA-21的含量比较高。由紫外灯下MCF-7和A549细胞溶解产物的照片可见,在紫外灯的照射下,反应后,MCF-7细胞溶解产物中发出很强的红色荧光,而A549细胞溶解产物中的红色荧光却很轻微。以上结果表明,本方法可用于细胞溶解产物等复杂生物样品中microRNA的定量分析,具有广泛的应用前景。

Claims (5)

1.一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,其特征在于,向待测样品中加入模板DNA,当microRNA存在时,引物microRNA与模板DNA杂交形成引物-模板复合物;加入聚合酶Klenow片段使其绑定在引物-模板复合物中引物的3'-羟基末端,催化引物延伸反应,生成与模板DNA互补的短DNA序列;加入末端脱氧核苷酸转移酶,将脱氧三磷酸胸腺嘧啶核苷添加到新生成的短DNA序列的3'-羟基末端,催化脱氧三磷酸胸腺嘧啶核苷沿着短DNA序列的5'端向3'端延伸而形成聚胸腺嘧啶碱基序列;加入Cu(NO3)2和抗坏血酸钠,以聚胸腺嘧啶碱基序列为模板原位生成铜纳米簇,铜纳米簇的荧光强度随microRNA浓度的增加而增强,根据铜纳米簇的荧光强度判断待测样品中microRNA浓度。
2.根据权利要求1所述基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,其特征在于,具体步骤如下:向待测样品中加入模板DNA,microRNA与模板DNA混合,80 °C退火杂交5 min后慢慢冷却至室温,加入含聚合酶Klenow片段、脱氧三磷酸胸腺嘧啶核苷和末端脱氧核苷酸转移酶的缓冲溶液,在37 °C水浴中反应3 h,制成聚胸腺嘧啶碱基序列;将抗坏血酸钠加入到聚胸腺嘧啶碱基序列溶液中,再加入Cu(NO3)2,室温下反应5 min,制成以聚胸腺嘧啶碱基序列为模板的红色荧光铜纳米簇;测试铜纳米簇的荧光强度,根据铜纳米簇的荧光强度判断microRNA浓度。
3.根据权利要求2所述基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法,其特征在于,所述的缓冲溶液为20 mM三羟甲基氨基甲烷醋酸盐,pH 7.9,含50 mM KAc、10 mM Mg(Ac)2和0.25 mM CoCl2
4.一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的制备方法,其特征在于,步骤如下:
(1)双聚合酶延伸胸腺嘧啶序列:将microRNA与模板DNA混合,80 °C退火杂交5 min后慢慢冷却至室温,加入含聚合酶Klenow片段、脱氧三磷酸胸腺嘧啶核苷和末端脱氧核苷酸转移酶的缓冲溶液,在37 °C水浴中反应3 h,制成聚胸腺嘧啶碱基序列;
(2)合成荧光铜纳米簇:将抗坏血酸钠加入到步骤(1)的聚胸腺嘧啶碱基序列溶液中,再加入Cu(NO3)2,室温下反应5 min,制成以聚胸腺嘧啶碱基序列为模板的红色荧光铜纳米簇。
5.如权利要求4所述的一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的制备方法,其特征在于步骤(1)中,所述的缓冲溶液为20 mM三羟甲基氨基甲烷醋酸盐,pH 7.9,含50 mM KAc、10 mM Mg(Ac)2和0.25 mM CoCl2
CN201610167371.8A 2016-03-23 2016-03-23 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法 Pending CN105886610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610167371.8A CN105886610A (zh) 2016-03-23 2016-03-23 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610167371.8A CN105886610A (zh) 2016-03-23 2016-03-23 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法

Publications (1)

Publication Number Publication Date
CN105886610A true CN105886610A (zh) 2016-08-24

Family

ID=57014816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610167371.8A Pending CN105886610A (zh) 2016-03-23 2016-03-23 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法

Country Status (1)

Country Link
CN (1) CN105886610A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978165A (zh) * 2017-02-28 2017-07-25 南昌大学 以核苷为稳定剂的铜纳米簇的制备及其用于鉴别核苷的方法
CN107764784A (zh) * 2017-09-01 2018-03-06 杨蕾 一种基于铜纳米簇检测黄曲霉毒素b1的荧光方法
CN109765203A (zh) * 2018-10-29 2019-05-17 四川大学 一种荧光-稳定同位素双模态对三硝基甲苯的检测方法
CN113913561A (zh) * 2021-12-15 2022-01-11 中国农业大学 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158221A (zh) * 2015-07-31 2015-12-16 天津医科大学 一种用于检测微核糖核酸的荧光传感器的制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158221A (zh) * 2015-07-31 2015-12-16 天津医科大学 一种用于检测微核糖核酸的荧光传感器的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU等: "Formation of copper nanoparticles on poly(thymine) through surface-initiated enzymatic polymerization and its application for DNA detection", 《ANALYST》 *
WANG等: "A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs", 《RSC ADVANCES》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106978165A (zh) * 2017-02-28 2017-07-25 南昌大学 以核苷为稳定剂的铜纳米簇的制备及其用于鉴别核苷的方法
CN106978165B (zh) * 2017-02-28 2019-07-26 南昌大学 以核苷为稳定剂的铜纳米簇的制备及其用于鉴别核苷的方法
CN107764784A (zh) * 2017-09-01 2018-03-06 杨蕾 一种基于铜纳米簇检测黄曲霉毒素b1的荧光方法
CN109765203A (zh) * 2018-10-29 2019-05-17 四川大学 一种荧光-稳定同位素双模态对三硝基甲苯的检测方法
CN109765203B (zh) * 2018-10-29 2021-07-16 四川大学 一种“荧光-稳定同位素”双模态对三硝基甲苯的检测方法
CN113913561A (zh) * 2021-12-15 2022-01-11 中国农业大学 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法
CN113913561B (zh) * 2021-12-15 2022-03-04 中国农业大学 基于引物设计和铜纳米簇的SARS-CoV-2德尔塔变异株检测方法

Similar Documents

Publication Publication Date Title
Safarpour et al. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs)
Zhang et al. Electrochemiluminescence biosensor for miRNA-21 based on toehold-mediated strand displacement amplification with Ru (phen) 32+ loaded DNA nanoclews as signal tags
CN104278088A (zh) 一种基于恒温指数扩增反应与表面增强拉曼光谱检测的miRNA检测方法及其应用
CN105886610A (zh) 一种基于双聚合酶延伸胸腺嘧啶原位生成铜纳米簇的microRNA检测方法
Wang et al. A copper-free and enzyme-free click chemistry-mediated single quantum dot nanosensor for accurate detection of microRNAs in cancer cells and tissues
Wang et al. Immunomagnetic antibody plus aptamer pseudo-DNA nanocatenane followed by rolling circle amplication for highly-sensitive CTC detection
Wang et al. Target-induced transcription amplification to trigger the trans-cleavage activity of CRISPR/Cas13a (TITAC-Cas) for detection of alkaline phosphatase
Cai et al. A signal-on fluorescent aptasensor based on single-stranded DNA-sensitized luminescence of terbium (III) for label-free detection of breast cancer cells
Ge et al. A novel label-free fluorescent molecular beacon for the detection of 3′–5′ exonuclease enzymatic activity using DNA-templated copper nanoclusters
CN113388668A (zh) 基于DNA纳米线的局域催化发夹自组装技术检测外泌体miRNA的方法
Miao et al. Colorimetric detection of cancer biomarker based on enzyme enrichment and pH sensing
CN112143779B (zh) 基于熵驱动放大系统为模板的银纳米簇的多重microRNA检测方法
Yoon et al. Highly sensitive multiplex detection of microRNA using light-up RNA aptamers
Ye et al. Toehold-mediated enzyme-free cascade signal amplification for ratiometric fluorescent detection of kanamycin
Jiang et al. Construction of fluorescence logic gates responding to telomerase and miRNA based on DNA-templated silver nanoclusters and the hybridization chain reaction
Jiao et al. A method to directly assay circRNA in real samples
Li et al. Photocaged FRET nanoflares for intracellular microRNA imaging
CN104928390B (zh) 一种MicroRNA的检测方法
Hua et al. A specially designed DNA-assembled framework structure probe coupled with loop-mediated isothermal amplification (LAMP)-DNA signal transducer for rapid and sensitive electrochemical detection of miRNA
Liu et al. Target-triggered regioselective assembly of nanoprobes for Raman imaging of dual cancer biomarkers in living cells
Wang et al. Single polydiacetylene microtube waveguide platform for discriminating microRNA-215 expression levels in clinical gastric cancerous, paracancerous and normal tissues
Shen et al. Self-assembly of DNA-hyperbranched aggregates catalyzed by a dual-targets recognition probe for miRNAs SERS detection in single cells
Chen et al. A cancer cell membrane vesicle-packaged DNA nanomachine for intracellular microRNA imaging
Li et al. Label-free detection of microRNA: Two-stage signal enhancement with hairpin assisted cascade isothermal amplification and light-up DNA-silver nanoclusters
CN114410786A (zh) 用于检测肿瘤微小核酸标志物的表面增强拉曼散射检测试剂盒及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination