CN113773074B - 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件 - Google Patents

一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件 Download PDF

Info

Publication number
CN113773074B
CN113773074B CN202111113357.7A CN202111113357A CN113773074B CN 113773074 B CN113773074 B CN 113773074B CN 202111113357 A CN202111113357 A CN 202111113357A CN 113773074 B CN113773074 B CN 113773074B
Authority
CN
China
Prior art keywords
slat
powder
strontium titanate
textured ceramic
lanthanum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111113357.7A
Other languages
English (en)
Other versions
CN113773074A (zh
Inventor
秦梦婕
马俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Low Speed Aerodynamics Institute of China Aerodynamics Research and Development Center
Original Assignee
Low Speed Aerodynamics Institute of China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Low Speed Aerodynamics Institute of China Aerodynamics Research and Development Center filed Critical Low Speed Aerodynamics Institute of China Aerodynamics Research and Development Center
Priority to CN202111113357.7A priority Critical patent/CN113773074B/zh
Publication of CN113773074A publication Critical patent/CN113773074A/zh
Application granted granted Critical
Publication of CN113773074B publication Critical patent/CN113773074B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明适用于热电陶瓷技术领域,提供了一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件,钛酸锶镧基织构陶瓷的化学成分复合化学通式为[SLAT‑yMe]‑aS3T,其中,SLAT为Sr(1‑x)LaxTiO3,Me为过渡金属,S3T为Sr3Ti2O7,a为S3T与SLAT‑yMe的质量比,5wt%≦a≦20wt%,y为Me与SLAT的质量比,5wt%≦y<25wt%,0<x<1;在热力学温度大于等于930K时,垂直流延方向上的热电优值不低于0.4,所述过渡金属的平均粒径为20nm~60nm。本发明提供的钛酸锶镧基织构陶瓷具有取向性高、热电性能好的优势。

Description

一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件
技术领域
本发明涉及热电陶瓷领域,尤其是涉及一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件。
背景技术
随着人类社会的不断进步,环境问题和能源危机日益严重,由于人类使用的大部分化石能源最终都以废热的形式被排放掉,这些废热若能够被回收利用,将会进一步减少环境问题和能源问题,因此,废热能量的回收利用技术则主要用于解决上述问题。目前,热电能量转换技术是一种回收利用废弃能源的潜在方法,该技术主要通过热电材料的赛贝克效应将废热转换成电能,备受研究者们的青睐。利用热电材料制成的热电转换元件具有尺寸小、重量轻、无任何机械转动部件、工作时无噪声和振动、不需要冷媒等优点,因此,热电材料在民用、工业、军事和航空航天等领域有广泛的应用。
目前,研究较多的热电材料为合金半导体材料和氧化物材料。其中,合金半导体材料具有较大的热电优值ZT和较高的热电转换效率,如Bi2Te3、PbTe、SiGe等,室温和低温条件下应用效果较好,部分已经商业化应用。但合金半导体热电材料在大于600℃的高温下容易分解和氧化且性能不稳定,并且原材料价格较昂贵、常含有对人体和环境等有害的重金属。而氧化物热电材料具有良好的高温稳定性,如BiCuSeO、Ca3Co4O9、SrTiO3等,且具有制备过程简单、种类广泛、成本较低、无毒性、无环境污染等优点,在高温领域具有很大的应用潜力,因而得到人们的青睐。其中,具有立方钙钛矿结构的钛酸锶熔点为2080℃,可以应用于高温环境中,通过稀土元素La或Nb掺杂,可以实现从绝缘体到半导体的转变,且其本身具有赛贝克效应,是一种有应用潜力的n型高温氧化物热电材料。
热电优值ZT的计算公式为
Figure BDA0003274476450000021
其中,S是塞贝克系数或热电动势率,σ是电导率,T为绝对温度,κ是热导率。当ZT值增大时,热电转换效率也增大,通常通过降低电阻率以提高电导率σ,从而增大ZT值;或者,通过降低热导率κ,从而增大ZT值。然而,现有技术中,对于钛酸锶基热电材料的研究主要集中于两方面:一、通过氧化物掺杂,使材料的电阻率降低至10-3Ω·cm数量级,降低电阻率,二、通过纳米第二相复合,通过增强声子散射,使材料的热导率在高温下降低至2.1W/(m·K),降低热导率。但这两种方法均无法同时调控材料的电阻率和热导率,即无法同时通过提高电导率σ、减小热导率κ,实现热电优值ZT的增大。
晶粒择优取向生长的陶瓷材料被称之为织构陶瓷,与普通陶瓷相比,织构陶瓷通常具有明显的各向异性特征。在超导、热电、铁电、磁性等功能材料和结构陶瓷、金属等多晶材料中,都可以利用织构化来调控材料的性能。然而,目前的钛酸锶基织构陶瓷中晶粒随机排列成任意取向、材料热电性能不高,难以在航空航天、军事、能源环境、工业等领域进行应用。
综上所述,现有技术存在的技术问题在于:
1.现有技术中的钛酸锶热电材料无法实现材料电阻率和热导率的同时调控;
2.现有技术中钛酸锶基织构陶瓷中晶粒随机排列成任意取向、材料热电性能不高。
发明内容
本发明的目的是解决现有技术中钛酸锶基织构陶瓷热电性能不高、无法实现材料电阻率和热导率的同时调控的问题,提供一种取向性高、热电性能好的钛酸锶镧基织构陶瓷。
本发明提供了一种钛酸锶镧基织构陶瓷,其化学成分复合化学通式:[SLAT-yMe]-aS3T,其中,SLAT为Sr(1-x)LaxTiO3,Me为过渡金属,S3T为Sr3Ti2O7,a为S3T与SLAT-yMe的质量比,5wt%≦a≦20wt%,y为Me与SLAT的质量比,5wt%≦y<25wt%,0<x<1,在热力学温度大于等于930K时,所述织构陶瓷在垂直流延方向上的热电优值不低于0.4,所述过渡金属的平均粒径为20nm~60nm。
进一步的,0<x<0.2,18wt%<y<22wt%,所述过渡金属为银。
本发明还提供了一种钛酸锶镧基织构陶瓷的制备方法,包括如下步骤:
步骤S10:将SLAT-yMe基体粉料和助剂、溶剂按比例配料,然后进行球磨,得到基体浆料;在基体浆料中加入Sr3Ti2O7籽晶,球磨后得到流延浆料;
步骤S20:过滤流延浆料,采用流延法对过滤后的流延浆料进行流延,得到膜片;
步骤S30:对膜片进行叠压,得到素坯样品;
步骤S40:对素坯样品进行切割、排胶、烧结和退火,得到钛酸锶镧基织构陶瓷。
进一步的,烧结时的烧结温度为1300℃~1500℃,退火时的退火温度为1200℃~1350℃。
进一步的,所述退火包括:将钛酸锶镧基织构陶瓷与石墨粉分别放置于坩埚的两端,在氩气气氛中,进行退火热处理。
进一步的,步骤S10中,采用固相反应法制备所述SLAT-yMe基体粉料,制备步骤包括:对SLAT预烧粉进行球磨,烘干,得到干燥粉料;再对干燥粉料进行研磨,得到SLAT研磨粉料;将SLAT研磨粉料和Me粉按质量比为1:0.05~1:0.25进行混合,得到混合粉料;对混合粉料进行球磨,并烘干得到SLAT/Me干粉料;对SLAT/Me干粉料进行研磨,得到SLAT-yMe基体粉料。
进一步的,所述SLAT预烧粉采用固相反应法制备得到。
进一步的,步骤S10中,采用熔盐法制备所述Sr3Ti2O7籽晶,制备步骤包括:将SrCO3和TiO2按摩尔比为1.4:1~1.7:1进行配比,以KCl为熔盐介质,所述KCl的质量为SrCO3和TiO2的质量和,进行球磨,并烘干,得到混合干粉料;对混合干粉料进行研磨后,煅烧,并碾碎,得到Sr3Ti2O7煅烧粉料;对Sr3Ti2O7煅烧粉料进行反复洗涤,直至滴入AgNO3溶液时无白色沉淀产生后,烘干,得到Sr3Ti2O7籽晶。
进一步的,步骤S10中,所述助剂包括润滑剂、增塑剂、粘合剂中的一种或多种;所述溶剂包括乙醇、甲苯、异丙醇中的一种或多种。
本发明还提供了一种热电转换元件,包括所述钛酸锶镧基织构陶瓷,或包括利用所述钛酸锶镧基织构陶瓷的制备方法制备的钛酸锶镧基织构陶瓷。
本发明至少具有如下技术效果:
1.本发明得到的钛酸锶镧基织构陶瓷相比现有的钛酸锶基织构陶瓷具有高取向性,沿[100]c方向取向度高达89.1%;
2.本发明得到的钛酸锶镧基织构陶瓷的热电优值ZT表现出各向异性,在垂直流延方向上具有较高的ZT值,在热力学温度大于等于930K时,所述织构陶瓷在垂直流延方向上的热电优值不低于0.4。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明中钛酸锶镧基织构陶瓷制备方法的示意图;
图2是本发明中SLAT-yMe基体粉料制备方法的示意图;
图3是本发明中制备Sr3Ti2O7籽晶的示意图;
图4是本发明中烧结后织构陶瓷的XRD图谱;
图5是本发明中退火热处理后织构陶瓷的XRD图谱;
图6是本发明中织构陶瓷热电优值ZT图。
具体实施方式
以下的说明提供了许多不同的实施例、或是例子,用来实施本发明的不同特征。以下特定例子所描述的元件和排列方式,仅用来精简的表达本发明,其仅作为例子,而并非用以限制本发明。
本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1:
本发明实施例1提供了一种钛酸锶镧基织构陶瓷,其化学成分复合化学通式:[SLAT-yMe]-aS3T,其中,SLAT为Sr(1-x)LaxTiO3,Me为过渡金属,S3T为Sr3Ti2O7,a为S3T与SLAT-yMe的质量比,5wt%≦a≦20wt%,y为Me与SLAT的质量比,5wt%≦y<25wt%,0<x<1,在热力学温度大于等于930K时,所述织构陶瓷在垂直流延方向上的热电优值不低于0.4,所述过渡金属的平均粒径为20nm~60nm。
当Me与SLAT的质量比y小于5wt%时,钛酸锶镧基织构陶瓷的电导率σ提高不明显,使得热电优值增加不明显;当Me与SLAT的质量比y大于25wt%时,热导率κ过高导致电导率σ与热导率κ的比值减小,从而使得热电优值降低。金属电阻率低,复合纳米金属能够降低钛酸锶镧基织构陶瓷的电阻率,同时能够起到纳米第二相的作用,从而降低钛酸锶镧基织构陶瓷的热导率。
当S3T与SLAT-yMe的质量比a小于5wt%时,无法形成籽晶形貌;当S3T与SLAT-yMe的质量比a大于20wt%时,Sr3Ti2O7过剩,籽晶形貌变形大,导致织构陶瓷取向性降低、热电性能降低。
所述钛酸锶镧基织构陶瓷相比现有的钛酸锶基织构陶瓷具有高取向性,可以看出,所述钛酸锶镧基织构陶瓷在平行流延方向和垂直流延方向均具有很高的取向性,且沿[100]c方向取向度高达89.1%;同时,所述钛酸锶镧基织构陶瓷的热电优值ZT表现出各向异性,在垂直流延方向上具有较高的ZT值,在热力学温度大于等于930K时,所述织构陶瓷在垂直流延方向上的热电优值不低于0.4,较一般的n型氧化物电热材料具有优越的取向性和热电优值。
对于织构化的材料而言,其层状结构ab面内的电导率(σab)远大于沿c轴方向的电导率(σc),而两个方向上的塞贝克系数无明显的不同,这意味着晶粒取向生长的样品可能具有比晶粒随机排列的样品更大的功率因子PF;此外,层状结构由于沿c轴方向的界面增多,可以阻碍声子的传输,降低热导率,因此,织构化有望同时调控材料的电阻率和热导率,提升热电性能。
进一步的,0<x<0.2,18wt%<y<22wt%,所述过渡金属为银。
实施例2:
如图1所示,本发明实施例2提供了一种钛酸锶镧基织构陶瓷的制备方法,包括如下步骤:
步骤S10:将SLAT-yMe基体粉料和助剂、溶剂按比例配料,然后进行球磨,得到基体浆料;在基体浆料中加入Sr3Ti2O7籽晶,球磨后得到流延浆料;
步骤S20:过滤流延浆料,采用流延法对过滤后的流延浆料进行流延,得到膜片;
步骤S30:对膜片进行叠压,得到素坯样品;
步骤S40:对素坯样品进行切割、排胶、烧结和退火,得到钛酸锶镧基织构陶瓷。
Sr3Ti2O7具有Ruddlesden-Popper(RP)型钙钛矿结构,由SrO层和钙钛矿结构的SrTiO3层沿c轴交替排列而成。Sr3Ti2O7结构(001)面的晶格参数为0.3905nm。同时,制备钛酸锶镧基织构陶瓷时,Sr3Ti2O7的组分与SLAT-yMe基体粉料的组分相同,避免了杂质离子的引入;并且Sr3Ti2O7的热导率低,有助于改善基体材料的性能。
反应模板籽晶生长法(RTGG,Reactive Templated Grain Growth)是制备高度择优取向陶瓷材料的有效手段。与其他织构陶瓷的制备方法相比,RTGG法对设备的要求简单,容易制备大尺寸且组分均匀的高质量陶瓷。并且,对于对称性较高的钙钛矿结构陶瓷材料来说,采用模板籽晶生长法对普通基体材料进行织构化更加适宜。
通过烧结后退火对钛酸锶镧基织构陶瓷进行热处理,消除了陶瓷内部的热应力,降低了材料的电阻率,提高了热电优值ZT。
通过200目的滤网进行过滤,目的是去除气泡。
本实施例中钛酸锶镧基织构陶瓷制备过程中使用的设备均为工厂现有的电子元件生产设备,无需另外购置新设备即可完成制备,整个制备工艺简单易行。
进一步的,烧结时的烧结温度为1300℃~1500℃,退火时的退火温度为1200℃~1350℃。
当退火温度高于1350℃时,会出现晶粒异常长大现象,导致材料密度降低,使得材料的热电转换性能下降;当退火温度低于1200℃时,无法实现电阻率的降低,同样无法实现提高热电性能的目的。
进一步的,所述退火包括:将钛酸锶镧基织构陶瓷与石墨粉分别放置于坩埚的两端,将放置石墨粉的一端放置于退火设备的进气口处,在氩气的混合气氛中,进行退火热处理。
退火过程中,高温下,石墨粉会产生还原性气体,如:C蒸气、CO、H2。同时,将石墨粉放置于退火设备进气口,有利于利用进气气流将生成的还原性气体吹至样品处,与样品充分反应。
进一步的,如图2所示,步骤S10中,采用固相反应法制备所述SLAT-yMe基体粉料,制备步骤包括:对SLAT预烧粉进行球磨,烘干,得到干燥粉料;再对干燥粉料进行研磨,得到SLAT研磨粉料;将SLAT研磨粉料和Me粉按质量比为1:0.05~1:0.25进行混合,得到混合粉料;对混合粉料进行球磨,并烘干得到SLAT/Me干粉料;对SLAT/Me干粉料进行研磨,得到SLAT-yMe基体粉料。
进一步的,所述SLAT预烧粉采用固相反应法制备得到。
进一步的,如图3所示,步骤S10中,采用熔盐法制备所述Sr3Ti2O7籽晶,制备步骤包括:将SrCO3和TiO2按摩尔比为1.4:1~1.7:1进行配比,以KCl为熔盐介质,所述KCl的质量为SrCO3和TiO2的质量和,进行球磨,并烘干,得到混合干粉料;对混合干粉料进行研磨后,煅烧,并碾碎,得到Sr3Ti2O7煅烧粉料;对Sr3Ti2O7煅烧粉料进行反复洗涤,直至滴入AgNO3溶液时无白色沉淀产生后,烘干,得到Sr3Ti2O7籽晶。
当SrCO3和TiO2按摩尔比小于1.4:1时,不利于片层状Sr3Ti2O7的生成;当SrCO3和TiO2按摩尔比大于1.7:1时,会导致生成的片层状Sr3Ti2O7中含有较多的SrCO3,影响了Sr3Ti2O7片层结构的稳定性。
熔盐法具有设备要求低、反应时间短、反应温度较低、籽晶形貌容易控制等优点,且工艺简单,易于工业化生产,是制备片状籽晶的比较理想的方法。熔盐法中,由于原料在熔盐中进行的是拓扑化学反应,因此,与固相法相比,熔盐法具有反应温度低,合成的粉体尺寸和形貌可控且分散性好的优势。
进一步的,步骤S10中,所述助剂包括润滑剂、增塑剂、粘合剂中的一种或多种;所述溶剂包括乙醇、甲苯、异丙醇中的一种或多种。
实施例3:
本发明实施例3还提供了一种热电转换元件,包括所述钛酸锶镧基织构陶瓷,或包括利用所述钛酸锶镧基织构陶瓷的制备方法制备的钛酸锶镧基织构陶瓷。
实施例4:
一种钛酸锶镧基织构陶瓷的制备方法,包括如下步骤:
步骤一、固相反应法制备Sr(1-x)LaxTiO3预烧粉:
称取原料:按照Sr元素:La元素:Ti元素的摩尔比为(1-x):x:1分别称取SrCO3、La2O3和TiO2,并按所需比例加入助烧剂,助烧剂的加入量为Sr(1-x)LaxTiO3的5wt%~10wt%,助烧剂可以促进烧结,降低烧结温度;
球磨:将称取的原料放入球磨罐中,以无水乙醇作为球磨介质,以氧化锆球作为磨球,球磨6h~24h,得到球磨后的混合湿料;
烘干:将球磨后的湿料置于温度为45℃~65℃的烘箱内烘干,得到干燥的粉料;
研磨:将干燥粉料置于玛瑙研钵中研磨,得到研磨后的粉料;
煅烧:然后将研磨后的粉料置于氧化铝(Al2O3)坩埚中,加盖密封,在空气气氛1150℃~1250℃保温2h~4h进行煅烧;
研磨:将煅烧后的块体粉料置于玛瑙研钵中研磨,得到含有Bi2O3的钙钛矿相Sr0.9La0.1TiO3预烧粉。
步骤二、制备SLAT-yMe基体粉料:
球磨-烘干:对Sr(1-x)LaxTiO3预烧粉进行球磨,无水乙醇作为球磨介质,氧化锆球作为磨球,在球磨罐中球磨24h~48h;再在45℃~65℃温度下烘干球磨湿料,得到干燥粉料;
研磨:在玛瑙研钵中对干燥粉料进行研磨,得到研磨粉料;
混合:将研磨粉料与平均粒径为20nm~60nm的Me粉按质量比为1:y进行混合,得到混合粉料;
研磨-烘干:对混合粉料进行球磨,无水乙醇作为球磨介质,氧化锆球作为磨球,在球磨罐中球磨2h~6h;再在45℃~65℃温度下烘干SLAT/Me干粉料;
研磨:在玛瑙研钵中对SLAT/Me干粉料进行研磨,得到基体粉料。
步骤三、Sr3Ti2O7模板籽晶的制备:
研磨:SrCO3:TiO2的摩尔比为1.4:1~1.7:1,以KCl为熔盐介质,熔盐介质的质量与SrCO3和TiO2的总质量相同,共同球磨12h~24h;并在45℃~65℃温度下烘干,得到混合干粉料;
研磨-煅烧-碾碎:在玛瑙研钵对混合干粉料进行研磨;然后,在Al2O3坩埚中加盖密封煅烧,煅烧气氛为空气,煅烧温度为1250℃~1350℃,煅烧时间为2h~4h;碾碎上述煅烧产物,得到煅烧粉料;
洗涤-烘干:用70℃~100℃的水反复洗涤煅烧粉料,直至滴入AgNO3溶液时无白色沉淀;然后,在70℃~100℃下烘干,得到片层状Sr3Ti2O7籽晶。
步骤四、制备钛酸锶镧基织构陶瓷:
球磨-混合-干燥:溶剂中加入SLAT-yMe基体粉料、润滑剂、增塑剂和粘合剂,采用氧化锆球球磨6h~12h;再加入Sr3Ti2O7模板籽晶,球磨6h~12h,得到流延浆料;
流延:过滤流延浆料;对流延浆料进行流延,流延速度为20cm/min~80cm/min、流延刮刀与底膜之间的距离为30μm~200μm,流延后静置4h~12h,得到膜片;
划片-叠压:对膜片进行划片,得到直径为20mm~40mm的圆片;将圆片叠放入模具内,模具内径与圆片直径相同,放入60℃~90℃的烘箱中加热30min~60min;取出后,采用电动压片机进行叠压,120MPa~200MPa,30min~60min,得到叠压后的素坯样品;
切割-排胶:对叠压后的素坯样品进行切割,得到小圆片(直径为15mm~23mm,厚度为2mm~4mm)和小方柱((18mm~22mm)×(3mm~5mm)×(2mm~4mm)),为了研究SLAT-yMe基织构陶瓷热电性能的各向异性,将叠压后的样品切割成平行和垂直于流延方向上的小圆片和小方柱;然后,采用低温马弗炉进行排胶,升温速率为0.2℃/min~0.5℃/min,由室温升温至550℃~650℃,保温4h~8h;排胶后,以降温速率为1.0℃/min~2.0℃/min的条件下降至室温,得到排胶后的素坯样品;
烧结-退火:对排胶后的素坯样品进行烧结,在Ar气气氛中、高温管式气氛炉、气体流速为20ml/min~50ml/min、烧结温度为1300℃~1500℃,保温时间为2h~24h,得到烧结后的样品;将烧结后的样品放入Ar气+石墨(Ar+C)气氛中进行退火热处理,具体的,将石墨粉放置在Al2O3坩埚的一端,样品放在另一端,然后将坩埚放入高温管式气氛炉中,保证盛放石墨粉的一端处于进气口;Ar气的气体流速为20ml/min~50ml/min,热处理温度为1200℃~1350℃,保温时间为6h~12h。
实施例5
本发明实施例5给出了钛酸锶镧基织构陶瓷的XRD测试和热电性能测试。
具体的,将烧结后的织构陶瓷经打磨、抛光后进行XRD测试,如图4所示;退火热处理后的织构陶瓷经打磨、抛光后进行XRD测试,如图5所示。采用荷兰分析仪器公司(DutchPanalytical Company)的X’Pert PRO衍射仪进行XRD测试,并分析样品的物相组成和计算织构度f(Lotgering因子),织构度f的计算公式如下:
Figure BDA0003274476450000111
Figure BDA0003274476450000112
Figure BDA0003274476450000113
其中,I(h00)表示(h00)衍射峰的相对强度,I(hkl)表示(hkl)晶面衍射峰的相对强度,P0表示晶粒自由取向生长即非织构陶瓷的P值。
经计算得到,在平行流延方向上,烧结后的织构度f为89.1%,退火后的织构度f为84.3%,织构度f的数值越大,表明织构度越高,晶粒取向生长程度越高。
实施例6
本发明实施例6对钛酸锶镧基织构陶瓷进行了热电性能测试,如图6所示。可以看出,钛酸锶镧基织构陶瓷的热电优值ZT在平行流延方向和垂直流延方向上表现出各向异性,在垂直流延方向上具有较高的ZT值;并且在热力学温度为930~1100K时,所述织构陶瓷在垂直流延方向上的热电优值不低于0.4,且本领域技术人员均知晓:热电优值与温度呈正相关,因此,本发明所得到的织构陶瓷在热力学温度大于等于930K时,在垂直流延方向上的热电优值不低于0.4。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种钛酸锶镧基织构陶瓷,其特征在于,其化学成分复合化学通式:[SLAT-yMe]-aS3T,其中,SLAT为Sr(1-x)LaxTiO3,Me为过渡金属,S3T为Sr3Ti2O7,a为S3T与SLAT-yMe的质量比,5wt%≦a≦20wt%,y为Me与SLAT的质量比,5wt%≦y<25wt%,0<x<1;在热力学温度大于等于930K时,垂直流延方向上的热电优值不低于0.4,所述过渡金属的平均粒径为20nm~60nm。
2.如权利要求1所述的一种钛酸锶镧基织构陶瓷,其特征在于,0<x<0.2,18wt%<y<22wt%,所述过渡金属为银。
3.如权利要求1或2所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,包括如下步骤:
步骤S10:将SLAT-yMe基体粉料和助剂、溶剂按比例配料,然后进行球磨,得到基体浆料;在基体浆料中加入Sr3Ti2O7籽晶,球磨后得到流延浆料;其中,Me为过渡金属,y为Me与SLAT的质量比;
步骤S20:过滤流延浆料,采用流延法对过滤后的流延浆料进行流延,得到膜片;
步骤S30:对膜片进行叠压,得到素坯样品;
步骤S40:对素坯样品进行切割、排胶、烧结和退火,得到钛酸锶镧基织构陶瓷。
4.如权利要求3所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,烧结时的烧结温度为1300℃~1500℃,退火时的退火温度为1200℃~1350℃。
5.如权利要求3或4任一项所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,所述退火包括:将钛酸锶镧基织构陶瓷与石墨粉分别放置于坩埚的两端,在氩气气氛中,进行退火热处理。
6.如权利要求3所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,步骤S10中,采用固相反应法制备所述SLAT-yMe基体粉料,制备步骤包括:对SLAT预烧粉进行球磨,烘干,得到干燥粉料;再对干燥粉料进行研磨,得到SLAT研磨粉料;将SLAT研磨粉料和Me粉按质量比为1:0.05~1:0.25进行混合,得到混合粉料;对混合粉料进行球磨,并烘干得到SLAT/Me干粉料;对SLAT/Me干粉料进行研磨,得到SLAT-yMe基体粉料。
7.如权利要求5所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,所述SLAT预烧粉采用固相反应法制备得到。
8.如权利要求3所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,步骤S10中,采用熔盐法制备所述Sr3Ti2O7籽晶,制备步骤包括:将SrCO3和TiO2按摩尔比为1.4:1~1.7:1进行配比,以KCl为熔盐介质,所述KCl的质量为SrCO3和TiO2的质量和,进行球磨,并烘干,得到混合干粉料;对混合干粉料进行研磨后,煅烧,并碾碎,得到Sr3Ti2O7煅烧粉料;对Sr3Ti2O7煅烧粉料进行反复洗涤,直至滴入AgNO3溶液时无白色沉淀产生后,烘干,得到Sr3Ti2O7籽晶。
9.如权利要求3所述的一种钛酸锶镧基织构陶瓷的制备方法,其特征在于,步骤S10中,所述助剂包括润滑剂、增塑剂、粘合剂中的一种或多种;所述溶剂包括乙醇、甲苯、异丙醇中的一种或多种。
10.一种热电转换元件,其特征在于,包括权利要求1-2任意一项所述的钛酸锶镧基织构陶瓷,或包括利用权利要求3-8任一项制备方法制备的钛酸锶镧基织构陶瓷。
CN202111113357.7A 2021-09-23 2021-09-23 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件 Active CN113773074B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111113357.7A CN113773074B (zh) 2021-09-23 2021-09-23 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111113357.7A CN113773074B (zh) 2021-09-23 2021-09-23 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件

Publications (2)

Publication Number Publication Date
CN113773074A CN113773074A (zh) 2021-12-10
CN113773074B true CN113773074B (zh) 2022-11-08

Family

ID=78852828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111113357.7A Active CN113773074B (zh) 2021-09-23 2021-09-23 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件

Country Status (1)

Country Link
CN (1) CN113773074B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798215A (zh) * 2010-04-16 2010-08-11 山东大学 镧和镝共掺杂SrTiO3陶瓷材料及其制备方法
CN101913865B (zh) * 2010-08-31 2012-08-29 哈尔滨工业大学 一种制备织构化锆钛酸铅陶瓷的方法
CN103214238B (zh) * 2013-04-03 2014-08-06 湖北大学 一种钛酸锶钡基介电温度稳定型陶瓷电容器材料的制备方法
CN103664164B (zh) * 2013-12-04 2015-06-03 西北工业大学 一种高织构度钛酸锶热电陶瓷及其制备方法
CN103613382B (zh) * 2013-12-04 2015-04-22 天津大学 钛酸铋钠-钛酸钡-钛酸铋钾无铅压电织构陶瓷及其制备方法
CN108178649B (zh) * 2018-01-16 2021-01-19 昌吉学院 碳纳米管/钛酸锶镧复合热电陶瓷及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity;Mengjie Qin;《Acta Materialia》;20181013;第76-89页 *

Also Published As

Publication number Publication date
CN113773074A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
Gao et al. Fabrication, dielectric, and thermoelectric properties of textured SrTiO3 ceramics prepared by RTGG method
US8628680B2 (en) Reduced oxides having large thermoelectric ZT values
JP4808099B2 (ja) カルシウム・コバルト層状酸化物単結晶からなる熱電材料の製造方法
US8217256B2 (en) Thermoelectric material, method for producing the same, and thermoelectric converter
JP4867618B2 (ja) 熱電変換材料
Qin et al. Fabrication and high-temperature thermoelectric properties of Ti-doped Sr0. 9La0. 1TiO3 ceramics
CN103664164B (zh) 一种高织构度钛酸锶热电陶瓷及其制备方法
JP4168628B2 (ja) 熱電変換材料及びその使用方法
Tian et al. Power factor enhancement induced by Bi and Mn co-substitution in NaxCoO2 thermoelectric materials
Han et al. Microstructure and thermoelectric properties of La0. 1Dy0. 1SrxTiO3 ceramics
JP3493654B2 (ja) 熱電素子材料及びその製造方法、並びに、Co3O4板状結晶及びその製造方法
JP2006062951A (ja) 熱電変換材料およびその製造方法
Qin et al. Microstructure and enhanced seebeck coefficient of textured Sr3Ti2O7 ceramics prepared by RTGG method
US9444026B2 (en) Reduced oxides having large thermoelectric ZT values
US9076567B2 (en) Reduced oxides having large thermoelectric ZT values
CN113773074B (zh) 一种钛酸锶镧基织构陶瓷、制备方法和热电转换元件
JP4608940B2 (ja) 熱電材料
CN114315345B (zh) 一种具有宽温稳定换能系数的高温压电能量收集陶瓷材料及制备
JP2009004542A (ja) 熱電材料及び熱電材料の製造方法
JP2003012327A (ja) 層状アルカリチタン酸塩熱電酸化物材料
JP3896480B2 (ja) 複合酸化物焼結体の製造方法
JP4139884B2 (ja) 金属酸化物焼結体の製造方法
JP2004087537A (ja) p型熱電変換材料及びその製造方法
JP4013245B2 (ja) 結晶配向セラミックス及びその製造方法、結晶配向セラミックス製造用板状粉末、並びに熱電変換素子
Nag et al. High temperature transport properties of co-substituted Ca1− xLnxMn1− xNbxO3 (Ln= Yb, Lu; 0.02≤ x≤ 0.08)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant