CN113767448A - 用于处理气体的等离子反应器 - Google Patents

用于处理气体的等离子反应器 Download PDF

Info

Publication number
CN113767448A
CN113767448A CN202080032556.2A CN202080032556A CN113767448A CN 113767448 A CN113767448 A CN 113767448A CN 202080032556 A CN202080032556 A CN 202080032556A CN 113767448 A CN113767448 A CN 113767448A
Authority
CN
China
Prior art keywords
plasma
gas
vortex
waveguide
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080032556.2A
Other languages
English (en)
Inventor
S·A·麦克勒兰德
G·S·莱纳德三世
具宰模
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amarante Technologies Inc
ReCarbon Inc
Original Assignee
Amarante Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/752,689 external-priority patent/US10832893B2/en
Application filed by Amarante Technologies Inc filed Critical Amarante Technologies Inc
Publication of CN113767448A publication Critical patent/CN113767448A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0425Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0488Optical or mechanical part supplementary adjustable parts with spectral filtering
    • G01J1/0492Optical or mechanical part supplementary adjustable parts with spectral filtering using at least two different filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32229Waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • H01J37/32844Treating effluent gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/461Microwave discharges
    • H05H1/4622Microwave discharges using waveguides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1502Mechanical adjustments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Semiconductors (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种等离子体产生系统(10),包括:用于传输微波能量的波导(20);设置在波导(20)内以限定等离子体腔的内壁(40),其中等离子体(46)通过使用微波能量在等离子体腔内生成;第一进气口(44)安装在第一次的波导(20)和配置为引入第一气体至等离子腔内,在等离子腔内使用第一气体产生涡流(45),第一气体入口(44)具有一个孔(32),由等离子体处理过(46)的气体穿过该孔(32)离开等离子腔;和离子体稳定器(38),该离子体稳定器(38)具有圆形中空圆柱体形状并安装在波导(20)的第二侧,该等离子体稳定器(38)的纵向方向与第一涡旋流(45)的旋转轴平行。

Description

用于处理气体的等离子反应器
技术领域
本发明涉及等离子体生成器,更具体地说,涉及使用微波等离子体处理气体的装置。
背景技术
近年来,微波技术已应用于生成各种类型的等离子体。通常,用作等离子体源的微波放电,是通过将微波能量连接到包含待处理气体的放电室中来实现的。操作传统微波等离子体系统的困难之一,包括以稳定的方式维持等离子体。不稳定的等离子体,由于反应器几何形状、进气歧管、腔室设计或气体流速等不理想,可能导致气体处理或改造条件低于最佳条件,甚至可能导致等离子体自行熄灭或破坏反应器。
因此,需要一种微波等离子体系统,该微波等离子体系统具有改善的等离子体稳定性,从而产生更高效率的反应器和产量,以实现更好的经济性。
发明内容
根据本发明的一个方面,一种等离子体生成系统包括:波导,该波导用于传输微波能量;内壁,该内壁设置在波导内以限定等离子体腔,其中等离子体在等离子体腔内通过使用微波能量产生;第一气体入口,该第一气体入口安装在波导的第一侧上,配置为将第一气体引入等离子体腔中并使用第一气体在等离子体腔中产生第一涡流,第一气体入口具有孔,由等离子体处理的气体穿过该孔离开等离子体腔;以及等离子体稳定器,该等离子体稳定器具有圆形中空圆柱体的形状并安装在波导管的第二侧,该等离子体稳定器的轴向方向与第一涡流的旋转轴平行。
根据本发明的另一个方面,一种等离子体生成系统包括:波导,该波导用于传输微波能量;内壁,该内壁设置在波导内以限定等离子体腔,其中等离子体在等离子体腔内通过使用微波能量产生;第一气体入口,该第一气体入口安装在波导的第一侧上,配置为将第一气体引入等离子体腔中并使用第一气体在等离子体腔中产生第一涡流,第一气体入口具有孔,由等离子体处理的气体穿过该孔离开等离子体腔;以及等离子体稳定器,该等离子体稳定器具有圆形中空圆柱体形状并安装在第一气体入口上,该等离子体稳定器的轴向与第一涡流的旋转轴平行。
附图说明
图1示出了根据本公开实施例的等离子体生成系统的示意图。
图2示出了根据本公开的实施例的图1沿线2-2截取的的等离子体室的截面图。
图3示出了根据本公开的实施例的顺流入口的透视图。
图4示出了根据本公开的实施例的图3沿着线4-4截取的顺流入口的剖视图。
图5示出了根据本公开的实施例的逆流入口的透视图。
图6示出了根据本公开的实施例的图5沿着线6-6截取的逆流入口的剖视图。
图7示出了根据本公开的实施例的内部涡流的透视图。
图8示出了根据本公开的实施例的外部涡流的透视图。
图9示出了根据本公开的实施例的等离子体室的截面图。
图10示出了根据本公开的实施例的内部涡流的透视图。
图11示出了根据本公开的实施例的等离子体室的截面图。
图12示出了根据本公开的实施例的外部涡流的透视图。
图13示出了根据本公开的实施例的等离子体室的截面图。
图14A示出了根据本公的开实施例的中空圆柱体的透视图。
图14B示出了根据本公开的实施例的中空圆柱体的透视图。
具体实施方式
在以下描述中,出于解释的目的,阐述了具体细节以提供对本公开的理解。然而,对于本领域技术人员来说,显而易见的是,可以在没有这些细节的情况下实施本公开。此外,本领域技术人员将认识到,下面描述的本公开的实施例可以通过各种方式实现。
图中所示的组件或模块是本公开的示例性实施例的说明,并且本公开的实施例意在避免本公开模糊。还应当理解,在整个讨论中,组件可以描述为单独的功能单元,该单独的功能单元可以包括子单元,但是本领域技术人员能够认识到,各个组件或各个组件的部分可以被分成单独的组件或者可以被集成在一起,包括集成在单个系统或组件中。应当注意,本文讨论的功能或运行可以组件而执行。
说明书中对“一个实施例”、“优选实施例”、“实施例”或“一些实施例”的引用表示结合实施例描述的特定特征、结构、特性或功能包括在本公开的至少一个实施例中,并且可以在多于一个实施例中。此外,上述短语在说明书中不同地方出现不一定指代相同一个或多个实施例。
在说明书的不同地方使用某些术语是为了说明,而这些术语的使用不应解释为限制。术语“包括”、“包括有”、“含有”和“包含”应理解为开放式术语,并且以下的任何列表都是示例,并不意味着局限于所列出的项目。
图1(英语缩写“FIG.1”)示出了根据本公开一些实施例的等离子体生成系统10的示意图。如图所示,等离子体生成系统10包括:微波腔/波导20,该微波腔/波导20具有中空管形状;等离子体室22,该等离子体室22连接到波导20;和微波供应单元12,该微波供应单元12连接到波导20,并可以通过操作微波波导20向等离子体室22提供微波能量。在一些实施例中,等离子体室22接收微波能量,并利用接收的微波能量处理气体。在一些实施例中,气罐26通过气体管线24向等离子体室22提供气体,气罐30通过气体管线28向等离子体室22提供气体。
微波供应单元12向等离子体室22提供微波能量,并且包括:微波发生器14,该微波发生器14用于产生微波;电源16,该电源16用于向微波发生器14供电;以及调谐器18,该调谐器18用于减少从等离子体室22反射并向微波发生器14传播的微波能量。在一些实施例中,微波供应单元12可以包括其他部件,例如具有隔离器,该隔离器用于耗散向微波发生器14传播的反射微波能量的虚拟负载,和用于将反射微波能量引导至虚拟负载的循环器,以及设置在波导20端部的滑动短路。
图2示出了根据本公开实施例的图1沿线2-2中的等离子体室22(即,沿着平行于纸的平面切割)截取的截面图。如图所示,等离子体室22包括:内壁40;等离子体稳定器38;顺流入口42,该顺流入口42连接到气体管线24并配置为将顺流引入等离子体室;和逆流入口44,该逆流入口44连接到气体管线28并配置为将逆流引入等离子体室。这里,术语等离子体腔指的是由内壁40、波导20、顺流入口42和逆流入口44包围的封闭空间,其中逆流气体和顺流通过经由波导20传输的微波能量在等离子体腔内被处理/重整。
在一些实施例中,内壁40由对微波能量透明的材料构成,例如石英或陶瓷。在一些实施例中,内壁40由任何适合均匀流动、热变电阻、耐化学性和电磁透明度所需的其他介电材料构成。在一些实施例中,内壁40具有优选地但不限于中空圆柱体的形状。
图3示出了根据本公开的一些实施例的顺流入口42的透视图。图4示出了根据本公开实施例的沿着线4-4截取的顺流入口42的横截面视图。如图所示,顺流入口42具有孔/适配器47,该孔/适配器47用于连接到气体管线24,和形成在顺流入口42壁中的一个或多个气体通道48。在一些实施例中,气体通道48的出口位于等离子体稳定器38内部,使得等离子体稳定器38利用离开气体通道48的气流形成内部涡流43。在一些实施例中,等离子体稳定器38的内径可以变化,以调节内部涡流43的外径。在一些实施例中,如上所述,等离子体稳定器38可以具有中空圆柱体的形状,并且与顺流入口42同心设置。
在一些实施例中,任一气体通道48被布置成当顺流经由气体通道48进入等离子体腔时,顺流施加螺旋运动。在一些实施例中,任一气体通道48可以是弯曲的,以增强顺流的涡流。在一些实施例中,顺流入口42由任何合适的材料构成,例如陶瓷,使得入口与波导20电绝缘并承受来自等离子体46的热能。
在一些实施例中,等离子体稳定器38由对微波能量透明的材料构成,并且优选由与内壁40相同的材料构成。在一些实施例中,等离子体稳定器38附接到波导20,突出到等离子体腔内,其中等离子体稳定器38的轴向平行于y轴。在一些实施例中,如上所述,内壁40可以具有中空圆柱体的形状,并且等离子体稳定器38可以与内壁40同心安装。在一些实施例中,等离子体稳定器38内的顺流形成内部涡流43,并朝着波导20的另一端前进,更具体地说,朝着气体出口32前进。图7示出了根据本公开实施例的内部涡流43的透视图。如图所示,顺流(或等效的内部涡流)以螺旋运动的方式沿内壁40的长度移动,直到内部涡流离开气体出口32。
在一些实施例中,当等离子点火器(图2中未示出)点燃等离子体羽流(或简称为等离子体)46时,等离子体46由微波发生器14传输的微波能量维持。在一些实施例中,等离子体46位于内部涡流43内,使得内部涡流43的气体颗粒穿过等离子体46。在一些实施例中,等离子体稳定器38决定了内部涡流43的外径,防止顺流在通过气体出口32离开等离子体腔之前绕过等离子体46。在一些实施例中,等离子体稳定器38通过将内部涡流43与外部涡流45分开来帮助保持等离子体46稳定。
图5示出了根据本公开实施例的逆流入口44的透视图。图6示出了根据本公开实施例的逆流入口44沿线6-6截取的截面图。如图所示,逆流入口44具有孔/适配器52,该孔/适配器52用于连接到气体管线28,形成气体出口32的孔,以及形成在逆流入口44的壁中的一个或多个气体通道51。在一些实施例中,任一气体通道51布置成当逆流经由气体通道51进入等离子体腔时,将螺旋运动施加逆流。在一些实施例中,任一气体通道51可以是弯曲的,以增强逆流的涡流。在一些实施例中,逆流入口44优选但不限于由镍合金构成,例如铬镍铁合金或哈氏合金。
在一些实施例中,离开逆流入口44的逆流朝着内壁40前进,然后以螺旋运动沿着内壁40朝着波导20的另一端向上前进(y轴方向)。随后,逆流反转流动方向,向下前进并形成外部涡流45。在一些实施例中,外部涡流45的旋转轴基本上平行于y轴。图8示出了根据本公开实施例的外部涡流45的透视图。如图所示,外部涡流45具有中空圆柱形状,并且具有两个流动区域:内部向下流动区域45-1和外部向上流动区域45-2。在一些实施例中,内部涡流43设置在外部涡流45的中间中空部分,并且被内部向下流动区域45-1包围。需注意的是,来自顺流入口42的气体与来自逆流入口44的气流混合,形成内部涡流43。
在一些实施例中,外部涡流45围绕内部涡流43,从而保护内壁40免受等离子体46的影响。在一些实施例中,当外部涡流45以螺旋运动沿着内壁40向上前进时,离开逆流入口44的逆流可具有环境温度并从内壁40获取热能。
在一些实施例中,如上所述,等离子体稳定器38的内径决定了内部涡流43的径向尺寸。这样,在一些实施例中,可以调节等离子体稳定器38的内径,使得外部涡流45围绕内部涡流43,并以稳定的方式保持内部涡流43的流动状态,从而稳定等离子体,并提高产量和效率。
在一些实施例中,等离子体46用于将入口气体重整为所需的产品气体,其中入口气体通过顺流入口42和逆流入口44引入等离子体腔内。在一些实施例中,离开顺流入口42的内部涡流的气体成分包括CO2、CH4和O2,离开气体出口32的气体包括CO和H2以及顺流气体的未反应部分。在一些实施例中,顺流的优选分布是进入等离子体室22的总流量的质量5%-95%。在一些实施例中,逆流可以具有与顺流相同的气体成分。在一些替代实施例中,顺流可以具有不同于逆流的气体成分。此外,顺流(和/或逆流)的气体成分可以在操作期间改变。例如,顺流可以包括氩气块,以帮助等离子体46的点燃。在一些实施例中,可以调节顺流和逆流的气体成分和流速,以提高等离子体室22中化学反应的等离子体稳定性和效率。
图9示出了根据本公开实施例的等离子体室122的截面图。如图所示,等离子体室122类似于图2中的等离子体室22,不同之处在于等离子体稳定器138设置在逆流入口144上,突出到等离子体腔内。在一些实施例中,等离子体稳定器138位于外部涡流145内部,并且优选地将外部涡流143的内部向上流动区域(类似于45-1)与外部涡流143的外部向下流动区域(类似于45-2)分开,即,等离子体稳定器138位于外部涡流143的内部和外部流动区域之间的边界处。
如图所示,等离子体室122的部件包括:内壁140;波导120;顺流入口142和逆流入口144,其中这些部件分别具有与其对应部件相似的结构和功能。与等离子体室22不同,顺流的径向尺寸不受等离子体稳定器138的内径控制;相反,内部涡流143的径向尺寸由离开顺流入口142的顺流的流速决定。因此,如图10所示,内部涡流143可以沿着纵向方向(y轴)具有基本均匀的径向尺寸。在一些实施例中,外部涡流145具有与图8中的外部涡流45相似的几何形状。
在一些实施例中,等离子体稳定器138位于外部涡流145内部,并且在操作期间抑制外部涡流145的内部向上流动区域(类似于45-1)的径向尺寸的波动,从而稳定内部涡流143的整体流动状态,并且进而稳定等离子体146。
图11示出了根据本公开实施例的等离子体室222的截面图。图12示出了根据本公开实施例的外部涡流245的透视图。如图所示,等离子体室222类似于图2中的等离子体室22,不同之处在于等离子体室222不包括任何顺流的入口。这样,等离子体室222仅在等离子体腔内部产生外部涡流245,其中外部涡流245包括内部向下流动区域245-1和外部向上流动区域245-2。
如图所示,等离子体246保持在外部涡流245内,更具体地,外部涡流245的内部向下流动部分245-1。在一些实施例中,等离子体246对外部涡流245的内部向下流动部分245-1中的气体颗粒处理/重整,并且重整的气体离开气体出口,该气体出口在逆流入口244中形成。
在一些实施例中,等离子体稳定器238的高度(即沿y轴的长度)影响外部涡流245的高度。虽然不受理论的限制,但是等离子体稳定器238似乎抑制了等离子体腔中流动状态的波动,从而稳定了外部涡流245和在外部涡流245内部形成的等离子体246。
图13示出了根据本公开实施例的等离子体室322的截面图。如图所示,等离子体室322类似于图9中的等离子体室122,不同之处在于,等离子体室322不包括任何顺流的入口。在一些实施例中,等离子体稳定器338位于外部涡流345内部,该外部涡流345类似于外部涡流245,并且优选地将外部涡流345的内部向上流动区域(类似于245-1)与外部涡流345的外部向下流动区域(类似于245-2)分开,即,等离子体稳定器338位于外部涡流345的内部和外部流动区域之间的边界处。
在一些实施例中,等离子体稳定器338位于外部涡流345内部,并且在操作期间抑制外部涡流345的内部向上流动区域的径向尺寸的波动,从而稳定外部涡流345的整体流动状态,并且进而稳定等离子体346。
在一些实施例中,图1-13中的内部和外部涡流的涡流运动增强了等离子体腔中流动状态的稳定性。在一些实施例中,图1-13中的等离子体室中的一个或多个部件可以被螺纹或翅片化,以进一步将涡流运动施加涡流。例如,外部涡流45与内壁40的内表面直接接触,并且同样地,内壁40的内表面可以是有螺纹的或有翅片的,以施加外部涡流螺旋运动。在另一个例子中,等离子体稳定器38与内部涡流43直接接触,因此,等离子体稳定器38的内表面可以是有螺纹的或有翅片的,以将螺旋运动施加内部涡流。图14A示出了根据本公开实施例的中空圆柱体400的透视图。如图所示,中空圆柱体400的内表面包括一个或多个凹槽(或翅片)402,以在气体沿着圆柱体的内表面流动时施加气体螺旋运动。在一些实施例中,圆柱体400可以用作图1-13中的等离子体稳定器和/或内壁。
在一些实施例中,等离子体稳定器(例如338)位于外部涡流(例如345)内部,因此,等离子体稳定器338的内表面和外表面都可以螺纹或翅片化,以进一步施加外部涡流345螺旋运动。图14B示出了根据本公开实施例的中空圆柱体420的透视图。如图所示,中空圆柱体420的内表面和外表面都包括一个或多个凹槽(或翅片)422,以在气体沿着圆柱体的内表面和/或外表面流动时施加气体螺旋运动。在一些实施例中,圆柱体420可以用作图1-13中的等离子体稳定器和/或内壁。
本领域技术人员将认识到,没有计算系统或编程语言对本公开的实践是关键的。本领域技术人员还将认识到,上述许多元件可以在物理上和/或功能上分离成子模块或组合在一起。
本领域技术人员将会理解,前述的示例和实施例是示例性的,并不限制本公开的范围。本领域技术人员在阅读说明书和研究附图后得出的所有的显而易见的置换、增强、等同、组合和改进,都包含在本公开的真实精神和范围内。还应当注意,任何权利要求的元素可以被不同地布置,包括具有多种从属关系、配置和组合。

Claims (20)

1.一种等离子体生成系统,包括:
波导,所述波导用于传输微波能量;
内壁,所述内壁设置在所述波导内以限定等离子体腔,等离子体在所述等离子体腔内通过使用所述微波能量生成;
第一气体入口,所述第一气体入口安装在所述波导的第一侧上,并且配置为将第一气体引入所述等离子体腔内,并且在所述等离子体腔内使用所述第一气体产生第一涡流,所述第一气体入口具有孔,由等离子体处理过的气体穿过所述孔离开所述等离子体腔;以及
等离子体稳定器,所述等离子体稳定器具有圆形中空圆柱体的形状,安装在所述波导的第二侧并且突出到所述等离子体腔内,所述等离子体稳定器的纵向方向与所述第一涡流的旋转轴平行。
2.如权利要求1所述的等离子体生成系统,其中,所述内壁由对所述微波能量透明的材料构成。
3.如权利要求1所述的等离子体生成系统,其中,所述第一涡流具有以螺旋运动朝向所述波导的第二侧前进的外部区域,和以螺旋运动朝向所述波导的第一侧前进的内部区域,并且其中所述等离子体在所述第一涡流的内部区域中产生。
4.如权利要求1所述的等离子体生成系统,其中,所述第一气体入口具有一个或多个通道,所述一个或多个通道将所述第一气体引入所述等离子体腔内,并且所述一个或多个通道的每一个均布置成将涡旋运动施加给穿过所述一个或多个通道的第一气体。
5.如权利要求1所述的等离子体生成系统,进一步包括:
第二气体入口,所述第二气体入口安装在所述波导的第二侧上,并且配置为将第二气体引向所述等离子体稳定器,
其中,所述第二气体入口配置为在所述等离子体腔内使用所述第二气体产生第二涡流。
6.如权利要求5所述的等离子体生成系统,其中,所述第二涡流位于所述第一涡流内部,并且在所述第二涡流中生成所述等离子体。
7.如权利要求5所述的等离子体生成系统,其中,所述第二气体入口具有一个或多个通道,所述第二气体流经所述一个或多个通道,并且所述一个或多个通道中的每一个布置成将涡旋运动施加给穿过所述一个或多个通道的第二气体。
8.如权利要求5所述的等离子体生成系统,其中,所述第二气体的流量范围为流入所述等离子体腔的气体总流量质量的5-95%。
9.如权利要求1所述的等离子体生成系统,其中,所述内壁和所述等离子体稳定器中的至少一个具有被刻线的表面,以施加螺旋运动至与所述表面接触的气体。
10.一种等离子体生成系统,包括:
波导,所述波导用于传输微波能量;
内壁,所述内壁设置在所述波导内以限定等离子体腔,等离子体在所述等离子体腔内通过使用所述微波能量生成;
第一气体入口,所述第一气体入口安装在所述波导的第一侧上,配置为将第一气体引入等离子体腔内并在所述等离子体腔内使用所述第一气体产生第一涡流,所述第一气体入口具有孔,由等离子体处理过的气体穿过所述孔离开等离子体腔;以及
等离子体稳定器,所述等离子体稳定器具有圆形中空圆柱体的形状,并且安装在所述第一气体入口上,所述等离子体稳定器的纵向方向与所述第一涡流的旋转轴平行。
11.如权利要求10所述的等离子体生成系统,其中,所述内壁由对所述微波能量透明的材料构成。
12.如权利要求10所述的等离子体生成系统,其中,所述第一涡流具有以螺旋运动朝向所述波导的第二侧前进的外部区域,和以螺旋运动朝向所述波导的第一侧前进的内部区域,并且其中所述等离子体在所述第一涡流的内部区域中产生。
13.如权利要求10所述的等离子体生成系统,其中,所述第一涡流具有以螺旋运动朝向所述波导的第二侧前进的外部区域,和以螺旋运动朝向所述波导的第一侧前进的内部区域,并且其中所述等离子体稳定器位于所述第一涡流的内部区域和外部区域之间的边界处。
14.如权利要求10所述的等离子体生成系统,其中,所述第一气体入口具有一个或多个通道,所述第一气体通过所述一个或多个通道将被引入所述等离子体腔内,并且所述一个或多个通道中的每一个布置成将涡旋运动施加给穿过所述一个或多个通道的第一气体。
15.如权利要求10所述的等离子体生成系统,进一步包括:
第二气体入口,所述第二气体入口安装在所述波导的第二侧上,并且配置为将第二气体引向所述等离子体稳定器,
其中,所述第二气体入口配置为在所述等离子体腔内使用所述第二气体产生第二涡流。
16.如权利要求15所述的等离子体生成系统,其中,所述第二涡流位于所述第一涡流内部,以及所述等离子体在所述第二涡流中生成。
17.如权利要求15所述的等离子体生成系统,其中,所述第二涡流设置在所述第一涡流中。
18.如权利要求15所述的等离子体生成系统,其中,所述第二气体入口具有一个或多个通道,所述第二气体流经所述一个或多个通道,并且所述一个或多个通道中的每一个布置成将涡旋运动施加给穿过所述一个或多个通道的第二气体。
19.如权利要求15所述的等离子体生成系统,其中,所述第二气体的流量范围为流入所述等离子体腔的总气体流量质量的5-95%。
20.如权利要求10所述的等离子体生成系统,其中,所述内壁和所述等离子体稳定器中的至少一个具有被刻线的表面,施加螺旋运动至与所述表面接触的气体。
CN202080032556.2A 2019-03-25 2020-02-29 用于处理气体的等离子反应器 Pending CN113767448A (zh)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US201962823436P 2019-03-25 2019-03-25
US201962823508P 2019-03-25 2019-03-25
US201962823517P 2019-03-25 2019-03-25
US201962823484P 2019-03-25 2019-03-25
US201962823492P 2019-03-25 2019-03-25
US201962823505P 2019-03-25 2019-03-25
US201962823514P 2019-03-25 2019-03-25
US62/823,505 2019-03-25
US62/823,492 2019-03-25
US62/823,508 2019-03-25
US62/823,517 2019-03-25
US62/823,484 2019-03-25
US62/823,436 2019-03-25
US62/823,514 2019-03-25
US16/752,689 US10832893B2 (en) 2019-03-25 2020-01-26 Plasma reactor for processing gas
US16/752,689 2020-01-26
PCT/US2020/020556 WO2020197701A1 (en) 2019-03-25 2020-02-29 Plasma reactor for processing gas

Publications (1)

Publication Number Publication Date
CN113767448A true CN113767448A (zh) 2021-12-07

Family

ID=72604262

Family Applications (5)

Application Number Title Priority Date Filing Date
CN202080032556.2A Pending CN113767448A (zh) 2019-03-25 2020-02-29 用于处理气体的等离子反应器
CN202080032452.1A Pending CN113811977A (zh) 2019-03-25 2020-02-29 控制等离子体反应器的排放气体压力实现等离子体稳定性
CN202080032543.5A Pending CN113785379A (zh) 2019-03-25 2020-03-01 等离子体反应器的热管理
CN202080032528.0A Pending CN113767447A (zh) 2019-03-25 2020-03-01 具有回流换热器的等离子体反应器
CN202080032542.0A Pending CN113795903A (zh) 2019-03-25 2020-03-17 用于监控等离子体反应的光学系统和反应器

Family Applications After (4)

Application Number Title Priority Date Filing Date
CN202080032452.1A Pending CN113811977A (zh) 2019-03-25 2020-02-29 控制等离子体反应器的排放气体压力实现等离子体稳定性
CN202080032543.5A Pending CN113785379A (zh) 2019-03-25 2020-03-01 等离子体反应器的热管理
CN202080032528.0A Pending CN113767447A (zh) 2019-03-25 2020-03-01 具有回流换热器的等离子体反应器
CN202080032542.0A Pending CN113795903A (zh) 2019-03-25 2020-03-17 用于监控等离子体反应的光学系统和反应器

Country Status (9)

Country Link
US (6) US20200312629A1 (zh)
EP (5) EP3948927A4 (zh)
JP (4) JP2022525648A (zh)
KR (4) KR20210127781A (zh)
CN (5) CN113767448A (zh)
AU (4) AU2020245070B2 (zh)
CA (4) CA3134268A1 (zh)
SG (4) SG11202110054TA (zh)
WO (6) WO2020197701A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3221936A1 (en) * 2021-06-02 2022-12-08 Rimere, Llc Systems and methods of plasma generation with microwaves
WO2024024817A1 (ja) * 2022-07-27 2024-02-01 株式会社アビット・テクノロジーズ マイクロ波プラズマ発生装置、マイクロ波プラズマ処理装置、及びマイクロ波プラズマ処理方法
WO2024064319A1 (en) * 2022-09-23 2024-03-28 Lam Research Corporation Gas distribution port insert and apparatus including the same

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3911318A (en) * 1972-03-29 1975-10-07 Fusion Systems Corp Method and apparatus for generating electromagnetic radiation
JPS61189440A (ja) * 1985-02-19 1986-08-23 Hokkaido Univ プラズマ物性測定装置
US6214119B1 (en) * 1986-04-18 2001-04-10 Applied Materials, Inc. Vacuum substrate processing system having multiple processing chambers and a central load/unload chamber
US4841925A (en) * 1986-12-22 1989-06-27 Combustion Electromagnetics, Inc. Enhanced flame ignition for hydrocarbon fuels
US5125358A (en) * 1988-07-26 1992-06-30 Matsushita Electric Industrial Co., Ltd. Microwave plasma film deposition system
JP2743585B2 (ja) * 1990-01-16 1998-04-22 株式会社日立製作所 マイクロ波プラズマ処理装置
JP3211290B2 (ja) * 1991-10-21 2001-09-25 ソニー株式会社 半導体装置の形成方法
DE4230290A1 (de) * 1992-09-10 1994-03-17 Leybold Ag Vorrichtung zum Erzeugen eines Plasmas mittels Kathodenzerstäubung und Mikrowelleneinstrahlung
US5671045A (en) * 1993-10-22 1997-09-23 Masachusetts Institute Of Technology Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams
US5985032A (en) * 1995-05-17 1999-11-16 Matsushita Electric Industrial Co., Ltd. Semiconductor manufacturing apparatus
EP0961527A1 (de) * 1998-05-26 1999-12-01 The Lincoln Electric Company Schweissbrenner
JP3364830B2 (ja) * 1998-06-09 2003-01-08 株式会社日立製作所 イオンビーム加工装置
JP2000133494A (ja) * 1998-10-23 2000-05-12 Mitsubishi Heavy Ind Ltd マイクロ波プラズマ発生装置及び方法
JP2965293B1 (ja) * 1998-11-10 1999-10-18 川崎重工業株式会社 電子ビーム励起プラズマ発生装置
US6401653B1 (en) 2000-04-18 2002-06-11 Daihen Corporation Microwave plasma generator
US6603269B1 (en) * 2000-06-13 2003-08-05 Applied Materials, Inc. Resonant chamber applicator for remote plasma source
US6630053B2 (en) * 2000-08-22 2003-10-07 Asm Japan K.K. Semiconductor processing module and apparatus
DE10112494C2 (de) * 2001-03-15 2003-12-11 Mtu Aero Engines Gmbh Verfahren zum Plasmaschweißen
US6677604B2 (en) * 2001-03-30 2004-01-13 Tokyo Electron Limited Optical system and method for plasma optical emission analysis
US6824748B2 (en) * 2001-06-01 2004-11-30 Applied Materials, Inc. Heated catalytic treatment of an effluent gas from a substrate fabrication process
US7056416B2 (en) * 2002-02-15 2006-06-06 Matsushita Electric Industrial Co., Ltd. Atmospheric pressure plasma processing method and apparatus
JP3723783B2 (ja) * 2002-06-06 2005-12-07 東京エレクトロン株式会社 プラズマ処理装置
TW551782U (en) * 2002-10-09 2003-09-01 Ind Tech Res Inst Microwave plasma processing device
DE10251435B3 (de) * 2002-10-30 2004-05-27 Xtreme Technologies Gmbh Strahlungsquelle zur Erzeugung von extrem ultravioletter Strahlung
US6927358B2 (en) 2003-01-31 2005-08-09 Advanced Energy Industries, Inc. Vacuum seal protection in a dielectric break
US7867457B2 (en) 2003-06-20 2011-01-11 Drexel University Plasma reactor for the production of hydrogen-rich gas
US7169625B2 (en) * 2003-07-25 2007-01-30 Applied Materials, Inc. Method for automatic determination of semiconductor plasma chamber matching and source of fault by comprehensive plasma monitoring
US7164095B2 (en) * 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US20060021633A1 (en) * 2004-07-27 2006-02-02 Applied Materials, Inc. Closed loop clean gas control
GB2442990A (en) * 2004-10-04 2008-04-23 C Tech Innovation Ltd Microwave plasma apparatus
JP2006114450A (ja) * 2004-10-18 2006-04-27 Yutaka Electronics Industry Co Ltd プラズマ生成装置
US7428915B2 (en) * 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
KR100522167B1 (ko) 2005-05-26 2005-10-18 한국기계연구원 플라즈마 반응장치
JP4878782B2 (ja) * 2005-07-05 2012-02-15 シャープ株式会社 プラズマ処理装置及びプラズマ処理方法
US8366829B2 (en) * 2005-08-05 2013-02-05 Advanced Micro-Fabrication Equipment, Inc. Asia Multi-station decoupled reactive ion etch chamber
JP2007088199A (ja) * 2005-09-22 2007-04-05 Canon Inc 処理装置
JP5050369B2 (ja) * 2006-03-06 2012-10-17 東京エレクトロン株式会社 処理装置
CN101395973B (zh) * 2006-03-07 2013-03-13 国立大学法人琉球大学 等离子体发生装置以及使用它的等离子体产生方法
GB2450035A (en) * 2006-04-07 2008-12-10 Qinetiq Ltd Hydrogen production
KR100885187B1 (ko) 2007-05-10 2009-02-23 삼성전자주식회사 플라즈마 챔버의 상태를 모니터링하는 방법 및 시스템
US20080277265A1 (en) * 2007-05-11 2008-11-13 Plasco Energy Group, Inc. Gas reformulation system comprising means to optimize the effectiveness of gas conversion
US20080296294A1 (en) * 2007-05-30 2008-12-04 Han Sup Uhm Pure steam torch by microwaves for reforming of hydrocarbon fuels
CA2741135C (en) * 2007-11-06 2015-10-20 Microoncology Limited Hydroxyl radical producing plasma sterilisation apparatus
JP5243089B2 (ja) 2008-04-09 2013-07-24 東京エレクトロン株式会社 プラズマ処理装置のシール構造、シール方法およびプラズマ処理装置
JP4694596B2 (ja) * 2008-06-18 2011-06-08 東京エレクトロン株式会社 マイクロ波プラズマ処理装置及びマイクロ波の給電方法
KR100951631B1 (ko) * 2008-07-07 2010-04-09 김익년 폐가스 분해용 플라즈마 반응기와 이를 이용한 가스스크러버
JP2011077322A (ja) * 2009-09-30 2011-04-14 Tokyo Electron Ltd 結晶性珪素膜の成膜方法およびプラズマcvd装置
JP5479013B2 (ja) * 2009-09-30 2014-04-23 東京エレクトロン株式会社 プラズマ処理装置及びこれに用いる遅波板
US8742665B2 (en) * 2009-11-18 2014-06-03 Applied Materials, Inc. Plasma source design
KR20120011481A (ko) 2010-07-29 2012-02-08 자동차부품연구원 배기가스 열회수용 열교환기
GB201021860D0 (en) 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for diamond synthesis
US20120186747A1 (en) * 2011-01-26 2012-07-26 Obama Shinji Plasma processing apparatus
GB2490355B (en) * 2011-04-28 2015-10-14 Gasplas As Method for processing a gas and a device for performing the method
JP2014524106A (ja) * 2011-06-24 2014-09-18 リカーボン,インコーポレイテッド マイクロ波共鳴空洞
US8633648B2 (en) 2011-06-28 2014-01-21 Recarbon, Inc. Gas conversion system
US20130104996A1 (en) * 2011-10-26 2013-05-02 Applied Materials, Inc. Method for balancing gas flow supplying multiple cvd reactors
US9322571B2 (en) 2011-11-11 2016-04-26 Lv Dynamics Llc Heating system having plasma heat exchanger
US9144858B2 (en) * 2011-11-18 2015-09-29 Recarbon Inc. Plasma generating system having movable electrodes
US9150949B2 (en) * 2012-03-08 2015-10-06 Vladmir E. BELASHCHENKO Plasma systems and methods including high enthalpy and high stability plasmas
JP5474120B2 (ja) * 2012-04-09 2014-04-16 三菱電機株式会社 内燃機関の点火装置および点火方法
WO2014007472A1 (en) * 2012-07-03 2014-01-09 Plasmart Inc. Plasma generation apparatus and plasma generation method
US9949356B2 (en) * 2012-07-11 2018-04-17 Lincoln Global, Inc. Electrode for a plasma arc cutting torch
KR101277123B1 (ko) * 2012-09-07 2013-06-20 한국기초과학지원연구원 플라즈마 건식 개질장치
KR101277122B1 (ko) * 2012-09-28 2013-06-20 한국기초과학지원연구원 마이크로웨이브 플라즈마 개질기
US20150097485A1 (en) 2013-10-08 2015-04-09 XEI Scientific Inc. Method and apparatus for plasma ignition in high vacuum chambers
GB2531233A (en) * 2014-02-27 2016-04-20 C Tech Innovation Ltd Plasma enhanced catalytic conversion method and apparatus
JP6442242B2 (ja) * 2014-11-17 2018-12-19 株式会社日立ハイテクノロジーズ プラズマ処理装置
US10276355B2 (en) * 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
KR101732048B1 (ko) 2015-07-07 2017-05-02 (주)클린팩터스 공정설비에서 발생되는 배기가스 처리 플라즈마 반응기
US9793097B2 (en) * 2015-07-27 2017-10-17 Lam Research Corporation Time varying segmented pressure control
GB2554384A (en) * 2016-09-23 2018-04-04 Hieta Tech Limited Combustion chamber and heat exchanger
JP2018078515A (ja) * 2016-11-11 2018-05-17 東京エレクトロン株式会社 フィルタ装置及びプラズマ処理装置
US9812295B1 (en) 2016-11-15 2017-11-07 Lyten, Inc. Microwave chemical processing
US10091929B2 (en) * 2016-12-12 2018-10-09 Cnh Industrial Canada, Ltd. Calibration method for adjustable orifice valve
KR101936595B1 (ko) 2017-04-11 2019-01-09 주식회사 에어브릿지 셀프 이그니션 기능을 가지는 대기압 마이크로웨이브 플라즈마 발생장치
CN108104808A (zh) * 2018-01-05 2018-06-01 中国海洋石油集团有限公司 井下流体粘度测量短节
US20200058469A1 (en) * 2018-08-14 2020-02-20 Tokyo Electron Limited Systems and methods of control for plasma processing
CN109104808B (zh) * 2018-08-16 2024-02-06 清华大学 一种长使用寿命的新型微波等离子体激发装置

Also Published As

Publication number Publication date
CN113811977A (zh) 2021-12-17
US10832894B2 (en) 2020-11-10
KR20210127777A (ko) 2021-10-22
WO2020197704A1 (en) 2020-10-01
AU2020248682A1 (en) 2021-10-14
CN113767447A (zh) 2021-12-07
CA3134915A1 (en) 2020-10-01
EP3948925A4 (en) 2022-12-28
KR20210127779A (ko) 2021-10-22
US10854429B2 (en) 2020-12-01
EP3948929A4 (en) 2023-01-11
CA3134268A1 (en) 2020-10-01
US10840064B2 (en) 2020-11-17
WO2020197702A1 (en) 2020-10-01
KR20210127780A (ko) 2021-10-22
SG11202110053QA (en) 2021-10-28
KR20210127781A (ko) 2021-10-22
EP3948925A1 (en) 2022-02-09
US20200312628A1 (en) 2020-10-01
WO2020197705A1 (en) 2020-10-01
CN113795903A (zh) 2021-12-14
EP3948926A1 (en) 2022-02-09
AU2020245298A1 (en) 2021-10-07
EP3948929A1 (en) 2022-02-09
AU2020245298B2 (en) 2023-09-28
EP3948926A4 (en) 2022-12-28
EP3948927A4 (en) 2023-01-04
CA3134028A1 (en) 2020-10-01
JP2022525648A (ja) 2022-05-18
CN113785379A (zh) 2021-12-10
US20200312639A1 (en) 2020-10-01
AU2020245070B2 (en) 2023-07-20
US20200306716A1 (en) 2020-10-01
US20230110414A1 (en) 2023-04-13
US11469078B2 (en) 2022-10-11
KR102665076B1 (ko) 2024-05-14
WO2020197701A1 (en) 2020-10-01
WO2020197703A1 (en) 2020-10-01
EP3948930A1 (en) 2022-02-09
US20200312629A1 (en) 2020-10-01
SG11202110054TA (en) 2021-10-28
US20200312638A1 (en) 2020-10-01
AU2020248682B2 (en) 2023-07-13
AU2020245142B2 (en) 2023-09-21
WO2020197837A1 (en) 2020-10-01
JP2022525472A (ja) 2022-05-16
SG11202110051UA (en) 2021-10-28
KR20210127778A (ko) 2021-10-22
CA3134155A1 (en) 2020-10-01
JP2022526736A (ja) 2022-05-26
SG11202110046YA (en) 2021-10-28
AU2020245070A1 (en) 2021-10-21
EP3948930A4 (en) 2023-01-11
AU2020245142A1 (en) 2021-10-07
EP3948927A1 (en) 2022-02-09
JP2022525649A (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
CN113767448A (zh) 用于处理气体的等离子反应器
JP5161241B2 (ja) プラズマスプレー装置および方法
CA2833965C (en) Method for processing a gas and a device for performing the method
CN109386355B (zh) 混合器装置和废气系统
US10832893B2 (en) Plasma reactor for processing gas
US20210086158A1 (en) Microwave enhancement of chemical reactions
KR102674489B1 (ko) 플라즈마 반응기의 열 관리
KR102587639B1 (ko) 와류발생기가 구비된 마이크로웨이브 플라즈마 토치 장치
Grishin et al. About the influences of gas composition and generator frequency on the formation conditions and parameters of vortex tube in the RF inductively coupled plasma
Chirokov et al. Reversevortex plasma stabilization: experiments and numerical simulation
RU2233563C2 (ru) Высокочастотный индукционный плазмотрон
KR20210120612A (ko) 플라즈마 초음속 유동 발생장치
Gutsol et al. Numerical simulation of the experimental ICP and microwave plasma torches with the reverse vortex stabilization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination