CN113880098A - 一种高纯球形硅微粉的生产方法 - Google Patents

一种高纯球形硅微粉的生产方法 Download PDF

Info

Publication number
CN113880098A
CN113880098A CN202111360609.6A CN202111360609A CN113880098A CN 113880098 A CN113880098 A CN 113880098A CN 202111360609 A CN202111360609 A CN 202111360609A CN 113880098 A CN113880098 A CN 113880098A
Authority
CN
China
Prior art keywords
solution
silicic acid
volume ratio
silicon dioxide
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111360609.6A
Other languages
English (en)
Other versions
CN113880098B (zh
Inventor
钮计芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Haige New Material Co ltd
Original Assignee
Jiangsu Haige New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Haige New Material Co ltd filed Critical Jiangsu Haige New Material Co ltd
Priority to CN202111360609.6A priority Critical patent/CN113880098B/zh
Publication of CN113880098A publication Critical patent/CN113880098A/zh
Application granted granted Critical
Publication of CN113880098B publication Critical patent/CN113880098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/20Powder free flowing behaviour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供一种高纯球形硅微粉的生产方法,属于电子封装材料领域,具体依次包括以下步骤:晶种母液、胶粒生长、胶粒二次生长以及胶粒增大,再经干燥稳定后制得所述球形硅微球,本发明在常规胶粒制备方法基础上,通过加入疏水性的三氟甲磺酸阴离子破坏双电层结构,提高了胶粒表面的结晶活性,再经二次生长提高了大粒径胶粒的硅酸聚合速度,增大胶粒粒径,满足硅微粉的粒径和规则度要求。

Description

一种高纯球形硅微粉的生产方法
技术领域
本发明涉及电子封装材料领域,具体涉及一种高纯球形硅微粉的生产方法。
背景技术
球形硅微粉是指颗粒个体呈球形,主要成分为二氧化硅的无定形石英粉体材料,为白色粉末,因纯度高、颗粒细、介电性能优异、热膨胀系数低、热导率高等优越性能而具有广阔的发展前景;球形硅微粉主要用于应用于大规模集成电路封装中覆铜板以及环氧塑封料填料,在航空、航天、涂料、催化剂、医药、特种陶瓷及日用化妆品等高新技术领域也有应用。
目前,集成电路正向高集成度、高密度和小型化方向发展。用于集成电路封装的环氧模塑料中70-90%为硅微粉。所以硅微粉含量和粒度对环氧模塑料的流动性影响很大,对集成电路封装效果影响也很大。
随着我国微电子工业的迅猛发展,大规模、超大规模集成电路对封装材料的要求越来越高,不仅要求其超细,而且要求高纯度,特别是对于颗粒形状提出球形化要求。球形表面流动性好,与树脂搅拌成膜均匀,树脂添加量小,并且流动性最好,粉的填充量可达到最高,重量比可达90.5%。因此,球形化意味着硅微粉填充率的增加,硅微粉的填充率越高,其热膨胀系数就越小,导热系数也越低,就越接近单晶硅的热膨胀系数,由此生产的电子元器件的使用性能也越好。其次,球形化制成的塑封料应力集中最小,强度最高,当角形粉的塑封料应力集中为1时,球形粉的应力仅为0.6,因此,球形粉塑封料封装集成电路芯片时,成品率高,并且运输、安装、使用过程中不易产生机械损伤。其三,球形粉摩擦系数小,对模具的磨损小,使模具的使用寿命长,与角形粉的相比,可以提高模具的使用寿命达一倍。
但传统工艺生产的硅微粉是用硅微粉原料经研磨得到的外形无规则多呈菱形角状的硅微粉,这种硅微粉在用于集成电路封装时黏度大,填充率低,普通硅微粉填充率一般为70%左右,生产出的产品会有飞边等瑕疵,限制了其在大规模及超大规模集成电路中的应用。
发明内容
针对上述问题,本发明提供一种高纯球形硅微粉的生产方法。
本发明的目的采用以下技术方案来实现:
一种高纯球形硅微粉的生产方法,包括以下步骤:
(1)二氧化硅晶种母液制备
配制pH值在8-12的碱溶液,搅拌升温至沸,在搅拌条件下,加入所述活性硅酸溶液,混合过程中控制混合溶液的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h,撤去热源,静置12-36h,制得所述二氧化硅晶种母液;
其中,所述碱溶液与所述活性硅酸溶液的混合体积比为1:(3-5);
(2)生成二氧化硅胶粒
将所述二氧化硅晶种母液加热至沸,在搅拌条件下,加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:(1-2),混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;保温完成后,边搅拌边滴加三氟甲磺酸盐溶液,滴加完成后第二次加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:(1-2),混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;超滤浓缩后静置12-36h,得到二氧化硅溶胶;
其中,所述三氟甲磺酸盐溶液的浓度在0.1-1wt.%,所述三氟甲磺酸盐溶液与所述二氧化硅晶种母液的混合体积比为(0.1-1):100;
(3)干燥稳定
将所述二氧化硅溶胶进行喷雾干燥后制得初产物微球,将所述初产物微球转入高温炉中进行高温热处理,待冷却至室温后制得所述球形硅微球。
优选的,所述碱溶液为氢氧化钠或氢氧化钾溶液。
优选的,所述活性硅酸溶液的制备方法为:
将硅酸钠溶液依次通过强酸型阳离子交换树脂和弱碱型阴离子交换树脂进行离子交换,除去钠离子和阳、阴离子杂质,制得所述活性硅酸溶液,所述硅酸钠溶液的质量浓度在8%-24%。
优选的,所述强酸型阳离子交换树脂为强酸性聚苯乙烯阳离子交换树脂,所述弱碱型阴离子交换树脂为D301型阴离子交换树脂。
优选的,所述生产方法还包括以下步骤:
(4)将热处理产物分散在盐酸溶液中,加入溶液体积0.1-1%的质量浓度为30%的过氧化氢溶液,低速搅拌过夜,滤出沉淀并以去离子水洗涤至中性,得到表面活化产物微球;
(5)将所述活化产物微球加入到所述二氧化硅晶种母液和活性硅酸的混合溶液中,加热至沸后保温搅拌反应10-60min,滤出产物,沉淀依次以稀的硅酸钠溶液和去离子水洗涤,干燥;
(6)将干燥产物转入高温炉中进行高温热处理,待冷却至室温后制得所述高纯球形硅微球;
优选的,所述二氧化硅晶种母液和活性硅酸的混合溶液中,所述二氧化硅晶种母液和所述活性硅酸的混合体积比为1:(1-2);所述活化产物微球与所述混合溶液的料液比为(1-10)g/100ml。
优选的,所述高温热处理的处理温度在800-1200℃,处理时间为1-6h。
优选的,所述生产方法还包括以下步骤:
(7)将正硅酸乙酯按体积比1:2稀释溶解在无水乙醇中,得到溶液A,将市售25%的氨水溶液按体积比例(1-2):20稀释溶解在无水乙醇中,得到溶液B,在搅拌条件下,将所述溶液A逐滴滴加到所述溶液B中,滴加完毕后继续搅拌反应1-2h,2000rpm低速离心处理(1-10)min,去除沉淀后再在(10000-12000)rpm下高速离心处理20min,分离沉淀并依次用无水乙醇和去离子水洗涤,干燥后制得二氧化硅纳米粒子;将所述二氧化硅纳米粒子超声分散在甲苯中,滴加二氯二甲基硅烷,继续超声分散处理,再在室温下搅拌反应12-24h后分离沉淀产物并依次以甲苯和无水乙醇洗涤,干燥后制得改性二氧化硅纳米粒子;
其中,所述溶液A与所述溶液B的混合体积比例为2:(14-15);所述二氧化硅纳米粒子与甲苯的分散料液比为1g/100ml,所述二氯二甲基硅烷与所述甲苯的混合体积比例为(1-2):100;
(8)将步骤(5)得到的干燥产物分散在市售25%的氨水溶液中,得到溶液C,将所述改性二氧化硅纳米粒子分散在甲苯溶液中,得到溶液D,按体积比例1:2将所述溶液C和所述溶液D混合,经超声乳化后加入正硅酸乙酯,继续搅拌反应12-24h后,分离沉淀产物并依次以甲苯和无水乙醇洗涤,干燥后进行高温热处理制得所述高纯球形硅微球;
其中,所述正硅酸乙酯与所述溶液C的体积比例为1:2。
本发明的有益效果为:
(1)以硅溶胶为原料制备的硅微粉具有较高的纯度和球形度,但硅溶胶胶核的周围会包裹着由带负电的吸附层和正电的扩散层组成的双电层,其既是维持硅溶胶体系稳定的因素之一,同时也使得硅溶胶粒径较小,晶核生长慢,本发明在常规胶粒制备方法基础上,通过加入疏水性的三氟甲磺酸阴离子以破坏双电层结构,提高了胶粒表面的结晶活性,再经过二次生长提高了大粒径胶粒的硅酸聚合速度,增大胶粒粒径,满足硅微粉的粒径和规则度要求;进一步的,本发明通过酸性的过氧化氢氧化体系对微粉表面进行活化,以提高表面氧化度,再以活化后的微粉为核心,在表面生长一层水化的二氧化硅,进一步提高其球形度。
(2)更进一步的,利用分散乳液液滴良好的球形度,本发明以水化硅微球的氨水溶液为水相,以甲苯溶液为油相,以单分散的表面改性二氧化硅纳米粒子作为乳化剂,制备为微米-亚微米细度的油包水型乳液体系,由于表面生长有水化二氧化硅的水化硅微球被包覆于乳液分散液滴内部,表面改性二氧化硅纳米粒子作为乳化剂分布在所述水化微球外层(水油界面),微球通过高温热处理稳定化后,可进一步提高硅微粉球形度。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1
一种高纯球形硅微粉的生产方法,包括以下步骤:
(1)二氧化硅晶种母液制备
配制pH值在11的氢氧化钠溶液,搅拌升温至沸,在搅拌条件下,加入所述活性硅酸溶液,所述氢氧化钠溶液与所述活性硅酸溶液的混合体积比为1:4,混合过程中控制混合溶液的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h,撤去热源,静置12-36h,制得所述二氧化硅晶种母液;
(2)生成二氧化硅胶粒
将所述二氧化硅晶种母液加热至沸,在搅拌条件下,加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:2,混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;保温完成后,边搅拌边滴加三氟甲磺酸盐溶液,滴加完成后第二次加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:2,混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;超滤浓缩后静置24h,得到二氧化硅溶胶;
其中,所述三氟甲磺酸盐溶液的浓度在0.5wt.%,所述三氟甲磺酸盐溶液与所述二氧化硅晶种母液的混合体积比为1:100;
(3)干燥稳定
将所述二氧化硅溶胶进行喷雾干燥后制得初产物微球,将所述初产物微球转入高温炉中进行高温热处理,所述高温热处理的处理温度在1000℃,处理时间为4h,待冷却至室温后制得所述球形硅微球;
所述活性硅酸溶液的制备方法为:
将硅酸钠溶液依次通过强酸性聚苯乙烯阳离子交换树脂和D301弱碱型阴离子交换树脂进行离子交换,除去钠离子和阳、阴离子杂质,制得所述活性硅酸溶液,所述硅酸钠溶液的质量浓度在22%。
实施例2
一种高纯球形硅微粉的生产方法,同实施例1,区别在于,所述生产方法还包括以下步骤:
(4)将热处理产物分散在盐酸溶液中,加入溶液体积0.5%的质量浓度为30%的过氧化氢溶液,低速搅拌过夜,滤出沉淀并以去离子水洗涤至中性,得到表面活化产物微球;
(5)将所述活化产物微球加入到所述二氧化硅晶种母液和活性硅酸的混合溶液中,所述二氧化硅晶种母液和所述活性硅酸的混合体积比为1:(1-2);所述活化产物微球与所述混合溶液的料液比为(1-10)g/100ml,加热至沸后保温搅拌反应10-60min,滤出产物,沉淀依次以稀的硅酸钠溶液和去离子水洗涤,干燥;
(6)将干燥产物转入高温炉中进行高温热处理,所述高温热处理的处理温度在1000℃,处理时间为4h,待冷却至室温后制得所述高纯球形硅微球。
实施例3
一种高纯球形硅微粉的生产方法,同实施例2,区别在于,所述生产方法还包括以下步骤:
(7)将正硅酸乙酯按体积比1:2稀释溶解在无水乙醇中,得到溶液A,将市售25%的氨水溶液按体积比例1:10稀释溶解在无水乙醇中,得到溶液B,在搅拌条件下,将所述溶液A逐滴滴加到所述溶液B中,混合体积比例为1:7,滴加完毕后继续搅拌反应1-2h,2000rpm低速离心处理10min,去除沉淀后再在12000rpm下高速离心处理20min,分离沉淀并依次用无水乙醇和去离子水洗涤,干燥后制得二氧化硅纳米粒子;将所述二氧化硅纳米粒子超声分散在甲苯中,分散料液比为1g/100ml,滴加二氯二甲基硅烷,所述二氯二甲基硅烷与所述甲苯的体积比例为1:100,继续超声分散处理,再在室温下搅拌反应12h后分离沉淀产物并依次以甲苯和无水乙醇洗涤,干燥后制得改性二氧化硅纳米粒子;
(8)将步骤(5)得到的干燥产物按料液比为1g/100ml分散在市售25%的氨水溶液中,得到溶液C,将所述改性二氧化硅纳米粒子按料液比为1g/100ml分散在甲苯溶液中,得到溶液D,按体积比例1:2将所述溶液C和所述溶液D混合,经超声乳化后加入正硅酸乙酯,继续搅拌反应12h后,分离沉淀产物并依次以甲苯和无水乙醇洗涤,干燥后再进行步骤(6)所述高温热处理,制得所述高纯球形硅微球;
其中,所述正硅酸乙酯与所述溶液C的体积比例为1:2。
对比例
一种硅微粉的生产方法,将所述二氧化硅晶种母液加热至沸,在搅拌条件下,加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:2,混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;保温完成后进行喷雾干燥,制得初微球,将所述初微球转入高温炉中进行高温热处理,所述高温热处理的处理温度在1000℃,处理时间为4h,待冷却至室温后制得所述硅微球。
在相同的配方体系中采用对比例与实施例1、2、3的硅微粉进行底部填充胶性能测试,测试结果如下:
Figure BDA0003359112210000061
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (8)

1.一种高纯球形硅微粉的生产方法,其特征在于,包括以下步骤:
(1)二氧化硅晶种母液制备
配制pH值在8-12的碱溶液,搅拌升温至沸,在搅拌条件下,加入所述活性硅酸溶液,混合过程中控制混合溶液的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h,撤去热源,静置12-36h,制得所述二氧化硅晶种母液;
其中,所述碱溶液与所述活性硅酸溶液的混合体积比为1:(3-5);
(2)生成二氧化硅胶粒
将所述二氧化硅晶种母液加热至沸,在搅拌条件下,加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:(1-2),混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;保温完成后,边搅拌边滴加三氟甲磺酸盐溶液,滴加完成后第二次加入活性硅酸溶液,所述二氧化硅晶种母液与所述活性硅酸溶液的混合体积比例为1:(1-2),混合过程中控制混合溶液体系的pH值保持在8-12,添加完毕后继续保温搅拌0.5-1h;超滤浓缩后静置12-36h,得到二氧化硅溶胶;
其中,所述三氟甲磺酸盐溶液的浓度在0.1-1wt.%,所述三氟甲磺酸盐溶液与所述二氧化硅晶种母液的混合体积比为(0.1-1):100;
(3)干燥稳定
将所述二氧化硅溶胶进行喷雾干燥后制得初产物微球,将所述初产物微球转入高温炉中进行高温热处理,待冷却至室温后制得所述球形硅微球。
2.根据权利要求1所述的一种高纯球形硅微粉的生产方法,其特征在于,所述碱溶液为氢氧化钠或氢氧化钾溶液。
3.根据权利要求1所述的一种高纯球形硅微粉的生产方法,其特征在于,所述活性硅酸溶液的制备方法为:
将硅酸钠溶液依次通过强酸型阳离子交换树脂和弱碱型阴离子交换树脂进行离子交换,除去钠离子和阳、阴离子杂质,制得所述活性硅酸溶液,所述硅酸钠溶液的质量浓度在8%-24%。
4.根据权利要求3所述的一种高纯球形硅微粉的生产方法,其特征在于,所述强酸型阳离子交换树脂为强酸性聚苯乙烯阳离子交换树脂,所述弱碱型阴离子交换树脂为D301型阴离子交换树脂。
5.根据权利要求1所述的一种高纯球形硅微粉的生产方法,其特征在于,所述生产方法还包括以下步骤:
(4)将热处理产物分散在盐酸溶液中,加入溶液体积0.1-1%的质量浓度为30%的过氧化氢溶液,低速搅拌过夜,滤出沉淀并以去离子水洗涤至中性,得到表面活化产物微球;
(5)将所述活化产物微球加入到所述二氧化硅晶种母液和活性硅酸的混合溶液中,加热至沸后保温搅拌反应10-60min,滤出产物,沉淀依次以稀的硅酸钠溶液和去离子水洗涤,干燥;
(6)将干燥产物转入高温炉中进行高温热处理,待冷却至室温后制得所述高纯球形硅微球。
6.根据权利要求5所述的一种高纯球形硅微粉的生产方法,其特征在于,所述二氧化硅晶种母液和活性硅酸的混合溶液中,所述二氧化硅晶种母液和所述活性硅酸的混合体积比为1:(1-2);所述活化产物微球与所述混合溶液的料液比为(1-10)g/100ml。
7.根据权利要求1所述的一种高纯球形硅微粉的生产方法,其特征在于,所述高温热处理的处理温度在800-1200℃,处理时间为1-6h。
8.根据权利要求5所述的一种高纯球形硅微粉的生产方法,其特征在于,所述生产方法还包括以下步骤:
(7)将正硅酸乙酯按体积比1:2稀释溶解在无水乙醇中,得到溶液A,将市售25%的氨水溶液按体积比例(1-2):20稀释溶解在无水乙醇中,得到溶液B,在搅拌条件下,将所述溶液A逐滴滴加到所述溶液B中,滴加完毕后继续搅拌反应1-2h,2000rpm低速离心处理(1-10)min,去除沉淀后再在(10000-12000)rpm下高速离心处理20min,分离沉淀并依次用无水乙醇和去离子水洗涤,干燥后制得二氧化硅纳米粒子;将所述二氧化硅纳米粒子超声分散在甲苯中,滴加二氯二甲基硅烷,继续超声分散处理,再在室温下搅拌反应12-24h后分离沉淀产物并依次以甲苯和无水乙醇洗涤,干燥后制得改性二氧化硅纳米粒子;
其中,所述溶液A与所述溶液B的混合体积比例为2:(14-15);所述二氧化硅纳米粒子与甲苯的分散料液比为1g/100ml,所述二氯二甲基硅烷与所述甲苯的混合体积比例为(1-2):100;
(8)将步骤(5)得到的干燥产物分散在市售25%的氨水溶液中,得到溶液C,将所述改性二氧化硅纳米粒子分散在甲苯溶液中,得到溶液D,按体积比例1:2将所述溶液C和所述溶液D混合,经超声乳化后加入正硅酸乙酯,继续搅拌反应12-24h后,分离沉淀产物并依次以甲苯和无水乙醇洗涤,干燥后进行高温热处理制得所述高纯球形硅微球;
其中,所述正硅酸乙酯与所述溶液C的体积比例为1:2。
CN202111360609.6A 2021-11-17 2021-11-17 一种高纯球形硅微粉的生产方法 Active CN113880098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111360609.6A CN113880098B (zh) 2021-11-17 2021-11-17 一种高纯球形硅微粉的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111360609.6A CN113880098B (zh) 2021-11-17 2021-11-17 一种高纯球形硅微粉的生产方法

Publications (2)

Publication Number Publication Date
CN113880098A true CN113880098A (zh) 2022-01-04
CN113880098B CN113880098B (zh) 2022-12-09

Family

ID=79017868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111360609.6A Active CN113880098B (zh) 2021-11-17 2021-11-17 一种高纯球形硅微粉的生产方法

Country Status (1)

Country Link
CN (1) CN113880098B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436267A (zh) * 2022-02-14 2022-05-06 连云港淼晶硅材料有限公司 一种高纯超细硅微粉的制备方法
CN115504479A (zh) * 2022-09-29 2022-12-23 苏州锦艺新材料科技股份有限公司 一种SiO2微米球及前驱物的制备方法
CN116022796A (zh) * 2022-12-01 2023-04-28 航天特种材料及工艺技术研究所 一种去除硅溶胶中小粒径胶粒的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232592A (ja) * 2005-02-23 2006-09-07 Oji Paper Co Ltd シリカ微粒子分散液の製造方法
CN101037206A (zh) * 2006-03-14 2007-09-19 连云港东海硅微粉有限责任公司 一种高纯球形硅微粉的生产方法
CN101597066A (zh) * 2009-06-30 2009-12-09 中国科学院上海微系统与信息技术研究所 一种硅溶胶晶种的制备方法
US20100146864A1 (en) * 2005-08-10 2010-06-17 Catalysts & Chemicals Industries Co., Ltd Nodular Silica Sol and Method of Producing the Same
US20140072803A1 (en) * 2011-02-22 2014-03-13 Evonik Degussa Gmbh High-purity silicon dioxide granules for quartz glass applications and method for producing said granules
CN106044786A (zh) * 2016-06-01 2016-10-26 上海新安纳电子科技有限公司 多分散大粒径硅溶胶及其制备方法
CN111732107A (zh) * 2020-07-10 2020-10-02 阳江市惠尔特新材料科技有限公司 一种水玻璃制备超大粒径高浓度硅溶胶的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232592A (ja) * 2005-02-23 2006-09-07 Oji Paper Co Ltd シリカ微粒子分散液の製造方法
US20100146864A1 (en) * 2005-08-10 2010-06-17 Catalysts & Chemicals Industries Co., Ltd Nodular Silica Sol and Method of Producing the Same
CN101037206A (zh) * 2006-03-14 2007-09-19 连云港东海硅微粉有限责任公司 一种高纯球形硅微粉的生产方法
CN101597066A (zh) * 2009-06-30 2009-12-09 中国科学院上海微系统与信息技术研究所 一种硅溶胶晶种的制备方法
US20140072803A1 (en) * 2011-02-22 2014-03-13 Evonik Degussa Gmbh High-purity silicon dioxide granules for quartz glass applications and method for producing said granules
CN106044786A (zh) * 2016-06-01 2016-10-26 上海新安纳电子科技有限公司 多分散大粒径硅溶胶及其制备方法
CN111732107A (zh) * 2020-07-10 2020-10-02 阳江市惠尔特新材料科技有限公司 一种水玻璃制备超大粒径高浓度硅溶胶的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436267A (zh) * 2022-02-14 2022-05-06 连云港淼晶硅材料有限公司 一种高纯超细硅微粉的制备方法
CN115504479A (zh) * 2022-09-29 2022-12-23 苏州锦艺新材料科技股份有限公司 一种SiO2微米球及前驱物的制备方法
CN115504479B (zh) * 2022-09-29 2024-02-13 苏州锦艺新材料科技股份有限公司 一种SiO2微米球及前驱物的制备方法
CN116022796A (zh) * 2022-12-01 2023-04-28 航天特种材料及工艺技术研究所 一种去除硅溶胶中小粒径胶粒的方法

Also Published As

Publication number Publication date
CN113880098B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN114074943B (zh) 一种高密度的电子封装用球形硅微粉的制备方法
CN113880098B (zh) 一种高纯球形硅微粉的生产方法
US5226930A (en) Method for preventing agglomeration of colloidal silica and silicon wafer polishing composition using the same
CN111547729B (zh) 一种低介电常数中空氧化铝/二氧化硅纳米复合材料及应用
CN102432027B (zh) 一种单分散、大粒径、高稳定性的酸性硅溶胶及其制造方法
CN103500622A (zh) 磁性无机纳米粒/有序介孔二氧化硅核壳复合微球及其制备方法
WO2020133158A1 (zh) 一种球形硅树脂粉体或其接团体的制备方法以及由此得到的球形硅树脂粉体或其接团体
CN111620342B (zh) 一种小尺寸单分散中空二氧化硅微球及其制备方法和应用
CN114956101B (zh) 一种高分散微米尺寸二氧化硅微球及其制备方法
CN103896289A (zh) 一种制备大粒径硅溶胶的方法
CN111302347B (zh) 一种高纯大粒径硅溶胶的制备方法
CN114195158A (zh) 一种高纯单分散纳米球形二氧化硅粉体的制备方法
CN116143134B (zh) 一种集成电路封装用硅微粉的制备方法
Venkatathri Synthesis of silica nanosphere from homogeneous and heterogeneous systems
JP2009190909A (ja) メソポーラスシリカの表面処理方法、樹脂添加用スラリー組成物、樹脂用充填剤及び樹脂組成物の製造方法
CN108840357A (zh) 一种高比表面积大中孔拟薄水铝石的制备方法
CN115784243A (zh) 一种以盐为模板构筑单分散空心结构氧化硅微球材料的制备方法
JP2020079165A (ja) 中空シリカ粒子及びその製造方法
JP4488691B2 (ja) フォージャサイト型ゼオライトの製造方法
CN111470523A (zh) 一种水分散薄水铝石纳米片的无模板分级生长制备方法
TWI833391B (zh) 經表面處理之二氧化矽粒子分散溶膠及其製造方法
KR102510479B1 (ko) 초미립 고순도 실리카 입자의 제조방법
CN113620303B (zh) 一种中性条件下制备多孔纳米二氧化硅小球的方法
JPH0217932A (ja) 改質無機質粒子及びその製法
CN115536048B (zh) 一种导热勃姆石及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant