CN113877443B - 一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法 - Google Patents
一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法 Download PDFInfo
- Publication number
- CN113877443B CN113877443B CN202111310900.2A CN202111310900A CN113877443B CN 113877443 B CN113877443 B CN 113877443B CN 202111310900 A CN202111310900 A CN 202111310900A CN 113877443 B CN113877443 B CN 113877443B
- Authority
- CN
- China
- Prior art keywords
- membrane
- hollow fiber
- liquid
- gas separation
- core liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 153
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 34
- 238000000926 separation method Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000009987 spinning Methods 0.000 title claims abstract description 17
- 230000007547 defect Effects 0.000 title abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 71
- 239000002904 solvent Substances 0.000 claims abstract description 20
- 230000008569 process Effects 0.000 claims abstract description 14
- 238000005191 phase separation Methods 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 18
- 239000003960 organic solvent Substances 0.000 claims description 16
- 210000003491 skin Anatomy 0.000 claims description 11
- 229920002492 poly(sulfone) Polymers 0.000 claims description 9
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 8
- 239000012039 electrophile Substances 0.000 claims description 8
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 4
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 4
- 210000002615 epidermis Anatomy 0.000 claims description 4
- 230000003203 everyday effect Effects 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 235000011056 potassium acetate Nutrition 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 2
- 235000019260 propionic acid Nutrition 0.000 claims description 2
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 24
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 2
- 238000001891 gel spinning Methods 0.000 abstract description 2
- 239000002344 surface layer Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 39
- 239000000243 solution Substances 0.000 description 27
- 239000003570 air Substances 0.000 description 19
- 238000000576 coating method Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 11
- 230000035699 permeability Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000007605 air drying Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000002000 Electrolyte additive Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0011—Casting solutions therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/04—Dry spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/06—Wet spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/24—Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
- B01D2325/023—Dense layer within the membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,膜丝采用干‑湿法相分离工艺纺丝,在60°C温度下,膜液和芯液以体积比2:1通过注射泵由喷头挤出,初始中空纤维膜在空气中经过5厘米的气隙距离后进入凝胶浴,膜丝在通过一系列牵引轮、第一收集轮、张力控制装置以及摆动装置后,在第二收集轮上被收集;在膜液中添加强挥发性溶剂和亲电子试剂,优化膜液和芯液配方,同时配以对操作流程的精准调整,最终达到只通过传统的干‑湿法纺丝工艺制备出表皮致密层无缺陷的非对称中空纤维膜,用于气体分离领域。
Description
技术领域
本发明涉及用于气体分离的中空纤维膜的制备,更具体地说,涉及制备一种新型的中空纤维膜,其膜壁不但具有非对称结构,且具有气体分离作用的外缘致密层不存在缺陷,所以无需添加保护涂层。
背景技术
中空纤维膜外形呈纤维状,内部中空。非对称结构中空纤维膜只有外缘表皮具有分离作用,其余部分只起到自支撑作用。与其他形态的膜品种相比,非对称结构中空纤维膜组件分离效果好,效率高,填充密度大,占地小,前景极为广阔。
非对称膜结构可依据三元组分相分离理论通过湿法或者干-湿法相分离工艺一次造膜成型。然而通过干-湿相分离方法制备非对称中空纤维膜的难点在于其成膜过程中动力学溶剂交换过程以及热力学相分离过程极为复杂难控,目前在膜液、芯液、凝胶浴介质组分选择以及各操作条件的研究都比较单一,没有作为一个整体通盘考虑,进行全面优化,同时也没有考虑到配方需要对不可控外界环境因素具有较好的适应容忍度,其结果是成品膜丝质量稳定性无法得到保证,致密层质量时好时坏,部分膜丝存在超过容忍范围的大面积缺陷。由于最终工业级膜组件一般内含多达数万根中空纤维膜膜丝,而其中只要有超过百万分之一的膜面积存在缺陷,该膜组件即丧失气体分离效果,成为废品,进而造成极大的经济损失。
为解决这一问题,包括如美国专利US4214020A等一批文献对有缺陷的膜壁外缘致密层涂敷一层具有高通量但是气体分子选择性差的高分子聚合物用以覆盖致密层的缺陷区域。涂层技术虽然在一定程度上解决了致密层缺陷率高的问题,但也不可避免地带来了以下两点问题:一是尽管涂层的存在确保了气体分离效果,但是添加的涂层增加了气体渗透过膜阻力,造成气体渗透率下降,进而导致气体分离膜产气效率下降;二是增加了生产工艺流程,导致生产成本提高。
目前全球主流的中空纤维气体分离膜主要原材料有聚砜、聚醚砜以及聚酰亚胺等。主要膜产品包括美国气体产品公司(AIR PRODUCTS)的普利森膜产品(PRISM),美国捷能公司的捷能膜产品(GENERON),德国赢创公司(EVONIK)的SEPURAN膜产品,以及法国液体空气公司(AIR LIQUIDE)的MEDAL膜产品。这些气体分离膜产品的共有特点是均通过涂敷技术在膜壁外缘增加保护涂层以覆盖存在缺陷的致密层。
由此可见开发出一种无需增加表面涂层工艺的非对称气体分离膜制备工艺是及其必要的。
发明内容
本发明的目的是提供一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,主要创新在于膜液中添加强挥发性溶剂和亲电子试剂,优化膜液和芯液配方,同时配以对操作流程的精准调整,最终达到只通过传统的干-湿法纺丝工艺制备出表皮致密层无缺陷的非对称中空纤维膜,用于气体分离领域。同时采用此工艺制备的中空纤维膜满足空气分离膜的氧气、氮气分离要求,即氧气气体渗透率超过100GPU(气体渗透单位),氧气/氮气气体理想选择性超过6。
具体是这样实施的:
一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,膜丝采用干-湿法相分离工艺纺丝,其特征在于,在60℃温度下,膜液和芯液以体积比2:1通过注射泵由喷头挤出,初始中空纤维膜在空气中经过5厘米的气隙距离后进入凝胶浴,膜丝在通过一系列牵引轮、第一收集轮、张力控制装置以及摆动装置后,在第二收集轮上被收集;
所述膜液的各组份及质量百分配比为:28~34%聚砜颗粒、26~52%弱挥发性有机溶剂,10~20%强挥发性有机溶剂四氢呋喃,0-5%纯水以及10-15%亲电子试剂,所述弱挥发性有机溶剂为N-甲基吡咯烷酮、N,N-二甲基乙酰胺中的一种或组合,所述亲电子试剂为氯化铝、丙酸或甘油中的一种;
所述芯液由纯水和乙酸钾以质量比为9:1组成;
所述凝胶浴的介质为室温下的纯水。
进一步地,膜液和芯液通过注射泵按照膜液100毫升/小时和芯液50毫升/小时的流速由喷头挤出。
进一步地,两收集轮的牵引速率为15米/分钟。
进一步地,膜液各组份在60℃温度下搅拌直至全部溶解成为均匀膜液,将膜液通过真空吸入膜液桶,静置一夜用于脱除膜液中的微小气泡。
进一步地,芯液各组份在室温下溶解混合,将芯液通过真空吸入芯液桶,静置一夜用于脱除芯液中的微小气泡。
进一步地,被收集的膜丝置于水槽中三天用于脱除残余溶液,水槽存水每天更换,膜丝从水槽中取出后置于甲醇槽中一天用于溶剂置换,膜丝从甲醇槽中取出后置于正己烷槽中一天用于溶剂置换,膜丝从正己烷槽中取出后在室温下晾干。
和传统液体分离膜通过膜孔实现分离不同,气体分离膜是通过高分子聚合物链之间的纳米级别间隙实现气体分子筛分功能的。在膜液成分中添加适量的亲电子试剂可以促进高分子链的重整,有效的扩充高分子聚合物链之间的间隙距离,进而在不牺牲气体分子筛分功能的前提下,提高气体分子的渗透速率。与此同时,亲电子试剂的添加还可有效的提高膜液的粘度,有助于膜丝的成型。
在膜液成分中使用优化配比的具有不同挥发度的有机溶剂的优势是通过此种方式实现对膜液中有机溶剂成分的挥发度进行精密调控。在纺丝过程中初始膜丝在进入凝胶浴之前会通过一段空气气隙段。在此区域内,处于初始膜丝外缘的有机溶剂会挥发到周边空气中,使得膜丝外缘的聚砜浓度得到提高,有助于表皮致密层的形成。在传统工艺中,为实现有机溶剂的有效挥发,一般通过控制气隙段的温度和湿度,以及使用吹扫气等方式促进有机溶剂的挥发。为实现这些功能,纺丝设备需增添很多辅助设备,既增加了生产成本又提高了对场地的要求。和传统方式相比,将具有不同挥发度的有机溶液按照不同配比混合,可以精准的控制其在气隙段的挥发度,进而确保外缘表皮致密层的形成。同时,不同挥发度的有机溶剂混合液的配比可以根据不同的外界环境条件进行更改优化,进而在不增加成本和操作难度的前提下,以最简便的方式提升了中空纤维膜纺丝过程对操作环境的容忍程度。
在膜液成分中添加非溶剂纯水可以使膜液系统在热力学角度尽可能接近三元相区的不平衡区域,进而以较快的速率促发相分离,此举可有效降低膜丝表皮致密层的厚度,同时有助于支撑层海绵状结构的形成。需要指出的是,对非溶剂成分配比的优化对于膜丝的质量至关重要。添加过量的非溶剂会导致膜丝表皮大面积的缺陷,进而丧失气体分离效果。
在芯液成分中添加电解质物质可以有效的降低芯液中非溶剂成分的活性,减缓膜丝内壁的凝固速率,进而延长膜液中的溶剂和芯液中的非溶剂进行交换的时间,最终实现膜丝支撑层海绵状结构的形成,同时阻止了指状和泪滴状空腔的形成。
上述膜液成分中的高分子聚合物为聚砜,结构式为
本发明具体优点如下:
1、本发明使用聚砜为原材料制备具有非对称结构且无需表皮涂敷保护层的中空纤维膜,所制备的中空纤维膜均具有良好的气体渗透和分离性能;
2、本发明在膜液中添加了优化配比的亲电子试剂,有效增加了高分子聚合物链之间的间隙率,同时提高了膜液的粘度,进而提高了膜丝的气体渗透率和纺丝过程的稳定性;
3、本发明通过在膜液中添加优化配比的强挥发和弱挥发有机溶剂混合液,促发初始膜壁外缘有机溶剂在气隙段内的可控挥发,确保膜丝外缘区域聚砜浓度在进入凝胶浴时达到合理水平,从而保证膜丝外缘在热力学相分离初始阶段形成致密结构;
4、本发明在膜液中添加了优化配比的非溶剂,确保了中空纤维膜外壁在进入凝胶浴之后,在最优的时间点进入热力学相位不平衡状态,进而在保证致密层顺利成型的基础上,降低致密层的厚度;
5、本发明在芯液中添加了优化配比的电解质,有效降低了芯液的活性,进而避免了膜壁内侧的快速固化,和上述第五点相似,阻止了指状及泪滴状空腔在支撑层内的发展成型;
6、本发明对膜液中的有机溶剂混合液和芯液中的非溶剂以及电解质添加物进行优化配对,达到了精确调控膜液和芯液间动力学对流交换速率的目的,进而实现对热力学相分离的细微控制,最终达到精准调控膜支撑层结构,确保支撑层形成海绵状结构,同时阻止指状及泪滴状空腔在支撑层内的发展成型。通过本发明采用的配方,有效地阻止了此类破坏性结构在支撑层中的形成,所以制备的中空纤维膜具有很强的机械压力性能。经测试,在膜壳一侧加压进气最高2MPa压力的操作条件下,膜丝的机械完整性保持基本稳定。
附图说明
图1为本发明膜丝外缘局部的扫描电镜图。
图2为干-湿法相分离工艺纺丝流程图。
图3为比较例膜丝外缘局部(涂前)的扫描电镜图。
图4为比较例膜丝外缘局部(涂后)的扫描电镜图。
具体实施方式
实施例1
将280克干燥的聚砜颗粒加入到由520克N-甲基吡咯烷酮、100克四氢呋喃和100
克氯化铝组成的混合溶液中,在60℃温度下搅拌直至全部溶解成为均匀膜液。将膜液通过真空吸入膜液桶,静置一夜用于脱除膜液中的微小气泡。同时将50克乙酸钾在室温下溶解于450克纯水中形成芯液。将芯液通过真空吸入芯液桶,静置一夜用于脱除芯液中的微小气泡。膜丝采用干-湿法相分离工艺纺丝(参见图2),膜液和芯液通过注射泵按照膜液100毫升/小时和芯液50毫升/小时的流速在60℃温度下由喷头挤出,初始中空纤维膜在空气中经过5厘米的气隙距离后进入凝胶浴,凝胶浴的介质为室温下的纯水,膜丝在通过一系列牵引轮、第一收集轮、张力控制装置以及摆动装置后,在第二收集轮上被收集。收集轮牵引速率为15米/分钟。膜丝置于水槽中三天用于脱除残余溶液,水槽存水每天更换。膜丝从水槽中取出后置于甲醇槽中一天用于溶剂置换。膜丝从甲醇槽中取出后置于正己烷槽中一天用于溶剂置换。膜丝从正己烷槽中取出后在室温下晾干。
将10根晾干后的膜丝制成小试膜组件,以膜壳侧加压进气(0.2MPa)的方式在室温下进行气体渗透性测试,结果见表2。
比较例
将280克干燥的聚砜颗粒加入到由720克N-甲基吡咯烷酮中,在60℃温度下搅拌直至全部溶解成为均匀膜液。将膜液通过真空吸入膜液桶,静置一夜用于脱除膜液中的微小气泡。同时将50克乙酸钾在室温下溶解于450克纯水中形成芯液。将芯液通过真空吸入芯液桶,静置一夜用于脱除芯液中的微小气泡。膜丝采用干-湿法相分离工艺纺丝,膜液和芯液通过注射泵按照膜液100毫升/小时和芯液50毫升/小时的流速在60℃温度下由喷头挤出,初始中空纤维膜在空气中经过5厘米的气隙距离后进入凝胶浴,凝胶浴的介质为室温下的纯水,膜丝在通过一系列牵引轮、第一收集轮、张力控制装置以及摆动装置后,在第二收集轮上被收集。收集轮牵引速率为15米/分钟。膜丝置于水槽中三天用于脱除残余溶液,水槽存水每天更换。膜丝从水槽中取出后置于甲醇槽中一天用于溶剂置换。膜丝从甲醇槽中取出后置于正己烷槽中一天用于溶剂置换。膜丝从正己烷槽中取出后在室温下晾干。
将10根晾干后的膜丝制成小试膜组件,以膜壳侧加压进气(0.2MPa)的方式在室温下进行气体渗透性测试,结果见表2。
在晾干后的膜丝上涂敷5%的硅橡胶(道康宁SYLGARD184)正己烷溶液用于覆盖缺陷层。将10根晾干后的带有涂层的膜丝制成小试膜组件,以膜壳侧加压进气(0.2MPa)的方式在室温下进行气体渗透性测试,结果见表2。
实施例2-13,参考实施例1,各实施例膜液配比见表1,芯液配比相同,将各实施例10根膜丝制成小试膜组件,以膜孔加压进气(0.4MPa)的方式在室温下进行气体渗透性测试,结果见表2
表1
表2
为达到满意的空气分离效果,中空纤维膜的氧气渗透率必须超过100GPU,氧气/氮气理想气体选择性必须超过6。从上二表可以看出,比较例虽然采用同样优化的芯液配方和制备方法,但膜液中没有添加强挥发性溶剂和亲电子试剂,制备的中空纤维膜其氧气渗透率虽然达到标准要求的100GPU,但是氧气/氮气理想选择性没有达到选择性超过6的要求。而且,参见图3,膜壁的外缘表皮区域极薄,存在缺隙,导致气体分离效果差。
参见图4,经过涂层之后的膜丝,涂层完全覆盖了外缘表皮缺陷区域,但表皮厚度显著增加,导致气体渗透阻力增加,降低了气体渗透率,尽管在氧气/氮气理想选择性上符合了数值超过6的标准,但是氧气气体渗透率却降至84GPU,下降61%,没有满足氧气渗透率需要超过100GPU的标准,而氮气渗透率更下降达74%。经过涂层之后,膜丝的气体渗透率急剧下降,该比较例表明通过涂敷工艺覆盖膜丝表皮缺陷不但增加了工艺流程,增加生产成本,而且降低了中空纤维膜的气体分离的效率(气体渗透率的下降意味着产气量的下降)。
Claims (4)
1.一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,膜丝采用干-湿法相分离工艺纺丝,其特征在于,在60°C温度下,膜液和芯液以体积比2:1通过注射泵由喷头挤出,初始中空纤维膜在空气中经过5厘米的气隙距离后进入凝胶浴,膜丝在通过一系列牵引轮、第一收集轮、张力控制装置以及摆动装置后,在第二收集轮上被收集;
所述膜液的各组份及质量百分配比为:28~34%聚砜颗粒、26~52%弱挥发性有机溶剂,10~20%强挥发性有机溶剂四氢呋喃 ,0~5%纯水以及10~15%亲电子试剂,所述弱挥发性有机溶剂为N-甲基吡咯烷酮、N,N-二甲基乙酰胺中的一种或组合,所述亲电子试剂为氯化铝、丙酸或甘油中的一种;
所述芯液由纯水和乙酸钾以质量比为9:1组成;
所述凝胶浴的介质为室温下的纯水;
所述膜液和芯液通过注射泵按照膜液100毫升/小时和芯液50毫升/小时的流速由喷头挤出;
所述收集轮的牵引速率为15米/分钟。
2.根据权利要求1所述的一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,其特征在于膜液各组份在60°C温度下搅拌直至全部溶解成为均匀膜液,将膜液通过真空吸入膜液桶,静置一夜。
3.根据权利要求1所述的一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,其特征在于芯液各组份在室温下溶解混合,将芯液通过真空吸入芯液桶,静置一夜。
4.根据权利要求1所述的一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法,其特征在于被收集的膜丝置于水槽中三天用于脱除残余溶液,水槽存水每天更换,膜丝从水槽中取出后置于甲醇槽中一天用于溶剂置换,膜丝从甲醇槽中取出后置于正己烷槽中一天用于溶剂置换,膜丝从正己烷槽中取出后在室温下晾干。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111310900.2A CN113877443B (zh) | 2021-11-05 | 2021-11-05 | 一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111310900.2A CN113877443B (zh) | 2021-11-05 | 2021-11-05 | 一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113877443A CN113877443A (zh) | 2022-01-04 |
CN113877443B true CN113877443B (zh) | 2024-01-26 |
Family
ID=79017140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111310900.2A Active CN113877443B (zh) | 2021-11-05 | 2021-11-05 | 一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113877443B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115928233A (zh) * | 2022-12-20 | 2023-04-07 | 天津膜天膜科技股份有限公司 | 可调节式中空纤维膜涂覆纺丝板 |
CN116943460B (zh) * | 2023-09-05 | 2024-01-30 | 中国科学院过程工程研究所 | 一种用于气体分离的内表面致密中空纤维膜的制备方法及其应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6013182A (en) * | 1996-04-19 | 2000-01-11 | Teijin Limited | Selectively permeable hollow fiber membrane and process for producing same |
KR100644366B1 (ko) * | 2005-11-08 | 2006-11-10 | 한국화학연구원 | 비대칭 기체분리용 고분자 중공사막의 대량 제조방법 |
CN101721925A (zh) * | 2010-01-21 | 2010-06-09 | 常州市美纤膜技术有限公司 | 家用净水中空纤维超滤膜及其制备方法 |
CN101979132A (zh) * | 2010-11-05 | 2011-02-23 | 天津森诺过滤技术有限公司 | 聚醚砜和磺化聚砜类高聚物共混非对称纳滤膜制备方法 |
KR20110023016A (ko) * | 2009-08-28 | 2011-03-08 | 주식회사 원일티엔아이 | 스폰지 구조를 갖는 기체분리막용 중공사막 제조방법 |
WO2012128470A2 (ko) * | 2011-03-18 | 2012-09-27 | 주식회사 휴비스 | 강도 및 수투과도가 우수한 폴리설폰계 중공사막 및 그 제조방법 |
CN102824860A (zh) * | 2012-09-10 | 2012-12-19 | 四川大学 | 一种高耐腐蚀性聚芳硫醚砜分离膜的制备方法 |
-
2021
- 2021-11-05 CN CN202111310900.2A patent/CN113877443B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6013182A (en) * | 1996-04-19 | 2000-01-11 | Teijin Limited | Selectively permeable hollow fiber membrane and process for producing same |
KR100644366B1 (ko) * | 2005-11-08 | 2006-11-10 | 한국화학연구원 | 비대칭 기체분리용 고분자 중공사막의 대량 제조방법 |
KR20110023016A (ko) * | 2009-08-28 | 2011-03-08 | 주식회사 원일티엔아이 | 스폰지 구조를 갖는 기체분리막용 중공사막 제조방법 |
CN101721925A (zh) * | 2010-01-21 | 2010-06-09 | 常州市美纤膜技术有限公司 | 家用净水中空纤维超滤膜及其制备方法 |
CN101979132A (zh) * | 2010-11-05 | 2011-02-23 | 天津森诺过滤技术有限公司 | 聚醚砜和磺化聚砜类高聚物共混非对称纳滤膜制备方法 |
WO2012128470A2 (ko) * | 2011-03-18 | 2012-09-27 | 주식회사 휴비스 | 강도 및 수투과도가 우수한 폴리설폰계 중공사막 및 그 제조방법 |
CN102824860A (zh) * | 2012-09-10 | 2012-12-19 | 四川大学 | 一种高耐腐蚀性聚芳硫醚砜分离膜的制备方法 |
Non-Patent Citations (1)
Title |
---|
铸膜液中水含量对聚砜超滤膜结构和性能的影响;王丽雅 等;《水处理技术》;第35卷(第12期);王丽雅 等 * |
Also Published As
Publication number | Publication date |
---|---|
CN113877443A (zh) | 2022-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113877443B (zh) | 一种制备表皮致密层无缺陷的具有非对称结构的气体分离用中空纤维膜纺丝方法 | |
EP0207721B1 (en) | Anisotropic membranes for gas separation | |
CN1013478B (zh) | 改进的气体分离渗透膜 | |
CN101293185A (zh) | 一种制备聚偏氟乙烯多孔膜的方法 | |
KR100644366B1 (ko) | 비대칭 기체분리용 고분자 중공사막의 대량 제조방법 | |
US9533264B2 (en) | Composite membrane, method of manufacturing the same, separation membrane including the composite membrane, and water treatment device using the separation membrane | |
CN1140769A (zh) | 纺制空心纤维膜的方法和装置 | |
Mao et al. | Preparation of dual-layer cellulose/polysulfone hollow fiber membrane and its performance for isopropanol dehydration and CO2 separation | |
JPS6351921A (ja) | 多成分ガス分離膜 | |
KR100646312B1 (ko) | 중공사 산소분리막 및 그 제조방법 | |
KR20160026070A (ko) | 기체분리막의 제조 방법 | |
CN110975646B (zh) | 用于混合气中二氧化碳分离的中空纤维复合膜的制备方法 | |
CN113856485B (zh) | 一种膜壁内缘致密的气体分离用中空纤维富氮膜制备方法 | |
CN108525524B (zh) | 一种中空纤维气体分离膜的修复装置 | |
KR20120076040A (ko) | 고선택 투과성 기체분리용 비대칭 구조의 중공사막의 대량 생산방법 | |
CN105435654A (zh) | 单皮层中空纤维膜的制备方法 | |
CN106268367A (zh) | 一种含有超高分子量pvdf的高通量超滤膜及其制备方法 | |
Alkandari et al. | Asymmetric membranes for gas separation: interfacial insights and manufacturing | |
KR102525810B1 (ko) | 다공성 불소계 분리막 및 이의 제조 방법 | |
US20240001303A1 (en) | Hollow fiber membrane and method for producing same | |
KR20220071138A (ko) | 친수화된 다공성 고분자 필터, 이의 제조방법 및 이의 제습 용도 | |
CN100482329C (zh) | 一种用于渗透汽化分离的壳聚糖中空纤维膜的制备方法 | |
KR20150012842A (ko) | 발포 폴리스티렌 제조공정의 펜탄/질소가스 분리용 중공사 복합막 및 그 제조방법 | |
KR101984893B1 (ko) | 바이오가스 고질화용 중공사 복합막, 이를 포함하는 막모듈 및 그 제조방법 | |
KR102483653B1 (ko) | 셀룰로오스 아세테이트를 이용한 무결점 고선택도 기체분리막 제조방법 및 그 방법으로 제조된 기체분리막 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |