CN113856659A - 一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法 - Google Patents

一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法 Download PDF

Info

Publication number
CN113856659A
CN113856659A CN202111256229.8A CN202111256229A CN113856659A CN 113856659 A CN113856659 A CN 113856659A CN 202111256229 A CN202111256229 A CN 202111256229A CN 113856659 A CN113856659 A CN 113856659A
Authority
CN
China
Prior art keywords
nanotube array
tio
preparation
biocl
doped tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111256229.8A
Other languages
English (en)
Other versions
CN113856659B (zh
Inventor
徐光青
杨振宇
段良松
吕珺
汪冬梅
吴玉程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202111256229.8A priority Critical patent/CN113856659B/zh
Publication of CN113856659A publication Critical patent/CN113856659A/zh
Application granted granted Critical
Publication of CN113856659B publication Critical patent/CN113856659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,主要包括以下步骤:TiO2纳米管阵列的制备、N掺杂TiO2纳米管阵列的制备、N掺杂TiO2纳米管阵列表面负载BiOCl纳米片。具体为通过湿化浸渍法制备N掺杂TiO2纳米管阵列,然后通过光沉积辅助法在N掺杂TiO2纳米管阵列表面负载BiOCl纳米片。本发明通过采用光沉积辅助法,在N掺杂TiO2纳米管阵列基体表面成功负载了BiOCl纳米片,提高了样品对有机物的响应性能。

Description

一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法
技术领域
本发明涉及半导体材料在有机物响应领域的应用,具体涉及一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法。
背景技术
传统鉴定水环境污染的方法有重铬酸钾法及库伦滴定法,这些方法以重铬酸钾为氧化剂,不仅会产生二次污染,且灵敏度低,限制了其广泛应用。TiO2纳米阵列作为应用最广泛的光催化材料,因具备较好的活性、优异的化学稳定性、低成本及无毒无害等优点受到广泛的研究。TiO2纳米阵列可作为氧化剂对水体中的有机物含量进行检测。
TiO2纳米阵列因其禁带宽度大,电子空穴复合几率高在实际应用方面受到限制。针对这些问题,提出了不同的改性方法,如负载助催化剂,调控晶面,掺杂及有机物敏化等。通过掺杂能够提升TiO2纳米阵列的本征光响应能力,Liu等将TiO2 NTAs和PVA及尿素一起在N2气氛中退火获得C/N共掺杂的TiO2 NTAs,使吸收边红移至470nm附近。而通过在表面负载不同的助催化剂,可以增强TiO2纳米阵列具体的光电化学应用方面的性能。Liu等发现通过在TiO2 NTAs表面负载BiOCl,能够增强TiO2纳米管阵列的有机物检测性能。但是,通过水热法或化学反应在基体表面生长的BiOCl纳米片尺寸较大,对样品的光催化性能十分不利,且受到TiO2纳米管阵列基体的限制,负载BiOCl纳米片后的TiO2纳米管阵列后的性能很差。
因此,开发一种能够在N掺杂TiO2纳米管阵列基体表面负载尺寸较小的BiOCl纳米片的制备方法,可以有效的改善TiO2纳米管阵列的光催化性能。
发明内容
本发明的目的在于提供一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其可以在N掺杂TiO2纳米管阵列基体表面负载尺寸较小的BiOCl纳米片。
为实现上述目的,本发明提供如下技术方案:
一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,通过湿化浸渍法制备N掺杂TiO2纳米管阵列,然后通过光沉积辅助法在N掺杂TiO2纳米管阵列表面负载BiOCl纳米片。
优选地,一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,具体包括以下步骤:
(1)TiO2纳米管阵列的制备
采用阳极氧化法制备TiO2纳米管阵列:分别使用丙酮、乙醇及去离子水对Ti箔进行超声清洗,在含一定量氟化铵及去离子水的乙二醇溶液中进行阳极氧化,阳极氧化后的样品经过超声清洗去除表面破碎纳米管,干燥后在空气中退火晶化,得到TiO2纳米管阵列;
(2)N掺杂TiO2纳米管阵列的制备
采用湿化浸渍法制备N掺杂TiO2纳米管阵列:将制备的TiO2纳米管阵列置入二乙烯三胺溶液中浸渍,在N2中退火后获得N掺杂的TiO2纳米管阵列;
(3)N掺杂TiO2纳米管阵列表面负载BiOCl纳米片
采用光沉积辅助法在N掺杂TiO2纳米管阵列表面负载BiOCl纳米片:将N掺杂TiO2纳米管阵列放入含一定量硝酸铋的乙二醇溶液中,在不断搅拌的情况下放置吸附,将所得样品移至甲醇溶液中,光照还原沉积,将所得样品继续放入氯化钠水溶液中,通过原位反应生成所述BiOCl纳米片修饰N掺杂TiO2纳米管阵列。
优选地,所述步骤(1)中阳极氧化的具体参数为,电解液由含0.1-0.2mol/L氟化铵和5-10Vol%去离子水的乙二醇溶液,阳极氧化电压为40-80V,阳极氧化时间为2-8h,阳极氧化温度为0-10℃。
优选地,所述步骤(1)中退火的具体参数为,样品超声清洗后,以1-4℃/min的速率升温至450-500℃,保温2-4h后炉冷。
优选地,所述步骤(2)中湿化浸渍法的工艺参数为,N源溶液为97-99%的二乙烯三胺溶液,在N源溶液中浸渍时间为2-12h,浸渍温度为20-80℃。
优选地,所述步骤(2)中浸渍后退火的工艺参数为,以1-4℃/min的升温速率升温至360-440℃,保温2-4h后随炉冷却。
优选地,所述步骤(3)中放置吸附的具体参数为,在含20-40mmol/L硝酸铋的乙二醇溶液中静置,吸附时间为10-20min。
优选地,所述步骤(3)中光照还原沉积条件为,光照条件为AM 1.5自然光,光照强度为100mW/cm2,样品置入甲醇中进行光沉积,时间为1-10min。
优选地,所述步骤(3)中氯化钠水溶液浓度为0.2-0.4mol/L,在氯化钠水溶液中浸渍时间为20-60min。
与现有技术相比,本发明的有益效果是:
1)利用光照辅助沉积Bi单质,在N掺杂TiO2纳米管阵列表面首先沉积Bi,然后通过在NaCl溶液中浸渍,反应生成BiOCl纳米片,获得BiOCl负载的N掺杂TiO2纳米管阵列,可以实现减小BiOCl纳米片尺寸的目的。
2)将掺杂改性及负载助催化剂相结合,提高了TiO2纳米管阵列在有机物响应方面的性能。
附图说明
图1为本发明实施例2中表面负载BiOCl的N掺杂TiO2纳米管阵列的SEM图片,其中,(a)为正面,(b)为侧面;
图2为本发明实施例2中表面负载BiOCl的N掺杂TiO2纳米管阵列的TEM图片(a)及高分辨图片(b);
图3为本发明实施例1中TiO2纳米管阵列、N掺杂TiO2纳米管阵列、BiOCl纳米片修饰TiO2纳米管阵列及实施例1-3中不同负载量BiOCl纳米片修饰N掺杂TiO2纳米管阵列的光电流响应曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,包括以下步骤:
(1)TiO2纳米管阵列的制备
分别使用丙酮、乙醇及去离子水对Ti箔进行超声清洗,在含0.15mol/L氟化铵及5vol%去离子水的乙二醇溶液中阳极氧化,阳极氧化电压为6h,电压为60V。阳极氧化后的样品经过超声清洗去除表面破碎纳米管,干燥后在空气中退火;
(2)N掺杂TiO2纳米管阵列的制备
将制备的TiO2纳米管阵列置入二乙烯三胺溶液中在40℃情况下恒温浸渍4h。在N2中,以1℃/min升温至400℃保温2h,炉冷后获得N掺杂的TiO2纳米管阵列;
(3)N掺杂TiO2纳米管阵列表面负载BiOCl纳米片
将N掺杂TiO2纳米管阵列放入含20mmol/L硝酸铋的乙二醇溶液中,在不断搅拌的情况下放置吸附10min,将所得样品去离子水冲洗后移至甲醇溶液中,光照2min以还原沉积Bi单质,同样将所得样品经去离子水冲洗后,放入含0.2mol/L氯化钠的水溶液中浸渍60min,原位反应生成负载BiOCl纳米片的N掺杂TiO2纳米管阵列。
以葡萄糖为目标有机物对样品的光电化学检测性能进行检测,实施例1制备得到的样品,其检测灵敏度为0.23824μA/μmol,如图3中曲线TNTs-N-Bi1所示。
经步骤(1)得到的TiO2纳米管阵列,其检测灵敏度为0.04489μA/μmol,如图3中曲线TNTs所示。
经步骤(1)和步骤(2)得到的N掺杂TiO2纳米管阵列,其检测灵敏度为0.13721μA/μmol,如图3中曲线TNTs-N所示。
经步骤(1)和步骤(3)得到的BiOCl修饰TiO2纳米管阵列,其检测灵敏度为0.18517μA/μmol,如图3中曲线TNTs-Bi1所示。
实施例2
本实施例的制备方法较实施例1,不同的是步骤(3)中的样品制备完成后,将所得样品再次进行步骤(3),获得不同负载量的TiO2纳米管阵列。由图1-2的SEM及TEM图片可以看出,TiO2纳米管阵列表面成功的负载了BiOCl纳米片。由图3可知,实施例2制备得到的样品,其检测灵敏度为0.26069μA/μmol,如图3中曲线TNTs-N-Bi2所示。
实施例3
本实施例的制备方法较实施例2,不同的是步骤(3)中的样品制备完成后,继续进行步骤(3),获得不同负载量的TiO2纳米管阵列。制备得到的样品对葡萄糖的有机物响应电流为24μA。实施例3制备得到的样品,其检测灵敏度为0.22720μA/μmol,如图3中曲线TNTs-N-Bi3所示。
实施例4
本实施例的制备方法较实施例1,不同的是步骤(2)中,样品浸渍温度为20℃,浸渍时间为4h。
实施例5
本实施例的制备方法较实施例1,不同的是步骤(2)中,样品浸渍温度为80℃,浸渍时间为4h。
实施例6
本实施例的制备方法较实施例1,不同的是步骤(3)中,样品置入含40mmol/L硝酸铋的乙二醇溶液中进行吸附。
实施例7
本实施例的制备方法较实施例1,不同的是步骤(3)中,样品置入含20mmol/L硝酸铋的乙二醇溶液中吸附时间为20min。
实施例8
本实施例的制备方法较实施例1,不同的是步骤(3)中,吸附结束后,样品在甲醇中光沉积的时间为10min。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (9)

1.一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:通过湿化浸渍法制备N掺杂TiO2纳米管阵列,然后通过光沉积辅助法在N掺杂TiO2纳米管阵列表面负载BiOCl纳米片。
2.根据权利要求1所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于,具体包括以下步骤:
(1)TiO2纳米管阵列的制备
采用阳极氧化法制备TiO2纳米管阵列:分别使用丙酮、乙醇及去离子水对Ti箔进行超声清洗,在含一定量氟化铵及去离子水的乙二醇溶液中进行阳极氧化,阳极氧化后的样品经过超声清洗去除表面破碎纳米管,干燥后在空气中退火晶化,得到TiO2纳米管阵列;
(2)N掺杂TiO2纳米管阵列的制备
采用湿化浸渍法制备N掺杂TiO2纳米管阵列:将制备的TiO2纳米管阵列置入二乙烯三胺溶液中浸渍,在N2中退火后获得N掺杂的TiO2纳米管阵列;
(3)N掺杂TiO2纳米管阵列表面负载BiOCl纳米片
采用光沉积辅助法在N掺杂TiO2纳米管阵列表面负载BiOCl纳米片:将N掺杂TiO2纳米管阵列放入含一定量硝酸铋的乙二醇溶液中,在不断搅拌的情况下放置吸附,将所得样品移至甲醇溶液中,光照还原沉积,将所得样品继续放入氯化钠水溶液中,通过原位反应生成所述BiOCl纳米片修饰N掺杂TiO2纳米管阵列。
3.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(1)中阳极氧化的具体参数为,电解液由含0.1-0.2mol/L氟化铵和5-10Vol%去离子水的乙二醇溶液,阳极氧化电压为40-80V,阳极氧化时间为2-8h,阳极氧化温度为0-10℃。
4.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(1)中退火的具体参数为,样品超声清洗后,以1-4℃/min的速率升温至450-500℃,保温2-4h后炉冷。
5.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(2)中湿化浸渍法的工艺参数为,N源溶液为97-99%的二乙烯三胺溶液,在N源溶液中浸渍时间为2-12h,浸渍温度为20-80℃。
6.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(2)中浸渍后退火的工艺参数为,以1-4℃/min的升温速率升温至360-440℃,保温2-4h后随炉冷却。
7.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(3)中放置吸附的具体参数为,在含20-40mmol/L硝酸铋的乙二醇溶液中静置,吸附时间为10-20min。
8.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(3)中光照还原沉积条件为,光照条件为AM 1.5自然光,光照强度为100mW/cm2,样品置入甲醇中进行光沉积,时间为1-10min。
9.根据权利要求2所述的一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法,其特征在于:所述步骤(3)中氯化钠水溶液浓度为0.2-0.4mol/L,在氯化钠水溶液中浸渍时间为20-60min。
CN202111256229.8A 2021-10-27 2021-10-27 一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法 Active CN113856659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111256229.8A CN113856659B (zh) 2021-10-27 2021-10-27 一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111256229.8A CN113856659B (zh) 2021-10-27 2021-10-27 一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法

Publications (2)

Publication Number Publication Date
CN113856659A true CN113856659A (zh) 2021-12-31
CN113856659B CN113856659B (zh) 2024-04-05

Family

ID=78998015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111256229.8A Active CN113856659B (zh) 2021-10-27 2021-10-27 一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法

Country Status (1)

Country Link
CN (1) CN113856659B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285891A (zh) * 2013-06-05 2013-09-11 河北工业大学 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
CN107570179A (zh) * 2017-08-25 2018-01-12 华南理工大学 一种TiO2/BiOCl异质结可见光催化剂的制备方法
US20190270075A1 (en) * 2015-12-22 2019-09-05 Envision Sq Inc. Photocatalytic composite material for the decomposition of air pollutants
CN112316969A (zh) * 2020-11-18 2021-02-05 广州万顺生物科技有限公司 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285891A (zh) * 2013-06-05 2013-09-11 河北工业大学 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
US20190270075A1 (en) * 2015-12-22 2019-09-05 Envision Sq Inc. Photocatalytic composite material for the decomposition of air pollutants
CN107570179A (zh) * 2017-08-25 2018-01-12 华南理工大学 一种TiO2/BiOCl异质结可见光催化剂的制备方法
CN112316969A (zh) * 2020-11-18 2021-02-05 广州万顺生物科技有限公司 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAIPENG LIU: "Photoelectrochemical properties of TiO2Nanotube Arrays Modifiedwith BiOCl nanosheets", ELECTROCHIMICA ACTA, vol. 130 *
LIMEI XUE等: "Synthesis of N-TiO2/BiOI/RGO composites with significantly enhanced visible light photocatalytic activity", JOURNAL OF MATERIALS RESEARCH, vol. 35, no. 2, pages 153 - 161 *
张国强;刘碧玉;贾密英;张艳峰;魏雨;: "纳米片状BiOI的制备及可见光催化性能研究", 河北师范大学学报(自然科学版), no. 05 *

Also Published As

Publication number Publication date
CN113856659B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN107400899B (zh) 三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN107887592B (zh) 碳包覆ZnO纳米线及其制备方法和应用
US11713512B2 (en) Bismuth vanadate electrode comprising vanadium-functionalized graphene quantum dots and a preparation method thereof
CN109267096B (zh) 高效稳定的硅基光解水制氢电极及其制备方法和应用
CN106549162B (zh) 复合电极材料、其制备方法及其在全钒液流电池中的应用
CN113136602A (zh) 一种钒酸铋/Vo-FeNiOOH复合光阳极的制备及应用
CN108597886B (zh) 一种用于改性氧化铁光阳极的有机溶液及其应用
CN113235124B (zh) 一种S-FeOOH/钒酸铋复合光阳极及其制备方法
CN112958116B (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN105761940A (zh) 铁酸镧薄膜光电极及其制备方法
CN113571812B (zh) 一种基于光/化学一体化能量转换的生物光电化学电池
CN114686916A (zh) 一种氧化锌纳米棒阵列光阳极及其制备方法
CN107841763B (zh) 一种基于表面氢氧壳层调控的光电极及其制备方法
CN116641066B (zh) 一种光电催化材料及其制备方法
CN113856659A (zh) 一种BiOCl纳米片修饰N掺杂TiO2纳米管阵列的制备方法
JP2005520304A (ja) 電流発生のための酵素ベースの光電気化学電池
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN114150338B (zh) 一种碳量子点和氮掺杂氮化碳共修饰的氧化锌光阳极及其制备方法
CN109193000A (zh) 一种空气电池用电催化剂及其制备方法和应用
CN108389726B (zh) 一种碳膜包覆的α-氧化铁纳米棒阵列及其制备方法和应用
CN104576064B (zh) 用于染料敏化太阳能电池的ZnO/SnO2复合光阳极的制备方法
Chen et al. A novel method for preparing platinized counter electrode of nanocrystalline dye-sensitized solar cells
CN113663672B (zh) 一种具有高光电催化活性的氧化亚钴光催化材料及其制备方法
CN115611373B (zh) 一种FeOOH/In-BiVO4(L)光电阳极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant