CN116410007A - 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法 - Google Patents

一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法 Download PDF

Info

Publication number
CN116410007A
CN116410007A CN202310368727.4A CN202310368727A CN116410007A CN 116410007 A CN116410007 A CN 116410007A CN 202310368727 A CN202310368727 A CN 202310368727A CN 116410007 A CN116410007 A CN 116410007A
Authority
CN
China
Prior art keywords
powder
ball
batio
grinding
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310368727.4A
Other languages
English (en)
Other versions
CN116410007B (zh
Inventor
胡剑峰
刘文杰
吴国强
蒋怡彬
潘鑫磊
刘广超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202310368727.4A priority Critical patent/CN116410007B/zh
Publication of CN116410007A publication Critical patent/CN116410007A/zh
Application granted granted Critical
Publication of CN116410007B publication Critical patent/CN116410007B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,该方法包括如下步骤:将无任何掺杂的纳米粒径(~50nm)BaTiO3纳米粉体用行星球磨机在低转速100r/min的转速下湿磨,将经过球磨处理的粉体烘干后放入放电等离子烧结炉中烧结至950℃保温>=10min。本发明通过对初始粉体进行机械预处理,有效降低利用放电等离子烧结炉烧结后BaTiO3块体中双孪晶的密度。

Description

一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理 方法
技术领域
本发明属于陶瓷材料粉末制备技术领域,尤其涉及一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法。
背景技术
双孪晶(double twin)作为一种特殊的界面结构广泛的存在于各种材料中,其中在金属材料中非常常见,如Mg(Wang J,et al.Scripta materialia,2010,63(7):741-746.),Ni合金(Wu B Y C,et al.Metallurgical and Materials Transactions A,2005,36:1927-1936.)等。通过外部施加载荷给材料,可以促使晶粒中形成双孪晶或者发生孪晶的迁移或合并。在金属材料中孪晶的形成被认为有利于提升材料的机械性能(Y.Gao,etal.Materials Science&Engineering A767(2019)138361)。
在钙钛矿陶瓷材料中双孪晶并不常见,但在BaTiO3陶瓷中双孪晶却经常被研究人员观察到。BaTiO3陶瓷作为一种重要的压电和铁电材料,为了获得优良的电学性能通常会考虑对BaTiO3进行掺杂来改变其化学组成,此外也可以通过改变其微结构如晶粒大小,取向等。有研究认为双孪晶的存在降低了晶粒生长的原子附着势垒(Kang M K,etal.Journal of the American Ceramic Society,2000,83(2):385-390.),导致不均匀晶粒尺寸分布,而良好的电学性能通常与均匀的晶粒尺寸分布有关,所以避免烧结BaTiO3陶瓷块体的晶粒中出现双孪晶有重要的实际应用价值。
发明内容
发明目的:本发明的目的在于解决BaTiO3陶瓷烧结过程中出现双孪晶微结构的问题。提供了一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法。该方法流程简单易重复,对指导工业化陶瓷生产具有参考价值。在不改变初始粉体形貌和尺寸的情况下降低SPS烧结之后样品中双孪晶的密度。
技术方案:为了解决上述技术问题,本发明提出一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,该方法包括以下步骤:
S1:将BaTiO3纳米粉体,研磨球,无水乙醇按照体积比1:10:11分别进行称取,研磨球选择第一直径的研磨球和第二直径的研磨球混合,并且第一直径大于第二直径;配级比例按照两个第二直径的研磨球配第一直径的研磨球;
S2:将称取好的研末球,BaTiO3纳米粉体,无水乙醇依次加入球磨罐中,球磨程序设置为100r/min,间隔20min,球磨24h,球磨结束后将浆料连同球磨罐一起放入鼓风干燥箱中烘干72h,将烘干的粉体块倒入研钵中研磨成粉体,然后将研磨后的粉体多次过筛,最终得到球磨处理后的粉体;
S3:将球磨处理后的BaTiO3纳米粉体倒入包裹有碳纸的石墨模具中,手动旋转压片机加压至10Mpa进行第一次预压,保压5-10min,将第一次预压完成的装有粉体压块的石墨模具放入放电等离子烧结炉中加压至70Mpa进行第二次预压,保压5-10min,预压完成后卸载压力至0Mpa;
S4:将预压完成装有粉体压块的石墨模具在放电等离子烧结炉中以20℃/min的升温速率加热至600℃,保温3-5min,以15℃/min的升温速率升温至950℃,并且保温>=10min;升温过程中跟随温度升高,当温度到达600℃时,均匀加压至70Mpa,在600℃到950℃之间,以及保温过程中保持恒压70Mpa,加热完成后卸载压力至0Mpa并降温至室温;
S5:将使用放电等离子烧结炉烧结得到的块体放入管式炉中,通入氧气并按照1℃/min的加热速率缓慢加热至700℃,保温1-2h;该步骤为解决使用石墨模具引入的碳污染的问题,去除碳污染;
S6:将经过管式炉加热处理得到的陶瓷块体的断面利用离子刻蚀机进行刻蚀。
进一步的,所述的步骤S1中,磨球第一直径为5mm,磨球第二直径为3mm。
进一步的,所述的步骤S2中,球磨转速设置为100r/min。
进一步的,所述的步骤S5中,整个加热和降温过程中始终以相同流速通入氧气。
进一步的,步骤S6的磨样步骤工艺方法为:离子刻蚀机按照由高到底的电压,5kv刻蚀30min,4kv刻蚀30min,3kv刻蚀30min,2kv刻蚀1h,1kv刻蚀1h,对块体样品断面进行刻蚀抛光处理。
此外,本发明还提出一种降低BaTiO3陶瓷块体中双孪晶密度的机械预处理粉末烧结样品,该样品是通过上述方法烧结而成。
有益效果:与现有技术相比,本发明的技术方案具有以下有益效果:
1.本发明将未掺杂的BaTiO3纳米粉末利用行星球磨机球磨处理,接着将球磨后烘干的粉末在SPS中烧结成片,对样品进行扫描电子显微镜(SEM)观察,与现有SPS烧结未球磨BaTiO3纳米粉末技术相比,拥有明显更低的双孪晶密度。
2.本发明前期对粉体球磨处理参数进行摸索,将粉体,研磨球,无水乙醇按照体积比1:10:11分别进行称取,研磨球(氧化锆球)选择大小球混合,配级按照两个小球(3mm)配一个大球(5mm),选择不同的研磨球配级可以使得粉体处理更充分。球磨机程序按照100r/min,间隔20min,球磨24h,保证了球磨处理不会进一步将初始粉体细化导致粒径发生改变;为比较球磨和未球磨粉体在SPS烧结后的微观结构的差异,两种粉体在SPS中的烧结程序要一致。
3.本发明对球磨和未球磨处理BaTiO3粉体用SPS烧结的样品进行SEM观察,首先对未球磨处理的粉体烧结的样品进行观察,发现样品中有大量的双孪晶,然后对球磨处理的粉体烧结的样品进行观察并未发现双孪晶,证实了球磨处理能有效降低样品中双孪晶的比例。本发明处理过程简单,可改进后用于工业化批量处理,能有效降低BaTiO3陶瓷中双孪晶缺陷密度,对调控材料微结构以及改进材料的性能具有实际指导意义。
附图说明
图1是本发明方法的流程图;
图2是未球磨和球磨处理后的粉体的颗粒尺寸分布图;
图3是未球磨处理粉体的SEM图;
图4是球磨处理粉体的SEM图;
图5是含双孪晶的晶粒的SEM图;
图6是不含双孪晶的晶粒的SEM图;
图7是未球磨处理粉体在放电等离子烧结炉中烧结至950℃保温10min的块体的断面SEM图;
图8是球磨处理粉体在放电等离子烧结炉中烧结至950℃保温10min的块体的断面SEM图;
图9是未球磨处理粉体在放电等离子烧结炉中烧结至950℃保温15min的块体的断面SEM图;
图10是球磨处理粉体在放电等离子烧结炉中烧结至950℃保温15min的块体的断面SEM图。
具体实施方式
为了使本发明的目的和技术方案更加清楚明白,以下结合实施例作详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。上述是发明技术方案的概述,以下结合附图和具体实施方式,对本发明做进一步说明。
如图1所示,本发明提供了一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,该方法步骤如下:
S1:将BaTiO3纳米粉体,研磨球,无水乙醇按照体积比1:10:11分别进行称取,研磨球选择第一直径的研磨球和第二直径的研磨球混合,并且第一直径大于第二直径;配级比例按照两个第二直径的研磨球配第一直径的研磨球;选择磨球第一直径为5mm,磨球第二直径为3mm;
S2:将称取好的研磨球,BaTiO3纳米粉体,无水乙醇依次加入球磨罐中,球磨程序设置为100r/min,间隔20min,球磨24h,球磨结束后将浆料连同球磨罐一起放入鼓风干燥箱中烘干72h,将烘干的粉体块倒入研钵中研磨成粉体,然后将研磨后的粉体多次过筛,最终得到球磨处理后的粉体;
S3:将球磨处理后的BaTiO3纳米粉体倒入包裹有碳纸的石墨模具中,手动旋转压片机加压至10Mpa进行第一次预压,保压5-10min,将第一次预压完成的装有粉体压块的石墨模具放入放电等离子烧结炉中加压至70Mpa进行第二次预压,保压5-10min,预压完成后卸载压力至0Mpa;
S4:将预压完成装有粉体压块的石墨模具在放电等离子烧结炉中以20℃/min的升温速率加热至600℃,保温3-5min,以15℃/min的升温速率升温至950℃,并且保温>=10min;升温过程中跟随温度升高,当温度到达600℃时,均匀加压至70Mpa,在600℃到950℃之间以及保温过程中保持恒压70Mpa,加热完成后卸载压力至0Mpa并降温至室温;
S5:将使用放电等离子烧结炉烧结得到的块体放入管式炉中,通入氧气并按照1℃/min的加热速率加热至700℃,保温1-2h;该步骤为解决使用石墨模具引入的碳污染的问题,去除碳污染;
S6:将经过管式炉加热处理得到的陶瓷块体的断面利用离子刻蚀机进行刻蚀。
按上述条件处理粉体并烧结成BaTiO3陶瓷块体样品,用扫描电镜对BaTiO3块体样品的断面进行观察,注意晶粒中是否含双孪晶。图2显示球磨处理粉体和未球磨处理粉体保持几乎一样的颗粒尺寸分布。图3和图4显示的未球磨处理以及球磨处理粉体SEM图也证实球磨处理不仅没有改变颗粒大小也没有改变颗粒形状。图5展示了含有双孪晶的晶粒,图6展示了不含有双孪晶的晶粒。如图7所示,未处理粉体利用放电等离子烧结炉烧结至950℃保温10min的块体样品中包含的晶粒中基本都包含双孪晶。
如图8所示,球磨处理后的样品中包含的晶粒并未见到明显的双孪晶,表明双孪晶密度明显降低。如图9所示,当950℃保温至15min时,未球磨处理粉体烧结样品中晶粒尺寸相比于保温10min的大说明晶粒发生生长。未处理粉体样品中双孪晶始终存在,说明双孪晶不会随晶粒生长而消失。如图10所示,球磨处理后粉体950℃保温至15min时样品中晶粒生长后同样没有双孪晶出现,说明处理后粉体样品可以稳定的保持没有双孪晶状态。上述结果证实了对初始粉体进行球磨预处理可以有效降低BaTiO3陶瓷样品中双孪晶的数量。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。

Claims (6)

1.一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,其特征在于,该方法包括以下步骤:
S1:将BaTiO3纳米粉体,研磨球,无水乙醇按照体积比1:10:11分别进行称取,研磨球选择第一直径的研磨球和第二直径的研磨球混合,并且第一直径大于第二直径;配级比例按照两个第二直径的研磨球配第一直径的研磨球;
S2:将称取好的研末球,BaTiO3纳米粉体,无水乙醇依次加入球磨罐中,球磨程序设置为100r/min,间隔20min,球磨24h,球磨结束后将浆料连同球磨罐一起放入鼓风干燥箱中烘干72h,将烘干的粉体块倒入研钵中研磨成粉体,然后将研磨后的粉体多次过筛,最终得到球磨处理后的粉体;
S3:将球磨处理后的BaTiO3纳米粉体倒入包裹有碳纸的石墨模具中,手动旋转压片机加压至10Mpa进行第一次预压,保压5-10min,将第一次预压完成的装有粉体压块的石墨模具放入放电等离子烧结炉中加压至70Mpa进行第二次预压,保压5-10min,预压完成后卸载压力至0Mpa;
S4:将预压完成装有粉体压块的石墨模具在放电等离子烧结炉中以20℃/min的升温速率加热至600℃,保温3-5min,以15℃/min的升温速率升温至950℃,并且保温>=10min;升温过程中跟随温度升高,当温度到达600℃时,均匀加压至70Mpa,在600℃到950℃之间以及保温过程中保持恒压70Mpa,加热完成后卸载压力至0Mpa并降温至室温;
S5:将使用放电等离子烧结炉烧结得到的块体放入管式炉中,通入氧气并按照1℃/min的加热速率加热至700℃,保温1-2h;
S6:将经过管式炉加热处理得到的陶瓷块体的断面利用离子刻蚀机进行刻蚀。
2.根据权利要求1所述的一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,其特征在于,所述的步骤S1中,磨球第一直径为5mm,磨球第二直径为3mm。
3.根据权利要求1所述的一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,其特征在于,所述的步骤S2中,球磨转速设置为100r/min。
4.根据权利要求1所述的一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法,其特征在于,所述的步骤S5中,整个加热和降温过程中始终以相同流速通入氧气。
5.根据权利要求1所述的一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理法,其特征在于,步骤S6的磨样步骤工艺方法为:离子刻蚀机按照由高到底的电压,5kv刻蚀30min,4kv刻蚀30min,3kv刻蚀30min,2kv刻蚀1h,1kv刻蚀1h,对块体样品断面进行刻蚀抛光处理。
6.一种降低BaTiO3陶瓷块体中双孪晶密度的机械预处理粉末烧结样品,其特征在于,该样品是通过权利要求1-5任一项所述方法烧结而成。
CN202310368727.4A 2023-04-10 2023-04-10 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法 Active CN116410007B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310368727.4A CN116410007B (zh) 2023-04-10 2023-04-10 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310368727.4A CN116410007B (zh) 2023-04-10 2023-04-10 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法

Publications (2)

Publication Number Publication Date
CN116410007A true CN116410007A (zh) 2023-07-11
CN116410007B CN116410007B (zh) 2024-03-12

Family

ID=87050968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310368727.4A Active CN116410007B (zh) 2023-04-10 2023-04-10 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法

Country Status (1)

Country Link
CN (1) CN116410007B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962542A (zh) * 2006-12-08 2007-05-16 清华大学 一种微米级片状钛酸钡晶体及其制备方法
US20130258548A1 (en) * 2012-03-30 2013-10-03 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
CN113321506A (zh) * 2021-07-08 2021-08-31 陕西科技大学 一种无铅弛豫铁电体陶瓷材料及制备方法
CN113880570A (zh) * 2021-11-11 2022-01-04 上海大学 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962542A (zh) * 2006-12-08 2007-05-16 清华大学 一种微米级片状钛酸钡晶体及其制备方法
US20130258548A1 (en) * 2012-03-30 2013-10-03 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
CN103360058A (zh) * 2012-03-30 2013-10-23 太阳诱电株式会社 陶瓷粉末和层叠陶瓷电容器
CN113321506A (zh) * 2021-07-08 2021-08-31 陕西科技大学 一种无铅弛豫铁电体陶瓷材料及制备方法
CN113880570A (zh) * 2021-11-11 2022-01-04 上海大学 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法

Also Published As

Publication number Publication date
CN116410007B (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
CN112376023A (zh) 一种铬硅合金溅射靶材的制备方法
CN108218419B (zh) 一种铟锡氧化物陶瓷靶材的制备方法
CN110002873B (zh) 一种多孔钽酸盐陶瓷及其制备方法
RU2746912C1 (ru) Способ получения прозрачной ИАГ-керамики
CN113354406A (zh) 一种基于放电等离子体辅助冷烧结制备ZnO陶瓷的方法
CN116410007B (zh) 一种降低BaTiO3陶瓷块体中双孪晶密度的粉末机械预处理方法
CN113880570B (zh) 一种降低BaTiO3陶瓷中双孪晶缺陷密度的粉末烧结方法
CN116063067B (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN111560551B (zh) 一种致密性高的异型钼基复合材料件的制备方法
CN116425536A (zh) 具有非公度调制结构的Ti掺杂铌酸锶钡钆铁电陶瓷材料及制备方法
CN115125426B (zh) 一种含高密度位错/层错的无粘结相超细晶碳化钨硬质合金及其制备方法
US20230159336A1 (en) Conductive diamond/amorphous carbon composite material having high strength and process for preparing the same
KR101951799B1 (ko) 다결정 투명 산화이트륨 세라믹의 제조 방법 및 제조 장치
CN116217239A (zh) 一种高热导率低电阻率氮化硅陶瓷的制备方法
CN113881922A (zh) 一种低温制备高致密度W-Ti合金溅射靶材的方法
JPH0940460A (ja) チタン酸系焼結体の製造方法
CN117886600B (zh) 一种高介低损耗钛酸铋钠基温度稳定型陶瓷电介质材料及其制备方法
CN115417667B (zh) 一种Nd2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法
CN117604302B (zh) 一种利用微波制备石墨烯/铜复合粉体及复合材料的方法
CN117604307B (zh) 一种稀土钨棒及其制备方法
RU2793109C1 (ru) Вакуумплотный слабопроводящий керамический материал и способ его получения
CN110483063B (zh) 一种采用高压相变法制备亚微米多晶β-Si3N4块体的方法
Zhao et al. Bulk dense Ba4Ti13O30 ceramics prepared by mixed-phase two-step sintering method
CN116835981A (zh) 一种金属氧化物靶材及其制备方法与应用
CN118530020A (zh) MnO2改性的NBT基三元无铅弛豫铁电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant