CN113735109A - 从锂离子电池中回收石墨的方法及其应用 - Google Patents

从锂离子电池中回收石墨的方法及其应用 Download PDF

Info

Publication number
CN113735109A
CN113735109A CN202111047588.2A CN202111047588A CN113735109A CN 113735109 A CN113735109 A CN 113735109A CN 202111047588 A CN202111047588 A CN 202111047588A CN 113735109 A CN113735109 A CN 113735109A
Authority
CN
China
Prior art keywords
graphite
lithium ion
ion battery
negative plate
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111047588.2A
Other languages
English (en)
Other versions
CN113735109B (zh
Inventor
蒋光辉
胡敏艺
张淑琼
欧阳全胜
赵群芳
王嫦
曹贵霞
赵浩
周龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Light Industry Technical College
Original Assignee
Guizhou Light Industry Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Light Industry Technical College filed Critical Guizhou Light Industry Technical College
Priority to CN202111047588.2A priority Critical patent/CN113735109B/zh
Publication of CN113735109A publication Critical patent/CN113735109A/zh
Application granted granted Critical
Publication of CN113735109B publication Critical patent/CN113735109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种从锂离子电池中回收石墨的方法及其应用,涉及资源回收技术领域。所述回收方法首先将锂离子电池中的负极片粉碎;随后将粉碎后的负极片煅烧,以去除负极片上的粘结剂和导电剂,得到粉料A;然后依次对粉料A进行风选和碱浸处理,以去除金属杂质;最后,过滤并干燥粉料,得到高纯度石墨。上述方法具有回收工艺简单、石墨的回收率以及纯度较高的优势,可以广泛应用于高纯度石墨的制备过程中。

Description

从锂离子电池中回收石墨的方法及其应用
技术领域
本发明涉及资源回收技术领域,尤其是涉及一种从锂离子电池中回收石墨的方法及其应用。
背景技术
目前,针对锂离子电池资源回收主要大量集中在对其中经济价值较高的金属的回收,尤其集中在对于镍和钴的回收早已实现产业化,但是废旧锂离子电池的负极材料主要是石墨,石墨因其经济价值不如镍、钴、锂等,因此废旧锂离子电池中的石墨大部分都被丢弃处理或者作为燃料处理。这不仅造成资源的极大浪费,更会造成对环境的巨大污染。
因此,研究开发出一种能够从锂离子电池负极材料中回收高纯度石墨的回收方法,变得十分必要和迫切。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种从锂离子电池中回收石墨的方法,所述方法具有回收工艺简单、石墨的回收率高的优势。
本发明的第二目的在于提供一种上述从锂离子电池中回收石墨的方法的应用,所述从锂离子电池中回收石墨的方法可广泛应用于高纯度石墨的制备过程中。
为了实现本发明的上述目的,特采用以下技术方案:
本发明提供的一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(a)、将锂离子电池中的负极片分离,随后将负极片粉碎;
(b)、将粉碎后的负极片煅烧,以去除负极片上的粘结剂和导电剂,得到粉料A;
(c)、对粉料A进行风选,以去除铜金属;
(d)、将去除铜金属后的粉料A进行碱浸处理,得到溶液A;
(e)、过滤溶液A,随后进行洗涤、干燥,回收得到高纯度石墨。
进一步的,所述步骤(a)中的负极片主要从废旧锂离子电池中拆卸得到。
进一步的,所述步骤(a)中粉碎为将负极片粉碎至2~5×2~5cm的颗粒,优选为2×2cm的颗粒。
进一步的,所述步骤(b)中煅烧的温度为300-700℃,时间为6~12h;
优选地,所述步骤(b)中煅烧的温度为600℃,时间为10h。
进一步的,所述步骤(c)中风选所采用的气流速度为0.8-2.2m/s。
进一步的,所述步骤(c)中的风选替换为超声悬浮。
进一步的,所述步骤(d)中碱浸处理的碱浸液为氨水或强碱溶液,碱浸液的pH值为9-13,碱浸处理的温度和时间分别为25-80℃、4-12h;
优选地,所述氨水为质量浓度3~15wt%的氨水,优选为5wt%的氨水;
优选地,所述强碱溶液包括氢氧化钠、强氧化钾、氢氧化钙或氢氧化钡中的至少一种,优选为氢氧化钠。
进一步的,所述步骤(e)中干燥的温度为60~120℃,时间为6~24h。
进一步的,所述步骤(e)回收得到的高纯度石墨的纯度≥99%。
本发明提供的上述从锂离子电池中回收石墨的方法在制备高纯度石墨中的应用。
与现有技术相比,本发明的有益效果为:
本发明提供的从锂离子电池中回收石墨的方法,所述方法首先将锂离子电池中的负极片粉碎;随后将粉碎后的负极片煅烧,以去除负极片上的粘结剂和导电剂,得到粉料A;然后依次对粉料A进行风选和碱浸处理,以去除金属杂质;最后,过滤并干燥粉料,得到高纯度石墨。上述方法具有回收工艺简单、石墨的回收率高的优势。
本发明提供的从锂离子电池中回收石墨的方法可广泛应用于高纯度石墨的制备过程中。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的一个方面,一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(a)、将锂离子电池中的负极片分离,随后将负极片粉碎;
(b)、将粉碎后的负极片煅烧,以去除负极片上的粘结剂和导电剂,得到粉料A;
(c)、对粉料A进行风选,以去除铜金属;
(d)、将去除铜金属后的粉料A进行碱浸处理,得到溶液A;
(e)、过滤溶液A,随后进行干燥,回收得到高纯度石墨。
本发明提供的从锂离子电池中回收石墨的方法,所述方法首先将锂离子电池中的负极片粉碎;随后将粉碎后的负极片煅烧,以去除负极片上的粘结剂和导电剂,得到粉料A;然后依次对粉料A进行风选和碱浸处理,以去除金属杂质;最后,过滤并干燥粉料,得到高纯度石墨。上述方法具有回收工艺简单、石墨的回收率和纯度高的优势。
在本发明的一种优选实施方式中,所述步骤(a)中的负极片主要从废旧锂离子电池中拆卸得到。
在本发明的一种优选实施方式中,所述步骤(a)中粉碎为将负极片粉碎至2~5×2~5cm的颗粒,优选为2×2cm的颗粒。
作为一种优选的实施方式,上述将负极片粉碎的目的在于:1、粉碎过程中一部分石墨粉可以从铜箔上玻璃;2、粉碎后煅烧时间会缩短,有助于提升煅烧效果(负极从铜箔上剥离);3、小颗粒铜箔风选过程易于去除。
在本发明的一种优选实施方式中,所述步骤(b)中煅烧的温度为300-700℃,时间为6~12h;
作为一种优选的实施方式,上述煅烧的目的在于去除粘结剂和残留的电解液,从而使活性物质从铜箔上剥离,为后续风选中分离铜箔做准备。
在上述优选实施方式中,所述步骤(b)中煅烧的温度为600℃,时间为10h。
在本发明的一种优选实施方式中,所述步骤(c)中风选所采用的气流速度为0.8-2.2m/s,风选后铜的去除回收率超过98%。
在本发明的一种优选实施方式中,所述步骤(c)中的风选替换为超声悬浮。
在本发明的一种优选实施方式中,所述步骤(d)中碱浸处理的碱浸液为氨水或强碱溶液;
在上述优选实施方式中,所述氨水为质量浓度3~15wt%的氨水,优选为5wt%的氨水;
在上述优选实施方式中,所述强碱溶液包括氢氧化钠、强氧化钾、氢氧化钙或氢氧化钡中的至少一种,优选为氢氧化钠。
在本发明的一种优选实施方式中,所述步骤(e)中干燥的温度为60~120℃,时间为6~24h。
在本发明的一种优选实施方式中,所述步骤(e)回收得到的高纯度石墨的纯度≥99%。
优选地,所述从锂离子电池中回收石墨的方法,包括以下步骤:
(1)、将废旧锂离子电池中拆卸得到负极片,随后将负极片粉碎为(2~5)×(2~5)cm的颗粒;
(2)、将粉碎后的负极片在300-700℃下煅烧6~12h,以去除负极片上的粘结剂和导电剂,得到粉料A;
(3)、将煅烧后的粉料A进行风选,以去除铜金属;
(4)、将风选除铜后的粉料A浸入氨水或强碱溶液中进行浸出,使杂质金属溶解与溶液中;随后对溶液进行过滤,干燥,回收得到纯度≥99%的高纯度石墨。
优选地,所述从锂离子电池中回收石墨的方法,包括以下步骤:
(1)、将废旧锂离子电池中拆卸得到负极片,随后将负极片粉碎为2×2cm的颗粒;
(2)、将粉碎后的负极片在600℃下煅烧6h,以去除负极片上的粘结剂和导电剂,得到粉料A;
(3)、将煅烧后的粉料A进行风选,以去除铜金属;
(4)、将风选除铜后的粉料A浸入氨水或强碱溶液中进行浸出,使杂质金属溶解与溶液中;随后对溶液进行过滤,干燥,回收得到纯度99.85%的高纯度石墨。
根据本发明的一个方面,上述从锂离子电池中回收石墨的方法在制备高纯度石墨中的应用。
本发明提供的从锂离子电池中回收石墨的方法可广泛应用于高纯度石墨的制备过程中。
下面将结合实施例和对比例对本发明的技术方案进行进一步地说明。
实施例1
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成2x2cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为600℃,时间为6h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过风选进行分离去除铜,铜的回收率为99.2%,铜的纯度达到99.6%。
(4)、对风选后的石墨中残留的如锂和铜采用浓度为5%的氨水进行碱浸处理,液固比为2:1,浸出时间为8h,温度为50℃。经过浸出后,锂进入溶液中,残留的铜以络合物进入溶液中,从而提纯石墨。经氨水浸出后,对石墨进行过滤、用超纯水逆流洗涤至中性、在80℃干燥12h后,得到高纯度石墨。
实施例2
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成2x2cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为500℃,时间为12h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过风选进行分离去除铜,铜的回收率为99.05%;
(4)、对风选后的石墨中残留的如锂和铜采用浓度为5%的氨水进行浸出,液固比为3:1,浸出时间为10h,温度为25℃。经过浸出后,锂进入溶液中,残留的铜以络合物进入溶液中,从而提纯石墨。经氨水浸出后,对石墨进行过滤、用超纯水逆流洗洗涤至中性、在100℃干燥8h后,得到高纯度石墨。
实施例3
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成2x2cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为400℃,时间为12h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过超声悬浮进行分离去除铜,铜的回收率为98.5%;
(4)、对分选后的石墨中残留的如锂和铜采用浓度为8%的氨水进行浸出,液固比为4:1,浸出时间为6h,温度为40℃。经过浸出后,锂进入溶液中,残留的铜以络合物进入溶液中,从而提纯石墨。经氨水浸出后,对石墨进行过滤、用超纯水洗涤至中性、在120℃干燥8h后,得到高纯度石墨。
实施例4
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成2x2cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为700℃,时间为12h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过风选进行分离去除铜,铜的回收率为95.8%;
(4)、对风选后的石墨中残留的如锂和铜采用氢氧化钠溶液进行浸出,液固比为3:1,浸出时间为6h,温度为80℃。经过浸出后,残留的锂进入溶液中,从而提纯石墨。对石墨进行过滤、用超纯水洗涤至中性、在80℃干燥12h后,得到高纯度石墨。
实施例5
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成2x2cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为650℃,时间为8h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过超声悬浮进行分离去除铜,铜的回收率为98.9%;
(4)、对分选后的石墨中残留的如锂和铜采用氢氧化钠溶液,氢氧化钠溶液浓度为2摩尔每升进行浸出,锂进入溶液中。经过滤后再用5%氨水络合后,对石墨进行过滤、用超纯水洗涤至中性、在80℃干燥24h后,得到高纯度石墨。
实施例6
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成5x5cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为300℃,时间为12h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过超声悬浮进行分离去除铜,铜的回收率为95%;
(4)、对风选后的石墨中残留的如锂和铜采用氢氧化钠溶液,氢氧化钠溶液浓度为1摩尔每升进行浸出,锂进入溶液中。经过滤后再用3%氨水络合后,对石墨进行过滤、用超纯水洗涤至中性、在100℃干燥24h后,得到高纯度石墨。
实施例7
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成3x5cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为800℃,时间为10h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过超声悬浮进行分离去除铜,铜回收率为97.5%;
(4)、对分选后的石墨中残留的如锂和铜采用氢氧化钠溶液进行浸出,氢氧化钠溶液浓度为3摩尔每升进行浸出,锂进入溶液中。经过滤后再用3%氨水络合后,对石墨进行过滤、用超纯水洗涤至中性、在100℃干燥24h后,得到高纯度石墨。
对比例1
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成2.5x2.5cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为550℃,时间为12h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过重力沉降进行分离去除铜,铜回收率为94.8%;
(4)、对分选后的石墨中残留的如锂和铜采用氢氧化钠溶液进行浸出,氢氧化钠溶液浓度为2.5摩尔每升进行浸出,锂进入溶液中。经过滤后再用10%氨水络合后,对石墨进行过滤、用超纯水洗涤至中性、在100℃干燥12h后,得到石墨。
对比例2
一种从锂离子电池中回收石墨的方法,所述方法包括以下步骤:
(1)、首先将回收的废旧锂离子电池放电,放电后进行拆解,拆解的废旧锂离子电池对壳体、正极片、负极片、隔膜、极耳等进行分离并分别归类。将分离出来的负极片通过破碎机破碎成3x3cm左右的小块;
(2)、将粉碎后的负极片在高温炉内进行焙烧,焙烧温度为600℃,时间为10h,从而去除负极片中的粘结剂、导电剂等杂质,使石墨与铜集流体分离;
(3)、将焙烧的负极片通过超声悬浮进行分离去除铜,铜回收率为98.5%;
(4)、对分选后的石墨经筛分,得到石墨粉。
实验例1
为表明本申请从锂离子电池中回收石墨的方法具有回收工艺简单、石墨的回收率高的优势,现对实施例1~7以及对比例1、2回收工艺得到的石墨纯度和石墨回收率进行检测,具体结果如下表所示:
Figure BDA0003250276820000111
Figure BDA0003250276820000121
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

1.一种从锂离子电池中回收石墨的方法,其特征在于,所述方法包括以下步骤:
(a)、将锂离子电池中的负极片分离,随后将负极片粉碎;
(b)、将粉碎后的负极片煅烧,以去除负极片上的粘结剂和导电剂,得到粉料A;
(c)、对粉料A进行风选,以去除铜金属;
(d)、将去除铜金属后的粉料A进行碱浸处理,得到溶液A;
(e)、过滤溶液A,随后进行洗涤、干燥,回收得到高纯度石墨。
2.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(a)中的负极片主要从废旧锂离子电池中拆卸得到。
3.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(a)中粉碎为将负极片粉碎至(2~5)×(2~5)cm的颗粒,优选为2×2cm的颗粒。
4.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(b)中煅烧的温度为300-700℃,时间为6~12h;
优选地,所述步骤(b)中煅烧的温度为600℃,时间为10h。
5.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(c)中风选所采用的气流速度为0.8-2m/s。
6.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(c)中的风选替换为超声悬浮。
7.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(d)中碱浸处理的碱浸液为氨水或强碱溶液,碱浸液的pH值为9-13,碱浸处理的温度和时间分别为25-80℃、4-12h;
优选地,所述氨水为质量浓度3~15wt%的氨水,优选为5wt%的氨水;
优选地,所述强碱溶液包括氢氧化钠、强氧化钾、氢氧化钙或氢氧化钡中的至少一种,优选为氢氧化钠。
8.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(e)中干燥的温度为60~200℃,时间为6~24h。
9.根据权利要求1所述的从锂离子电池中回收石墨的方法,其特征在于,所述步骤(e)回收得到的高纯度石墨的纯度≥99%。
10.一种根据权利要求1~9任一项所述的从锂离子电池中回收石墨的方法在制备高纯度石墨中的应用。
CN202111047588.2A 2021-09-07 2021-09-07 从锂离子电池中回收石墨的方法及其应用 Active CN113735109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111047588.2A CN113735109B (zh) 2021-09-07 2021-09-07 从锂离子电池中回收石墨的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111047588.2A CN113735109B (zh) 2021-09-07 2021-09-07 从锂离子电池中回收石墨的方法及其应用

Publications (2)

Publication Number Publication Date
CN113735109A true CN113735109A (zh) 2021-12-03
CN113735109B CN113735109B (zh) 2023-09-05

Family

ID=78736859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111047588.2A Active CN113735109B (zh) 2021-09-07 2021-09-07 从锂离子电池中回收石墨的方法及其应用

Country Status (1)

Country Link
CN (1) CN113735109B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986255A (zh) * 2023-03-23 2023-04-18 深圳市杰成镍钴新能源科技有限公司 一种退役锂离子电池的负极材料回收方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
CN105244560A (zh) * 2014-06-16 2016-01-13 上海奇谋能源技术开发有限公司 一种锂离子电池的资源化回收方法
CN106450542A (zh) * 2016-09-29 2017-02-22 上海交通大学 一种废旧锰酸锂锂离子电池的资源化方法
KR20190059119A (ko) * 2017-11-22 2019-05-30 한국화학연구원 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
CN111072023A (zh) * 2019-12-27 2020-04-28 北京蒙京石墨新材料科技研究院有限公司 一种从报废锂离子电池中回收石墨的方法
CN112670609A (zh) * 2020-10-09 2021-04-16 武汉瑞科美新能源有限责任公司 废旧锂电池石墨负极全组分一体化回收与再生方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
CN105244560A (zh) * 2014-06-16 2016-01-13 上海奇谋能源技术开发有限公司 一种锂离子电池的资源化回收方法
CN106450542A (zh) * 2016-09-29 2017-02-22 上海交通大学 一种废旧锰酸锂锂离子电池的资源化方法
KR20190059119A (ko) * 2017-11-22 2019-05-30 한국화학연구원 전고상 리튬-폴리머 이차전지용 양극 및 그의 제조방법, 이를 포함한 이차전지
CN111072023A (zh) * 2019-12-27 2020-04-28 北京蒙京石墨新材料科技研究院有限公司 一种从报废锂离子电池中回收石墨的方法
CN112670609A (zh) * 2020-10-09 2021-04-16 武汉瑞科美新能源有限责任公司 废旧锂电池石墨负极全组分一体化回收与再生方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗胜联等: "《废旧锂离子电池钴酸锂浸出技术》", 31 March 2014, 冶金工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986255A (zh) * 2023-03-23 2023-04-18 深圳市杰成镍钴新能源科技有限公司 一种退役锂离子电池的负极材料回收方法及装置
CN115986255B (zh) * 2023-03-23 2023-06-30 深圳市杰成镍钴新能源科技有限公司 一种退役锂离子电池的负极材料回收方法及装置

Also Published As

Publication number Publication date
CN113735109B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
JP4144820B2 (ja) リチウムイオン2次電池からの正極活物質の再生方法
CN108470951B (zh) 一种废旧镍钴锰三元锂离子电池中有价金属的回收方法
CN110835682B (zh) 废旧锂离子电池正、负极活性材料协同处理的方法
CN108140909B (zh) 从废锂离子电池中回收金属的方法
US6514311B1 (en) Clean process of recovering metals from waste lithium ion batteries
TWI726033B (zh) 從具有高錳含量的廢棄鋰離子電池回收有價金屬的方法
JP3452769B2 (ja) 電池の処理方法
CN111206148A (zh) 一种利用废旧三元锂电池回收制备三元正极材料的方法
CN113517484B (zh) 废钴酸锂电池的处理方法及其产物
CN110148801B (zh) 一种废旧磷酸铁锂电池正极片的真空分离方法
TW201809296A (zh) 從具有高錳含量的廢棄鋰離子電池中回收純氧化鈷的方法
CN111430832B (zh) 一种废旧三元锂离子电池无需放电预处理的全资源回收方法
CN110541077B (zh) 一种从废旧钴酸锂电池正极片中回收有价组分的方法
CN101673829A (zh) 废旧锌锰电池的回收处理方法
JP7271833B2 (ja) リチウムの回収方法
CN107046154B (zh) 一种废三元锂电池强化还原浸出的方法
JPH036208B2 (zh)
WO1994023073A1 (en) Method for collecting valuable metal from nickel-hydrogen secondary cell
WO2022085222A1 (ja) リチウムの回収方法及び炭酸リチウムの製造方法
JP4099057B2 (ja) リチウムイオン電池内のコバルト回収方法およびコバルト回収システム
CN107732350B (zh) 一种利用铅酸蓄电池的正极废铅泥制备红丹的方法
CN113735109B (zh) 从锂离子电池中回收石墨的方法及其应用
CN113832349B (zh) 一种从电池废料中回收锂及镍钴锰的方法
JPH1046266A (ja) 二次電池廃品からのコバルト回収方法
CN111455176B (zh) 一种废旧钴酸锂正极材料的回收方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant