CN113880570A - 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法 - Google Patents

一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法 Download PDF

Info

Publication number
CN113880570A
CN113880570A CN202111334765.5A CN202111334765A CN113880570A CN 113880570 A CN113880570 A CN 113880570A CN 202111334765 A CN202111334765 A CN 202111334765A CN 113880570 A CN113880570 A CN 113880570A
Authority
CN
China
Prior art keywords
powder
batio
sintering
sample
defect density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111334765.5A
Other languages
English (en)
Other versions
CN113880570B (zh
Inventor
吴国强
胡剑峰
刘文杰
蔣怡彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202111334765.5A priority Critical patent/CN113880570B/zh
Publication of CN113880570A publication Critical patent/CN113880570A/zh
Application granted granted Critical
Publication of CN113880570B publication Critical patent/CN113880570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,该方法包括如下步骤:将无掺杂BaTiO3商业纳米粉末在节能箱式电炉中800℃煅烧,使得粉末和空气充分接触,接着将煅烧后的粉末放入放电等离子烧结(SPS)中烧结至900℃~1200℃之间。与未在空气中煅烧的粉末在SPS烧结相比,本发明通过合适的粉末煅烧气氛,大大降低了样品的双孪晶缺陷密度。

Description

一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法
技术领域
本发明属于陶瓷材料粉末烧结技术领域,尤其涉及一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法。
背景技术
双孪晶是在自然界中广泛存在的一种界面,被认为是一种缺陷。在金属材料中比较常见,在保证金属延展性的同时提高金属屈服强度(Y.Gao,et al.Materials Science&Engineering A 767(2019)138361),类似于细晶强化的作用。然而,在陶瓷材料中,尤其在ABO3型钙钛矿陶瓷材料中很少见到。双孪晶的界面能很低,仅为普通晶界的1/10~1/2,具有稳定性。因此,双孪晶缺陷一旦形成后很难消除。
陶瓷材料的优良性能除了通过掺杂改变其化学组分这一有效途径外,还可以改变自身的微结构来实现。通常来说,晶粒生长决定着微结构的演化历程。对于BaTiO3陶瓷而言,烧结过程中伴随着大量双孪晶微结构的发生。更加巧合的是,有文献报道双孪晶可以促进晶粒异常长大(Lee et al.Acta materialia 48(2000)1575-1580)。随着材料尺寸效应的提出,大尺寸晶粒对材料性能并不友好。因此,对提升陶瓷性能来说,降低材料的双孪晶缺陷十分必要。
发明内容
本发明的目的在于解决BaTiO3陶瓷烧结过程中发生的双孪晶缺陷微结构的问题。提供了一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法。该方法操作简单,重复性强。在不改变煅烧前后晶粒形貌和尺寸的情况下降低SPS烧结之后样品的双孪晶缺陷的密度。
本发明为达到上述目的所采用的技术方案是:一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,该方法包括以下步骤:
S1:将预设质量的BaTiO3纳米粉末放入经过超声清洗的Al2O3坩埚中,然后将坩埚盖片,盖片上预留孔口便于空气进入;
S2:将装有粉末的坩埚放入到煅烧装置中,以升温速率为5℃/min升至预设温度,并保温预设时间,加热程序完成后随炉冷却;
S3:将煅烧的粉末均匀的倒入裹着一层碳纸的石墨模具中,在模具柱头和粉末之间垫上碳纸,对模具先预压2MPa,然后将模具放入SPS烧结,烧结过程中对模具施加50MPa的轴向压力;
S4:在SPS中以10℃/min的升温速率加热至900℃~1200℃,并保温一些时间,加热完成后骤降至室温;
S5:将未煅烧的粉末重复步骤S3、S4的烧结工艺烧结成片,将煅烧和未煅烧的粉末在SPS中烧结成型的两个样品一起放入节能箱式电炉中退火;
S6:将退火后的样品磨样,放在扫描电子显微镜(SEM)下观察。
优选的,所述的步骤S1中BaTiO3纳米粉末质量为1.5g。
优选的,所述的步骤S1中BaTiO3纳米粉末为不掺杂的纳米粉末。
优选的,所述的步骤S2中粉末煅烧温度为800℃,保温时间为2h。
优选的,所述的步骤S5中样品退火温度为800℃,退火时间为2h。
优选的,步骤S6的磨样步骤工艺方法为:先用2000目砂纸打磨,接着用3μm的砂纸抛光,然后用250nm的金刚石悬浮液持续抛光,最后用含有10%NaOH乳液振动抛光。
本发明还提出一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结样品,该样品是通过上述任一种方法烧结而成。
有益效果:与现有技术相比,本发明的技术方案具有以下有益效果:
本发明将未掺杂的BaTiO3纳米粉末在空气中煅烧,接着将煅烧后的粉末在SPS中烧结成片,对样品进行扫描电子显微镜(SEM)观察,与现有SPS烧结商业BaTiO3纳米粉末技术相比,拥有较低的双孪晶缺陷密度,本发明具有如下结果:
1.本发明通过节能箱式电炉得到的煅烧后的BaTiO3纳米粉末,接着在SPS中烧结成高1.5mm,直径12.4mm的圆柱片,样品中几乎没有双孪晶缺陷微结构。该样品相比于现有真空烧结的BaTiO3陶瓷样品,经过预处理(煅烧)的粉末在SPS烧结后具有更低的双孪晶缺陷密度。
2.本发明前期对影响晶粒生长的参数进行摸索,最终确定如下烧结工艺参数:SPS温度为1100℃,SPS前粉末煅烧温度为800℃,保温时间为2h,煅烧的温度和时间既保证了粉末和空气充分接触,也保证在800℃下粉末中晶粒不会生长。由于要比较煅烧/未煅烧两种粉末在SPS烧结后的微结构的不同,因此要保证两种粉末在SPS烧结过程中的烧结程序一致。
3.本发明对两个BaTiO3样品进行SEM观察,首先对未煅烧粉末烧结的样品进行观察,发现样品中有大量的双孪晶,并对煅烧粉末烧结的样品进行观察,发现样品中几乎没有双孪晶缺陷。达到了降低样品的双孪晶缺陷的目的。本发明烧结流程简单,可重复性强,进一步降低BaTiO3陶瓷中双孪晶缺陷密度,可以通过设计、调控双孪晶微结构提升材料的性能,应用前景非常广阔。
上述是发明技术方案的概述,以下结合附图和具体实施方式,对本发明做进一步说明。
附图说明
图1是未煅烧和800℃煅烧后的粉末的晶粒形貌以及晶粒尺寸分布图;
图2是未煅烧粉末和800℃煅烧粉末在SPS中烧结至1100℃保温10min的断面SEM图;
图3是800℃煅烧粉末和未煅烧粉末在SPS中烧结至950℃保温10min的断面SEM图;
图4是BaTiO3纳米粉末先在SPS中烧结至950℃保温10min,得到的样品然后放入箱式马弗炉中烧结至1100℃保温10min的断面SEM图。
具体实施方式
为了使本发明的目的和技术方案及优点更加清楚明白,以下结合实施例作详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:本实施例提供的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,步骤如下:
(1)原料:以未掺杂的商业BaTiO3纳米粉末为原料,称量1.5g。
(2)煅烧:将步骤(1)中称量好的BaTiO3纳米粉末放入节能箱式电炉中煅烧,为保证粉末中晶粒不会收到热激活而生长,煅烧的温度为800℃。
(3)烧结:对煅烧粉末进行950℃下SPS烧结,SPS烧结时在950℃温度下保温10min,加热完成后骤降至室温。
(4)退火:为了解决SPS烧结之后样品碳污染的问题,将样品放入节能箱式电炉中退火,退火温度为800℃,保温时间为2h。
(5)磨样:对BaTiO3样品断面进行抛光,直至断面在光学显微镜下没有划痕。
(6)测试:BaTiO3样品断面进行SEM观察,注意微结构中双孪晶缺陷的密度。
按上述实施例烧结出的BaTiO3陶瓷样品,经过SEM测试,如附图3a记载的样品的SEM照片可知,所得的BaTiO3样品微结构中大部分晶粒为异常晶粒,矗立在基质小晶粒中,样品中双孪晶缺陷密度很低。虽然未煅烧粉末在SPS烧结至950℃保温10min的样品中晶粒生长也处于异常生长阶段,但样品中有大量的双孪晶(如附图3b)。与未煅烧粉末在SPS烧结相比,800℃煅烧粉末后烧结的样品大大降低了双孪晶缺陷密度。发现本文粉末的烧结方法在消除缺陷方面具有一定的优势。
实施例2:本实施例提供的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,步骤如下:
(1)原料:以未掺杂的商业BaTiO3纳米粉末为原料,称量1.5g。
(2)烧结:将步骤(1)中称量好的BaTiO3纳米粉末放入SPS中烧结,SPS烧结时在950℃温度下保温10min,为保证样品的完整性,加热完成后缓慢降至室温。
(3)退火:为了解决SPS烧结之后样品碳污染的问题,将样品放入节能箱式电炉中退火,退火温度为800℃,保温时间为2h。
(4)烧结:将退火后的样品放入箱式马弗炉中烧结至1100℃保温10min,加热完成后随炉冷却。
(5)磨样:对BaTiO3样品断面进行抛光,直至断面在光学显微镜下没有划痕。
(6)测试:BaTiO3样品断面进行SEM观察,注意微结构中双孪晶缺陷的密度。
按上述实施例烧结出的BaTiO3陶瓷样品,经过SEM测试,如附图4记载的样品的SEM照片可知,所得的BaTiO3样品微结构中双孪晶缺陷密度很低。与粉末直接在SPS烧结至1100℃的样品相比(如附图2a),粉末在SPS烧结后具有一定的密度再放入马弗炉中烧结目的是让样品充分和空气接触。可以发现这种方法烧结的样品大大降低了双孪晶缺陷密度。为提升材料性能提供了一种潜在的方法。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。

Claims (7)

1.一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,其特征在于,该方法包括以下步骤:
S1:将预设质量的BaTiO3纳米粉末放入经过超声清洗的Al2O3坩埚中,然后将坩埚盖片,盖片上预留孔口便于空气进入;
S2:将装有粉末的坩埚放入到煅烧装置中,以升温速率为5℃/min升至预设温度,并保温预设时间,加热程序完成后随炉冷却;
S3:将煅烧的粉末均匀的倒入裹着一层碳纸的石墨模具中,在模具柱头和粉末之间垫上碳纸,对模具先预压2MPa,然后将模具放入SPS烧结,烧结过程中对模具施加50MPa的轴向压力;
S4:在SPS中以10℃/min的升温速率加热至900℃~1200℃,并保温一些时间,加热完成后骤降至室温;
S5:将未煅烧的粉末重复步骤S3、S4的烧结工艺烧结成片,将煅烧和未煅烧的粉末在SPS中烧结成型的两个样品一起放入节能箱式电炉中退火;
S6:将退火后的样品磨样,放在扫描电子显微镜(SEM)下观察。
2.根据权利要求1所述的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,其特征在于,所述的步骤S1中BaTiO3纳米粉末质量为1.5g。
3.根据权利要求1所述的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,其特征在于,所述的步骤S1中BaTiO3纳米粉末为不掺杂的纳米粉末。
4.根据权利要求1所述的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,其特征在于,所述的步骤S2中粉末煅烧温度为800℃,保温时间为2h。
5.根据权利要求1所述的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,其特征在于,所述的步骤S5中样品退火温度为800℃,退火时间为2h。
6.根据权利要求1所述的一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法,其特征在于,步骤S6的磨样步骤工艺方法为:先用2000目砂纸打磨,接着用3μm的砂纸抛光,然后用250nm的金刚石悬浮液持续抛光,最后用含有10%NaOH乳液振动抛光。
7.一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结样品,该样品是通过权利要求1-6任一种方法烧结而成。
CN202111334765.5A 2021-11-11 2021-11-11 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法 Active CN113880570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111334765.5A CN113880570B (zh) 2021-11-11 2021-11-11 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111334765.5A CN113880570B (zh) 2021-11-11 2021-11-11 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法

Publications (2)

Publication Number Publication Date
CN113880570A true CN113880570A (zh) 2022-01-04
CN113880570B CN113880570B (zh) 2022-10-14

Family

ID=79017216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111334765.5A Active CN113880570B (zh) 2021-11-11 2021-11-11 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法

Country Status (1)

Country Link
CN (1) CN113880570B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410007A (zh) * 2023-04-10 2023-07-11 上海大学 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201137A1 (en) * 2003-04-11 2004-10-14 The Regents Of The University Of California, A California Corporation High-density barium titanate of high permittivity
CN1962542A (zh) * 2006-12-08 2007-05-16 清华大学 一种微米级片状钛酸钡晶体及其制备方法
CN109095916A (zh) * 2018-08-14 2018-12-28 徐州市江苏师范大学激光科技有限公司 一种sps烧结制备yag透明陶瓷的方法
CN110436928A (zh) * 2019-08-26 2019-11-12 燕山大学 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN113354406A (zh) * 2021-06-29 2021-09-07 重庆大学 一种基于放电等离子体辅助冷烧结制备ZnO陶瓷的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201137A1 (en) * 2003-04-11 2004-10-14 The Regents Of The University Of California, A California Corporation High-density barium titanate of high permittivity
CN1962542A (zh) * 2006-12-08 2007-05-16 清华大学 一种微米级片状钛酸钡晶体及其制备方法
CN109095916A (zh) * 2018-08-14 2018-12-28 徐州市江苏师范大学激光科技有限公司 一种sps烧结制备yag透明陶瓷的方法
CN110436928A (zh) * 2019-08-26 2019-11-12 燕山大学 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN113354406A (zh) * 2021-06-29 2021-09-07 重庆大学 一种基于放电等离子体辅助冷烧结制备ZnO陶瓷的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410007A (zh) * 2023-04-10 2023-07-11 上海大学 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法
CN116410007B (zh) * 2023-04-10 2024-03-12 上海大学 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法

Also Published As

Publication number Publication date
CN113880570B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN107188567B (zh) 一种高热导率氮化铝陶瓷的制备方法
CN110171975B (zh) 一种大尺寸高密度无粘结相碳化钨靶材及其制备方法
CN108546110B (zh) 一种超低温制备高电导率氧化锌陶瓷的方法
CN109095916B (zh) 一种sps烧结制备yag透明陶瓷的方法
CN114031376B (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN112723891B (zh) 一种镧钙复合六硼化物多晶阴极材料及其制备方法
CN113880570B (zh) 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法
CN113943162B (zh) 一种α-SiAlON高熵透明陶瓷材料及其制备方法
CN113652593A (zh) 一种MoxNbTayTiV高熵合金及其制备方法
JP4357584B1 (ja) 耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体
KR101151209B1 (ko) 머시너블 흑색 세라믹 복합체 및 그 제조방법
CN112979282A (zh) 一种氧化铝陶瓷烧结体及其制备方法和应用
KR20140002010A (ko) 몰리브덴재
CN114644525A (zh) 添加废弃料的复合匣钵及其制备方法
CN113981387A (zh) 一种钨硅靶材的制备方法
CN114249592A (zh) 硬性压电陶瓷材料的制备方法
WO2015064808A1 (ko) 방전 플라즈마 소결을 이용한 lcd glass 제조용 산화물 분산 강화형 백금-로듐 합금의 제조 방법
CN104628376B (zh) 一种制备透明陶瓷激光棒的离心成型方法
CN116410007B (zh) 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法
JP4065589B2 (ja) 窒化アルミニウム焼結体及びその製造方法
CN111593221A (zh) 一种高性能钼钪合金的制备方法及高性能钼钪合金
CN115125426B (zh) 一种含高密度位错/层错的无粘结相超细晶碳化钨硬质合金及其制备方法
CN116606143B (zh) 一种压电陶瓷材料及其制备方法
CN115010172B (zh) 一种抗热冲击镁锆陶瓷粉体及其制备方法
CN114657404B (zh) 一种高致密度超细晶钼镧合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant