WO2022085222A1 - リチウムの回収方法及び炭酸リチウムの製造方法 - Google Patents

リチウムの回収方法及び炭酸リチウムの製造方法 Download PDF

Info

Publication number
WO2022085222A1
WO2022085222A1 PCT/JP2021/015245 JP2021015245W WO2022085222A1 WO 2022085222 A1 WO2022085222 A1 WO 2022085222A1 JP 2021015245 W JP2021015245 W JP 2021015245W WO 2022085222 A1 WO2022085222 A1 WO 2022085222A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
aluminum
slag
leachate
melting
Prior art date
Application number
PCT/JP2021/015245
Other languages
English (en)
French (fr)
Inventor
拓郎 阿部
直希 細田
慎介 片山
聡 浅野
俊彦 永倉
Original Assignee
関東電化工業株式会社
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東電化工業株式会社, 住友金属鉱山株式会社 filed Critical 関東電化工業株式会社
Priority to EP21882366.4A priority Critical patent/EP4230753A1/en
Priority to US18/018,415 priority patent/US20230295770A1/en
Priority to CN202180065531.7A priority patent/CN116323998A/zh
Priority to JP2022556383A priority patent/JPWO2022085222A1/ja
Publication of WO2022085222A1 publication Critical patent/WO2022085222A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering lithium and a method for producing lithium carbonate.
  • Lithium-ion secondary batteries are relatively small devices such as smartphones, laptop computers, electric tools, and radio repeaters, as well as large-scale hybrid vehicles, electric vehicles, household storage batteries, solar power storage equipment, and emergency storage batteries. It is also installed in the equipment.
  • the lithium ion secondary battery uses a metal can body made of aluminum, iron, stainless steel, etc., or a laminated film made of polypropylene, aluminum foil, etc. as an exterior material, and a copper foil inside as a negative electrode current collector.
  • a negative electrode material having a negative electrode active material such as graphite fixed to the surface thereof and a positive electrode material having a positive electrode active material such as lithium nickelate or lithium cobaltate fixed to a positive electrode current collector made of aluminum foil are made of polypropylene. It has a structure in which it is charged together with a separator made of a porous resin film or the like, and an organic solvent containing a lithium salt electrolyte is sealed as an electrolytic solution.
  • the above-mentioned equipment equipped with a lithium-ion secondary battery deteriorates in performance due to repeated charging and discharging and overcharging, and is disposed of as a waste lithium-ion secondary battery. Even devices for which deterioration of the lithium-ion secondary battery has not been confirmed may be disposed of by replacement by the user. Further, in the manufacturing process of a lithium ion secondary battery, it may be discarded as a defective product before it is used due to a defect in the process or the like.
  • waste lithium-ion secondary batteries contain valuable components such as nickel, cobalt, copper, and lithium, and it is being considered to recover and reuse the valuable components as an effective use of resources and measures against environmental pollution. ing.
  • Patent Documents 1 and 2 attempts to recover lithium by leaching or neutralization separation as a means for recovering lithium from roasted lithium ion secondary battery scraps.
  • Patent Document 2 lithium is recovered from roasted lithium-ion secondary battery scrap through a number of steps such as multi-step extraction with a solvent / extractant and separation and removal of each impurity.
  • Patent Document 3 describes that lithium is recovered from slag obtained by a dry melting process for a waste lithium ion secondary battery. In the dry melting process, the lithium-ion secondary battery is heated at a high temperature of, for example, 1100 ° C. or higher together with the flux (melter), and the waste lithium-ion secondary battery is made of a metal containing valuable metals such as cobalt, nickel, and copper. It is divided into slag that is subject to disposal.
  • Patent Document 1 requires the use of many chemicals to melt nickel, cobalt, and copper in roasted lithium-ion secondary battery scraps.
  • the valuable metals nickel, cobalt, and copper are incorporated into the neutralization residue, the labor and loss of redissolution, separation, and recovery increase.
  • the complicated process described in Patent Document 2 not only lowers the recovery efficiency of lithium, but also generates a large amount of chemicals, solvents, etc. to be used as waste liquid and waste, so that it is costly and troublesome to reduce the environmental impact. Have a problem.
  • it is difficult to say that the obtained lithium compound is an efficient method because the quality of the obtained lithium compound deteriorates due to the influence of the chemicals used.
  • an object of the present invention is to solve a problem that the above-mentioned prior art has not solved.
  • the present inventor has diligently studied a technique for improving the recovery efficiency of lithium from slag obtained by subjecting a lithium ion secondary battery to be disposed of to a melting process. As a result, it was found that the lithium recovery rate is dramatically improved when the mass ratio of aluminum and lithium in the slag is less than a specific value.
  • the present invention is based on the above findings, and after melting a lithium ion secondary battery to be disposed of to obtain a molten metal containing a valuable metal and a molten slag containing at least aluminum and lithium, the valuable metal. It is a method of recovering lithium from slag containing at least lithium and aluminum separated from the molten metal containing lithium, and the value of aluminum / lithium, which is the mass ratio of aluminum to lithium contained in the slag, is 6 or less. As described above, the melting conditions of the lithium ion secondary battery are adjusted so as to It has a lithium leaching step of bringing the slag into contact with an aqueous liquid to obtain a leachate in which lithium contained in the slag has leached.
  • Lithium has a purification step of contacting the leachate with a basic substance, precipitating unnecessary metals contained in the leachate in the state of a sparingly soluble substance, and performing solid-liquid separation to obtain a purified liquid in which lithium is dissolved. It provides a collection method for.
  • a lithium ion secondary battery to be disposed of is melted to obtain a molten metal containing a valuable metal and a molten slag containing at least aluminum and lithium, and then the molten metal containing the valuable metal is used.
  • a method of producing lithium carbonate from separated aluminum and slag containing at least lithium The melting conditions of the lithium ion secondary battery are adjusted so that the aluminum / lithium value, which is the mass ratio of aluminum to the lithium contained in the slag, is 6 or less.
  • the slag was brought into contact with the aqueous liquid to obtain a leachate in which lithium contained in the slag was leached.
  • the leachate is brought into contact with a basic substance to precipitate unnecessary metals contained in the leachate in the state of a sparingly soluble substance, and a purified liquid in which lithium is dissolved is obtained by solid-liquid separation. It is an object of the present invention to provide a method for producing lithium carbonate, in which the purified liquid in which lithium is dissolved is brought into contact with a carbonate or a carbonic acid gas to precipitate a carbonate of lithium in the liquid.
  • the slag produced when the lithium ion secondary battery to be disposed of is melted and the valuable metal is recovered is used as a raw material.
  • the lithium ion secondary battery to be discarded is a concept including a used lithium ion secondary battery and waste materials in the manufacturing process of the lithium ion secondary battery.
  • the waste material in the manufacturing process of the lithium ion secondary battery include defective products generated in the manufacturing process such as the positive electrode material constituting the lithium ion secondary battery, residues inside the manufacturing process, and generated waste.
  • Specific waste materials in the manufacturing process of used lithium-ion secondary batteries and lithium-ion secondary batteries that contain an electrolytic solution are dangerous because direct treatment may cause an explosion.
  • the method is not particularly limited, but for example, after discharging, the battery is physically opened with a needle-shaped cutting edge to remove the electrolytic solution, or the waste lithium ion secondary battery is heated as it is to burn the electrolytic solution to make it harmless. It needs to be processed.
  • the melting process for producing slag include the following processes. Specifically, the lithium ion secondary battery to be treated is melted and separated by melting at a high temperature in a reducing atmosphere. The lithium ion secondary battery is put into a melting furnace and melted at a temperature of, for example, about 1100 ° C to 1500 ° C in the presence of at least carbon or carbon monoxide.
  • a molten metal containing a valuable metal and a molten slag containing at least aluminum and lithium are produced.
  • Valuable metals such as copper, nickel, and cobalt contained in waste lithium-ion batteries are distributed to molten metal (metal).
  • lithium and aluminum contained in the waste lithium ion battery are basically distributed to the melt of slag which is an oxide.
  • the molten metal and slag melt can be separated by the difference in specific gravity. Metals with a heavy density are naturally separated into the lower layer, and slag with a light density is naturally separated into the upper layer.
  • the molten metal and the slag melt can be separated from the melt thus obtained, and by cooling each of them, a valuable metal (crude metal) containing nickel, cobalt, and copper as main components, lithium, and Slag containing impurity elements such as aluminum, manganese and phosphorus can be obtained.
  • a valuable metal crude metal
  • the degree of redox it is preferable to adjust the degree of redox.
  • the slag in the molten state is referred to as "melted” or "melted body".
  • the term "slag" without these terms refers to solid slag after separation from metal, unless otherwise noted.
  • the value of aluminum / lithium which is the mass ratio of aluminum to lithium contained in the slag, is 6 or less, preferably 5.0 or less, and more preferably 4.0 or less. It is particularly preferable that it is 3.5 or less.
  • the value of aluminum / lithium, which is the mass ratio of aluminum to lithium contained in the slag is preferably 0.5 or more in terms of availability of slag and aluminum separation, and particularly preferably 1.0 or more. ..
  • the value of aluminum / lithium contained in the slag can be obtained by ICP emission spectroscopic analysis, fluorescent X-ray analysis, or the like, and specifically, can be obtained by the method described in Examples described later.
  • the following methods (1) to (3) for controlling the amount of aluminum present in the melting step can be mentioned, and in particular, (1) is used. It is preferable to carry out, it is more preferable to carry out (1) and (2), and it is most preferable to carry out all of (1) to (3).
  • the method (1) is a method in which at least a part of aluminum is separated from the lithium ion secondary battery before the melting step by selectively melting and removing aluminum or selectively removing aluminum by crushing and separating. Is. Specifically, by selectively melting and removing aluminum, or by selectively removing aluminum by crushing and separating, at least a part of aluminum is removed from the scrap of the lithium ion secondary battery to be melted before the melting step. Is to be separated.
  • the exterior material of the lithium ion secondary battery is often a metal aluminum film, an aluminum can, an iron can, or a stainless steel can.
  • the aluminum film or aluminum can is selectively melted and removed as a pretreatment for a melting step of forming slag. It is preferable to apply the method.
  • the pretreatment may be performed at the same time as the detoxification treatment described above, or may be performed later.
  • Waste materials in the manufacturing process of lithium-ion secondary batteries and lithium-ion secondary batteries containing aluminum foil coated with positive electrode active material defectsive products generated in the manufacturing process of positive electrode materials, residues inside the manufacturing process, waste generated
  • the lithium ion secondary battery to be discarded is heated at a predetermined temperature exceeding the melting point of aluminum to selectively melt and remove aluminum.
  • the heating temperature is preferably 660 ° C or higher and lower than 1100 ° C, more preferably 700 ° C or higher and 800 ° C or lower.
  • the atmosphere for selectively melting and removing aluminum is not particularly limited, but a low oxygen atmosphere is preferable from the viewpoint of preventing oxidation of aluminum, and high-temperature exhaust gas from an incinerator or the like can also be used.
  • Aluminum can be selectively melted by heating at such a temperature before roasting at a high temperature of 1100 ° C. or higher as described above.
  • the selective melting and removal of aluminum may be carried out in the same heat treatment furnace as in the above melting treatment, or may be carried out in a different furnace.
  • the specific method for the molten aluminum is not particularly limited, but for example, after cooling, only the molten and solidified aluminum is selectively manually removed from the lithium ion secondary battery to be disposed of. Can be removed from the next battery.
  • the crushing is an iron outer can of a lithium ion secondary battery or a lithium ion secondary battery obtained by melting and removing the aluminum film or an aluminum can, or an aluminum film (positive electrode current collector) that has not been melted and removed in advance.
  • waste materials in the manufacturing process of lithium-ion secondary batteries and lithium-ion secondary batteries (defective products generated in the manufacturing process such as positive electrode materials, residues inside the manufacturing process, and generated waste) Etc.), in order to selectively separate the aluminum outer can that has not been removed because it has not been thawed and removed.
  • the aluminum foil is selectively separated from the waste material in the manufacturing process of the lithium ion secondary battery or the lithium ion secondary battery containing the aluminum foil coated with the positive electrode active material.
  • a shock-type crusher that can crush by applying an impact while cutting the lithium-ion secondary battery scrap to be discarded can be used, and a sample mill, a hammer mill, a cutter mill, a pin mill, and a wing can be used. Examples include mills, tornado mills, and hammer crushers.
  • the lithium ion secondary battery scrap is sieved using a sieve having a predetermined opening.
  • a sieve having a predetermined opening.
  • an aluminum foil, an aluminum can, or a copper foil remains on the sieve, and a powdered lithium ion secondary battery scrap from which aluminum has been removed to some extent can be obtained under the sieve.
  • a sieve having a mesh size of 1 mm to 10 mm for example, it is preferable to use a sieve having a mesh size of 1 mm to 10 mm, and more preferably a sieve having a mesh size of 2 mm to 5 mm. Further, when removing the aluminum film or the aluminum can from the sieve, it is also possible to selectively remove only the aluminum film or the aluminum can by a wind power sorter or an electromagnetic induction sorter utilizing the difference in specific gravity.
  • a furnace material containing no aluminum is used for the portion in contact with the melted slag, and the melting step is performed.
  • a method of melting treatment is performed using a melting furnace using a furnace material containing no aluminum.
  • Alumina is a refractory material generally used in a melting furnace, but it is preferable to use a melting furnace or a melting furnace material that does not contain the alumina to perform the above-mentioned melting.
  • the furnace material containing no aluminum include a furnace material that constitutes a furnace bottom and a furnace wall portion that come into contact with the melt.
  • alumina can be used only in places where the melt does not come into contact. For example, it can be used for a gas zone, a furnace lid, or the like.
  • the material of the furnace material constituting the furnace bottom and the furnace wall portion include magnesia, magnesia carbon, and magnesia chromium.
  • the content of the aluminum-containing component as the flux used in the melting step is based on the content of aluminum and lithium in the raw material, and the aluminum of the slag / Add a flux such that the lithium value does not exceed 6.
  • a flux that promotes the formation of slag can be added together with the melt.
  • the amount of aluminum-free flux added is not particularly limited, and the lithium content in the slag does not become too low from the viewpoint of lithium recovery due to the temperature of the obtained slag, impurities in the crude metal, and the like.
  • an aluminum-containing flux can also be used.
  • the content of aluminum in the aluminum-containing flux and the amount of flux used are such that the value of aluminum / lithium, which is the mass ratio of aluminum to lithium contained in the obtained slag, is 6 or less, preferably 0.5 or more and 5 or more. Adjust so that it is 0.0 or less, particularly preferably 1.0 or more and 4.0 or less.
  • the crude metal and slag can be separated from the melt obtained by the above melting step.
  • a crude metal containing copper, nickel and cobalt as main components and slag containing lithium and impurity elements can be obtained.
  • the slag usually has aluminum, magnesium, silicon, lithium, fluorine, manganese, etc. in the form of oxide.
  • the amount of lithium in the slag is preferably 1.0 to 25.0% by mass, preferably 5.0 to 15.0% by mass.
  • the amount of lithium in the slag can be measured by the method described in Examples described later.
  • the separated slag is brought into contact with the aqueous liquid to obtain a leachate in which the lithium contained in the slag is leached (lithium leaching step).
  • aqueous solution used in this step an aqueous solution of water or an acid can be used.
  • the acid include mineral acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid and carbonic acid, and organic acids such as citric acid, glycine, oxalic acid and acetic acid, which have high lithium leaching efficiency, low cost and impurities.
  • Sulfuric acid and hydrochloric acid are preferable in terms of the amount of labor required for separation.
  • the pH of the leachate is preferably pH 7 or less, and more preferably pH 5 or less. Further, it is preferable that the pH of the leaching solution is 5 or less in terms of increasing the leaching efficiency of lithium.
  • the pH of the leachate is the pH at the temperature of the mixed liquid of the aqueous liquid and the slag.
  • the amount of the aqueous liquid to be mixed with 100 parts by mass of the slag is preferably 100 parts by mass or more and 2000 parts by mass or less from the viewpoint of cost control and increasing the lithium concentration, and 200 parts by mass or more and 1500 parts by mass or less. Is more preferable.
  • the temperature of the leachate in this step is not particularly limited, but is preferably room temperature or higher and 300 ° C. or lower from the viewpoint of lithium leaching efficiency, and 30 ° C. or higher and 150 ° C. or lower is preferable from the viewpoint of energy cost. 60 ° C. or higher and 100 ° C. or lower are more preferable, and 70 ° C. or higher and 90 ° C. or lower are particularly preferable.
  • the leaching step can be performed under atmospheric pressure, it may be performed under pressure from the viewpoint of lithium leaching efficiency. In that case, the pressure conditions include, for example, 8.0 MPa or less as the absolute pressure. It is more preferably 0 MPa or more and 4.5 MPa or less.
  • the slag used in this step preferably has an average particle size of 5 mm or less, more preferably 3 mm or less, and 1 mm or less. Is particularly preferable.
  • the average particle size of the granules is preferably 0.5 mm or more.
  • the particle size of the slag can be adjusted by recovering the slag obtained by separating it from the metal through a dry treatment, subjecting the slag to known crushing and crushing treatments, and sieving treatment. can.
  • the average particle size can be analyzed by a known method, for example, the volume cumulative particle size at a cumulative volume of 50% measured by a laser diffraction / scattering method.
  • sodium hexametaphosphate can be used as a dispersion medium for slag when subjected to a laser diffraction / scattering method.
  • the leachate and the basic substance are brought into contact with each other to precipitate unnecessary metals contained in the leachate in the state of a poorly soluble substance.
  • the method of adding the basic substance is not particularly limited, but it may be added to the above-mentioned leachate, or the insoluble substance may be added to the liquid component obtained by solid-liquid separation from the leachate.
  • unwanted metals other than lithium in the leachate form a precipitate.
  • the unnecessary metal is not particularly limited, and examples thereof include calcium, magnesium, manganese, silicon, and aluminum.
  • the contact between the leachate and the basic substance is preferably carried out so that the pH of the mixture of the leachate and the basic substance is 5 or more and 14 or less, and particularly preferably 10 or more and 12 or less. It is most preferable to carry out so as to be 11 or less.
  • the pH of the mixture of the leachate and the basic substance is 12 or less from the viewpoint of preventing the redissolution of aluminum, which is an amphoteric metal.
  • the aluminum / lithium ratio in the slag is small, even if the pH of the aqueous solution is in the above range, the formation of a composite hydroxide of lithium and aluminum in the leachate is small, and the lithium recovery efficiency is effectively improved. Can be done.
  • the pH of the mixture of the leachate and the basic substance is the pH at the temperature at the start of solid-liquid separation.
  • the contact between the leachate and the basic substance is performed under atmospheric pressure conditions from the viewpoint of convenience.
  • the contact between the leachate and the basic substance may be performed at room temperature or may be heated.
  • the temperature of the mixture of the leachate and the basic substance is preferably room temperature or higher and 100 ° C. or lower, preferably 60 ° C. or higher and 90 ° C. or lower, from the viewpoint of lithium recovery efficiency and the effect of reducing the viscosity of the mixed liquid. Is more preferable.
  • Types of basic substances include sodium hydroxide solutions, alkali metal hydroxides such as magnesium hydroxide, calcium hydroxide, and lithium hydroxide, or hydroxides such as alkaline earth metal hydroxides, sodium carbonate, and carbonic acid.
  • Alkaline metal carbonates such as potassium, calcium carbonate and lithium carbonate or carbonates such as alkaline earth metal carbonates, sodium oxide and alkali metal oxides or alkaline earth metals such as potassium oxide, calcium oxide and lithium oxide.
  • oxides such as oxides and amines such as methylamine, dimethylamine and trimethylamine.
  • the method of solid-liquid separation of the mixture of the basic substance and the leachate is not particularly limited, and a known method can be used.
  • solid-liquid separation a sparingly soluble substance containing an unnecessary metal and a lithium-containing liquid in which the unnecessary metal is reduced and purified are separated.
  • a carbonate or carbonic acid gas is brought into contact with the purified liquid containing lithium obtained in the above purification step to generate a carbonate of lithium in the purified liquid.
  • the carbonate an alkali metal carbonate is preferable from the viewpoint of reactivity, and sodium carbonate and potassium carbonate are particularly preferable.
  • the purified liquid may be concentrated before reacting with carbonate or carbon dioxide gas, and in that case, the concentration ratio is preferably 1.1 to 30 times, more preferably 1.5 to 20 times.
  • the temperature of the purified liquid is 60 ° C to 100 ° C in terms of reaction efficiency and removal of impurities.
  • the present invention will be described based on examples, but the present invention is not limited to the following examples. All of the fluxes used below have the effect of promoting the formation of slag.
  • Composition analysis In the following examples, the component amount of each metal element in the slag is 110% by mass of 60% by mass of nitrate, 10% by mass of 35% by mass of hydrochloric acid, and 30% by mass of ultrapure water added to the slag.
  • the solution obtained by mixing at ° C for 2 hours and dissolving the solution was determined by composition analysis by ICP emission spectroscopic analysis.
  • the weight of the substance insoluble in the dissolution treatment is separately measured as the amount of lithium and aluminum in the slag, and the weight obtained by subtracting the amount of insoluble matter from the amount of slag charged is used.
  • the amount of lithium calculated in the above method is shown in Tables 1 and 2, and the mass ratio of aluminum to lithium was obtained from the aluminum concentration and the lithium concentration in the solution obtained by the dissolution treatment and shown in Tables 1 and 2.
  • the insoluble matter was separated from the liquid by a membrane filter, dried on a glass petri dish at 50 ° C. for 2 hours, and then weighed.
  • the amounts of metal elements in the leachate and the neutralizing solution were also determined by composition analysis by ICP emission spectroscopic analysis in the same manner. Further, the amount of lithium in lithium carbonate was determined by composition analysis by ICP emission spectroscopic analysis in the same manner after dissolving lithium carbonate.
  • Average particle size For the measurement of the average particle size of the slag, a device manufactured by HORIBA was used as a measuring device by the laser diffraction / scattering method.
  • Example 1 As the raw material slag, aluminum was used in an amount of 13.0% by mass and lithium was used in an amount of 8.8% by mass. This slag was obtained as follows.
  • the scrap of the aluminum can lithium ion secondary battery after the above-mentioned detoxification treatment is 750 under a low oxygen atmosphere having an oxygen concentration of 10% by volume or less and a balance of nitrogen and carbon dioxide.
  • the aluminum was selectively melted by heating to ° C. The resulting aluminum melt was removed from scrap by hand sorting.
  • Example 2 As the raw material slag, 13.9% by mass of aluminum and 5.2% by mass of lithium were used.
  • aluminum is selectively melted and removed from the scrap of the lithium ion secondary battery, the scrap after removing the aluminum is crushed with a hammer mill, and then sieved using a sieve having an opening of 2 mm. After that, the aluminum remaining on the sieve is removed on the obtained sieve by a wind sorter, and then the melting treatment is performed on the sieve from which the residual aluminum has been removed, under the sieve, and a flux (calcium compound, etc.) containing no aluminum. It was obtained in the same manner as in Example 1 except that it was carried out.
  • a slag having an aluminum / lithium mass ratio of 2.7 was obtained.
  • a slag having an average particle size of 0.5 mm or more and 1 mm or less was used.
  • 41 g of sulfuric acid diluted with water to 40% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH to 2.3.
  • 90 g of calcium hydroxide diluted with water to 5% by mass as a basic substance was added at 70 ° C. under atmospheric pressure to adjust the pH at 70 ° C. to 11.
  • Example 3 As the raw material slag, 19.1% by mass of aluminum and 5.5% by mass of lithium were used. This slag was obtained in the same manner as in Example 1 except that the slag was melted together with a crushed product crushed by a hammer mill and a flux (calcium compound or the like) containing no aluminum. By the above steps, a slag having an aluminum / lithium mass ratio of 3.5 was obtained. As the slag, a slag having an average particle size of 0.5 mm or more and 1 mm or less was used. To 10 g of the above slag, 58 g of sulfuric acid diluted with water to 40% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH to 1.1.
  • Example 4 As the raw material slag, aluminum was used in an amount of 27.9% by mass and lithium was used in an amount of 4.9% by mass. This slag was obtained in the same manner as in Example 1 except that alumina was used as a flux in the melting step and the slag was melted together. By the above steps, a slag having an aluminum / lithium mass ratio of 5.7 was obtained. As the slag, a slag having an average particle size of 0.5 mm or more and 1 mm or less was used. To 10 g of the above slag, 140 g of sulfuric acid diluted with water to 30% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH at 70 ° C. to less than 1.
  • Example 1 As the raw material slag, aluminum was used in an amount of 29.4% by mass and lithium was used in an amount of 3.9% by mass. This slag was obtained in the same manner as in Example 1 except that the crushed material crushed by a hammer mill was subjected to melting in Example 1 without performing the above-mentioned aluminum melting removal as described in (1). The slag used was crushed to an average particle size of 0.5 mm or more and 1 mm or less. To 10 g of the above slag, 75 g of sulfuric acid diluted with water to 40% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH at 70 ° C. to less than 1.
  • Example 2 As the raw material slag, aluminum was used in an amount of 28.6% by mass and lithium was used in an amount of 3.6% by mass. This slag was obtained in the same manner as in Example 1 except that the crushed material crushed by a hammer mill was subjected to melting in Example 1 without performing the above-mentioned aluminum melting removal as (1), and alumina was used as the furnace material. It was the one that was done. As the slag, a slag having an average particle size of 0.5 mm or more and 1 mm or less was used. To 10 g of the above slag, 75 g of sulfuric acid diluted with water to 40% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH at 70 ° C.
  • the lithium recovery rate can be significantly increased by setting the aluminum / lithium mass ratio to 6 or less.
  • Example 5 As the raw material slag, 19.1% by mass of aluminum and 5.5% by mass of lithium were used. This slag was obtained in the same manner as in Example 1 except that the slag was melted together with a crushed product crushed by a hammer mill and a flux (calcium compound or the like) containing no aluminum. By the above steps, a slag having an aluminum / lithium mass ratio of 3.5 was obtained. The slag was crushed so that the average particle size was as shown in Table 2. To 15 g of the above slag, 113 g of sulfuric acid diluted with water to 40% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH at 70 ° C. to less than 1. Table 2 shows the amount of lithium in the obtained leachate and the lithium recovery rate.
  • Example 9 As the raw material slag, 13.9% by mass of aluminum, 5.2% by mass of lithium, 3.7% by mass of magnesium, and 2.9% by mass of manganese were used.
  • this slag was obtained by selectively melting aluminum from scrap of a lithium ion secondary battery, crushing it with a hammer mill, sieving it with a sieve having a mesh size of 2 mm, and then sieving it on the obtained sieve.
  • aluminum remaining on the sieve was removed by a wind sorter, and then a melting treatment was performed on the sieve from which the residual aluminum was removed, under the sieve, and a flux containing no aluminum (calcium compound, etc.). It was obtained in the same manner as in 1.
  • a slag having an aluminum / lithium mass ratio of 2.7 was obtained.
  • a slag having an average particle size of 0.5 mm or more and 1 mm or less was used.
  • sulfuric acid diluted with water to 40% by mass was added and heated to 70 ° C. under atmospheric pressure to adjust the pH at 70 ° C. to 1.8.
  • Calcium hydroxide diluted with water to 5% by mass as a basic substance was added to the obtained leachate containing slag at 70 ° C. under atmospheric pressure, and the pH at 70 ° C. was adjusted to the value shown in Table 3. bottom.
  • Example 10 The pH at 70 ° C. prepared by adding a basic substance in the leachate was changed to the value shown in Table 3.
  • a purified liquid was obtained in the same manner as in Example 9 except for the above.
  • the amount of lithium, magnesium and manganese in the purified liquid were measured by the above method. The results are shown in Table 3.
  • Example 12 The purified solution obtained in Example 9 was concentrated 10-fold by vacuum concentration, and then 2.5 g of sulfuric acid diluted with water was added to 10% by mass to adjust the pH at 70 ° C. to 7. Sodium carbonate was added to this liquid and reacted at 80 ° C., and then the precipitated lithium carbonate was separated into solid and liquid by filtration under heating conditions, recovered, and dried at 100 ° C. When the amount of lithium in lithium carbonate was measured and the lithium recovery rate from slag was determined, it was 52%. From the analysis value of the impurity metal, the lithium carbonate purity was 98% by mass.
  • lithium can be recovered more efficiently than before from the slag generated when the lithium ion secondary battery to be disposed of is melted and the valuable metal is recovered.
  • the method of the present invention can effectively utilize the above-mentioned slag, which has been limited in its use as a building material, in a small number of processes, and has a small environmental load.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を含む熔融した金属、およびアルミニウムとリチウムを少なくとも含む熔融したスラグを得た後、該有価金属を含む熔融した金属から分離されたアルミニウムとリチウムを少なくとも含むスラグからリチウムを回収する方法であって、 前記スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下となるように、前記リチウムイオン二次電池の熔融条件を調整し、 前記スラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得、 前記浸出液と塩基性物質とを接触させて、該浸出液に含まれる不要金属を難溶性物質の状態で沈殿させ、固液分離により、リチウムが溶解している精製液を得る。

Description

リチウムの回収方法及び炭酸リチウムの製造方法
 本発明は、リチウムの回収方法及び炭酸リチウムの製造方法に関する。
 リチウムイオン二次電池は、スマートフォン、ノートパソコン、電気工具、電波中継器等の比較的小型な機器や、ハイブリット自動車や、電気自動車、家庭用蓄電池、太陽光蓄電設備、非常用蓄電池等の大型の機器にも搭載されている。
 リチウムイオン二次電池は、アルミニウムや鉄、ステンレス等で構成される金属製の缶体、又はポリプロピレン、アルミニウム箔等で構成されるラミネートフィルムを外装材として、内部に銅箔を負極集電体に用いて表面に黒鉛等の負極活物質を固着させた負極材と、アルミニウム箔からなる正極集電体にニッケル酸リチウムやコバルト酸リチウム等の正極活物質を固着させた正極材とを、ポリプロピレンの多孔質樹脂フィルム等からなるセパレーターと共に装入し、リチウム塩電解質を含んだ有機溶媒を電解液として封入した構造を有する。
 上記リチウムイオン二次電池搭載の機器は、充放電の繰り返しや過充電によりリチウムイオン二次電池の性能が劣化していき、廃リチウムイオン二次電池として処分される。リチウムイオン二次電池の劣化が確認されていない機器であっても、利用者の買い替えにより処分されることもある。また、リチウムイオン二次電池の製造工程では、工程内の不具合等に起因して、利用される前に不良品として廃棄されることもある。
 これらの廃リチウムイオン二次電池には、ニッケルやコバルト、銅、リチウム等の有価成分が含まれており、資源の有効活用及び環境汚染対策として有価成分を回収して再利用することが検討されている。
 一般に、金属で作られた材料や部材、複数の構造体から構成される装置から有価成分を効率的に回収する場合、加熱炉等に投入して高温下で焙焼又は熔融する乾式処理が用いられる。
 従来、リチウムイオン二次電池からのリチウム回収は、ほとんどが焙焼処理したリチウムイオン二次電池破砕粉末からの回収に限られている(特許文献1及び2)。  
 特許文献1では、リチウムイオン二次電池スクラップ焙焼物からリチウムを回収する手段として、浸出や中和分別により回収することを試みている。
 特許文献2では、リチウムイオン二次電池スクラップ焙焼物からリチウムを溶剤・抽出剤による多段階の抽出や不純物ごとの分別除去といった多数の工程を経ることでリチウム回収を行っている。
 一方、特許文献3には、廃リチウムイオン二次電池に対する乾式の熔融プロセスで得られたスラグからリチウムを回収することが記載されている。乾式の熔融プロセスでは、リチウムイオン二次電池はフラックス(熔剤)とともに例えば1100℃以上の温度で高温加熱され、廃リチウムイオン二次電池は、コバルトやニッケル、銅といった有価金属を含むメタルと、廃棄処理対象となるスラグとに分けられる。
特開2019-160429号公報 特開2019-173106号公報 特開2020-29613号公報
 特許文献1に記載の方法では、焙焼したリチウムイオン二次電池スクラップにおけるニッケル、コバルト、銅を熔解するために多くの薬品を使用する必要がある。また、有価金属であるニッケル、コバルト、銅は中和残渣に取り込まれるため、再溶解させ、分離回収する手間やロスが増大する。
 特許文献2に記載の複雑な工程は、リチウムの回収効率を下げるだけでなく、使用する薬品、溶剤等が廃液、廃棄物として大量に発生するため、環境影響の低減に対するコストや手間がかかるといった問題点を抱える。また、得られるリチウム化合物においても使用薬剤の影響により、品質低下を招くため、効率的な方法とは言いづらい。
 特許文献3に記載の方法のように、乾式の熔融プロセスで生じたスラグを用いることは、ニッケル、コバルト、銅を除去した経済価値の乏しいスラグを有効活用できる点で有利である。しかしながら、特許文献3のように単にスラグを水性液と接触させる浸出工程によっては、リチウム回収率は十分でないことを本発明者は知見した。
 したがって本発明の課題は、上記の従来技術が解決していない課題を解決することにある。
 本発明者は廃棄処理対象のリチウムイオン二次電池を熔融プロセスに供してなるスラグからリチウムの回収効率を高める技術について鋭意検討した。その結果、スラグにおけるアルミニウムとリチウムとの質量比が特定値以下である場合にリチウム回収率が飛躍的に向上することを知見した。
 本発明は上記知見に基づくものであり、廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を含む熔融した金属、およびアルミニウムとリチウムを少なくとも含む熔融したスラグを得た後、該有価金属を含む熔融した金属から分離されたアルミニウムとリチウムを少なくとも含むスラグからリチウムを回収する方法であって、前記スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下となるように、前記リチウムイオン二次電池の熔融条件を調整し、
 前記スラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得る、リチウム浸出工程を有し、
 前記浸出液と塩基性物質とを接触させて、該浸出液に含まれる不要金属を難溶性物質の状態で沈殿させ、固液分離により、リチウムが溶解している精製液を得る精製工程を有する、リチウムの回収方法を提供するものである。
 また本発明は、廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を含む熔融した金属、およびアルミニウムとリチウムを少なくとも含む熔融したスラグを得た後、該有価金属を含む熔融した金属から分離されたアルミニウムとリチウムを少なくとも含むスラグから炭酸リチウムを製造する方法であって、
 前記スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下となるように、前記リチウムイオン二次電池の熔融条件を調整し、
 前記スラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得、
 前記浸出液と塩基性物質とを接触させて、該浸出液に含まれる不要金属を難溶性物質の状態で沈殿させ、固液分離により、リチウムが溶解している精製液を得、
 リチウムが溶解している前記精製液と炭酸塩又は炭酸ガスとを接触させ、該液中にリチウムの炭酸塩を沈殿させる、炭酸リチウムの製造方法を提供するものである。
 以下本発明のリチウムの回収方法及び炭酸リチウムの製造方法について、その好ましい実施形態に基づき説明する。
 本発明では、廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を回収した際に生成するスラグを原料とする。
 ここで、廃棄処理対象のリチウムイオン二次電池とは使用済みのリチウムイオン二次電池や、リチウムイオン二次電池の製造工程内における廃材を含む概念の物である。リチウムイオン二次電池の製造工程内における廃材としては、リチウムイオン二次電池を構成する正極材等の製造工程で生じた不良品、製造工程内部の残留物、発生屑等が挙げられる。使用済みのリチウムイオン二次電池や、リチウムイオン二次電池の製造工程内における廃材のうち内部に電解液を含有するものについては、直接処理すると爆発の恐れがあり危険であるため、具体的な方法は特に限定されないが、例えば、放電後に針状の刃先で電池を物理的に開孔し、電解液を除去、或いは廃リチウムイオン二次電池をそのまま加熱して電解液を燃焼して無害化処理を施す必要がある。
 スラグを生成する熔融工程としては以下の工程が挙げられる。
 具体的には、処理対象であるリチウムイオン二次電池を還元雰囲気下において高温で熔融することによって熔解分離する。リチウムイオン二次電池は熔融炉に投入して、例えば1100℃~1500℃程度の温度で、少なくとも炭素又は一酸化炭素の存在下で熔融する。このような還元焙焼に基づく乾式の熔融処理により、有価金属を含む熔融した金属、および、アルミニウムとリチウムを少なくとも含む熔融したスラグが生成する。廃リチウムイオン電池に含まれる銅やニッケル、コバルト等の有価金属は、熔融金属(メタル)へと分配される。一方、廃リチウムイオン電池に含まれるリチウム及びアルミニウムは基本的に、酸化物であるスラグの熔体に分配される。熔融状態のメタル並びにスラグ熔体は比重差によって分離することができる。比重の重いメタルは下層へ、比重の軽いスラグは上層に自然分離される。このようにして得られた熔融物から熔融されたメタルとスラグ熔体とを分離でき、それぞれを冷却することで、ニッケル、コバルト、銅を主成分とする有価金属(粗メタル)と、リチウム及びアルミニウムやマンガン、リンなど不純物元素を含むスラグとが得られる。熔融処理においては、酸化還元度を調整することが好ましい。酸化還元度の調整には、炭素量の増減や空気、純酸素、酸素富化気体等の酸素を含む気体等を用いることができる。
 本明細書において、基本的に、熔融状態のスラグには「熔融した」又は「熔体」を付す。これらの語を付さず単に「スラグ」という場合、特に断らない限り、メタルと分離した後の固体状のスラグを指す。
 本発明においては、スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値は6以下であり、5.0以下であることが好ましく、4.0以下であることがより好ましく、3.5以下であることが特に好ましい。スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値は0.5以上であることがスラグの入手容易性やアルミニウム分別の点で好ましく、1.0以上であることが特に好ましい。スラグ中に含まれるアルミニウム/リチウムの値はICP発光分光分析や蛍光X線分析法等で求められ、具体的には後述する実施例に記載の方法にて求めることができる。
 スラグ中に含まれるアルミニウム/リチウムの値を上記範囲内とするためには、熔融工程に存在するアルミニウム量を制御する以下の(1)~(3)の方法が挙げられ、特に(1)を行うことが好ましく、(1)及び(2)を行うことがより好ましく、(1)~(3)をすべて行うことが最も好ましい。
 (1)の方法とは、選択的にアルミニウムを融解除去する、又は破砕分別により選択的にアルミニウムを除去することにより、熔融工程前に少なくとも一部のアルミニウムをリチウムイオン二次電池から分離するものである。具体的には、選択的にアルミニウムを融解除去する、又は破砕分別により選択的にアルミニウムを除去することにより、熔融工程前に、熔融対象であるリチウムイオン二次電池のスクラップから少なくとも一部のアルミニウムの分離を施すものである。
 リチウムイオン二次電池の外装材は金属のアルミニウムフィルムやアルミニウム缶や鉄缶、ステンレス缶である場合が多い。特に、アルミニウムフィルムやアルミニウム缶が使用されているリチウムイオン二次電池からアルミニウムを優先的に除去する場合、スラグを生成する熔融工程の前処理として、選択的にアルミニウムフィルムやアルミニウム缶を融解除去する方法を施すことが好ましい。前処理は前記記載の無害化処理と同時に行ってもよく、後に行ってもよい。正極活物質が塗布されたアルミニウム箔を内包したリチウムイオン二次電池やリチウムイオン二次電池の製造工程における廃材(正極材等の製造工程で生じた不良品、製造工程内部の残留物、発生屑等)から、正極活物質が塗布されたアルミニウム箔を分離する場合には、破砕分別によりアルミニウムを除去する方法を施すことが好ましい。
 また、アルミニウム融解除去を施していないアルミニウムフィルムやアルミニウム缶が使用されたリチウムイオン二次電池についても、破砕分別によりアルミニウムを選択的に除去することもできる。なお、融解除去と破砕分別による除去とを組み合わせてもよい。
 選択的にアルミニウムを融解除去する工程としては、例えば前述した熔融処理の前に、アルミニウムの融点を超える所定温度で廃棄処理対象リチウムイオン二次電池を加熱して、アルミニウムを選択的に融解除去する方法が挙げられる。選択的なアルミニウムの融解除去に用いるため、加熱温度は660℃以上1100℃未満が好ましく挙げられ、700℃以上800℃以下がより好ましい。選択的なアルミニウムの融解除去の雰囲気としては、特に制限はないが、アルミニウムの酸化を防止する観点から低酸素雰囲気が好ましく、焼却炉等の高温の排ガスを用いることもできる。上述した1100℃以上の高温での焙焼の前に、このような温度で加熱することで、アルミニウムを選択的に融解できる。選択的なアルミニウムの融解除去は上記の熔融処理と同じ熱処理炉で行ってもよく、異なる炉で行ってもよい。融解したアルミニウムは、具体的な方法は特に限定されないが、例えば冷却後、廃棄処理対象リチウムイオン二次電池から融解固化したアルミニウムのみを選択的に手作業で取り除く方法にて廃棄処理対象リチウムイオン二次電池から除去できる。
 一方、破砕は、前記アルミニウムフィルムやアルミニウム缶を融解除去したリチウムイオン二次電池やリチウムイオン二次電池の鉄製の外装缶、或いは事前に融解除去を施していないアルミニウムフィルム(正極集電体)やアルミニウム缶(外装缶)を破壊するとともに、リチウムイオン二次電池やリチウムイオン二次電池の製造工程内における廃材(正極材等の製造工程で生じた不良品、製造工程内部の残留物、発生屑等)から、融解除去を施していない等の理由から未除去のアルミニウム製の外装缶を選択的に分離させるために行う。また、正極活物質が塗布されたアルミニウム箔が内包されたリチウムイオン二次電池やリチウムイオン二次電池の製造工程内における廃材から、前記アルミニウム箔を選択的に分離するために行う。
 破砕には、廃棄処理対象のリチウムイオン二次電池スクラップを切断しながら衝撃を加えて破砕することのできる衝撃式の粉砕機を用いることができ、サンプルミル、ハンマーミル、カッターミル、ピンミル、ウィングミル、トルネードミル、ハンマークラッシャ等が挙げられる。廃棄処理対象リチウムイオン二次電池スクラップを破砕した後は、所定の目開きの篩を用いて、リチウムイオン二次電池スクラップを篩別する。それにより、篩上には、例えば、アルミニウム箔やアルミニウム缶や銅箔が残り、篩下には、アルミニウムがある程度除去された粉末状のリチウムイオン二次電池スクラップを得ることができる。効率的なアルミニウム除去のために、篩としては、例えば目開き1mm~10mmの篩を用いることが好ましく、2mm~5mmの篩を用いることがより好ましい。また、篩上からアルミニウムフィルムやアルミニウム缶を除去する場合、比重差を利用した風力選別機等や電磁誘導選別機によりアルミニウムフィルムやアルミニウム缶のみを選択的に除去することもできる。
(2)の方法とは、熔融工程で用いる炉において、熔融したスラグと接する部分にはアルミニウムを含まない炉材を使用し、熔融工程を施すものである。例えば、スラグを生成する熔融工程において、アルミニウムを含まない炉材を使用する熔融炉を用いて、熔融処理する方法を施す。
 アルミナは一般に熔融炉に汎用される耐火材料であるが、これを含まない熔融炉又は熔融炉材を使用して上述した熔融を行うことが好ましい。アルミニウムを含まない炉材としては、熔融物と接触する炉底並びに炉壁部分を構成する炉材が挙げられる。一方、アルミナは熔融物の接触しない箇所に限定して使用することができる。例えばガスゾーンや炉蓋等に使用することができる。
 炉底並びに炉壁部分を構成する炉材の材質としては、マグネシア、マグネシアカーボン、マグネシアクロム等が挙げられる。
(3)熔融工程でスラグの生成を促すフラックスを添加する場合には、熔融工程に使用するフラックスとして、アルミニウム含有成分の含有量が、原料中のアルミニウム、リチウム含有量を基にスラグのアルミニウム/リチウムの値が6を超えないようなフラックスを添加する。
 熔融工程においては、熔融物と共にスラグの生成を促すフラックスを投入して行うことができる。このようなフラックスとしては、アルミニウム非含有のものを用いることが好ましく、例えば酸化カルシウム、酸化マグネシウム、酸化ケイ素等が挙げられる。また、アルミニウム非含有のフラックスの添加量は特に限定されるものではなく、得られるスラグの温度や粗メタル中の不純物等によって、リチウム回収の観点からスラグ中のリチウム含有量が低くなりすぎない範囲で任意に変更可能である。また、アルミニウム含有のフラックスも用いることができる。アルミニウム含有のフラックス中のアルミニウムの含有量及びフラックスの使用量は、得られるスラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下であり、好ましくは0.5以上5.0以下、特に好ましくは1.0以上4.0以下の範囲であるように調整する。
 上記の通り、上記の熔融工程によって得られた熔融物から粗メタルとスラグとを分離できる。これにより銅、ニッケル、コバルトを主成分とする粗メタルと、リチウム及び不純物元素を含むスラグとが得られる。
 スラグとしては通常、アルミニウム、マグネシウム、ケイ素、リチウム、フッ素、マンガン等を酸化物の形態で有するものである。得られたスラグからリチウムを効率的に回収する観点から、スラグ中のリチウム量としては、1.0~25.0質量%が好ましく、5.0~15.0質量%が好ましい。スラグ中のリチウム量は後述する実施例に記載の方法にて測定できる。
[リチウム浸出工程]
 次に、分離したスラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得る(リチウム浸出工程)。本工程において用いる水性液としては、水又は酸の水溶液を用いることができる。酸としては、例えば硫酸、硝酸、塩酸、リン酸、炭酸等の鉱酸やクエン酸、グリシン、シュウ酸、酢酸等の有機酸が挙げられ、リチウム浸出効率が高い点やコストが低い点、不純物分離に供する労力の少なさの点で硫酸、塩酸が好ましい。
 浸出液のpHとしてはpH7以下であることが好ましく、更にはpH5以下であることがより好ましい。また浸出液のpHが5以下であることは、リチウムの浸出効率を高める点で好ましい。ここで浸出液のpHとは水性液とスラグとの混合液の温度におけるpHである。
 リチウム浸出工程において、スラグ100質量部と混合する水性液の量は100質量部以上2000質量部以下とすることが、コストの抑制やリチウム濃度を高める点で好ましく、200質量部以上1500質量部以下とすることがより好ましい。
 本工程における浸出液の温度(浸出時の液温)としては、特に限定されないがリチウム浸出効率の点から、室温以上300℃以下が挙げられ、エネルギーコストの点から30℃以上150℃以下が好ましく、60℃以上100℃以下がより好ましく、70℃以上90℃以下が特に好ましい。浸出工程は大気圧下で行うことができるが、リチウム浸出効率の点から加圧下で行ってもよく、その場合の加圧条件としては、例えば絶対圧として8.0MPa以下が挙げられ、2.0MPa以上4.5MPa以下が更に好ましい。
 本工程に供するスラグは、リチウム浸出効率の点で、その平均粒径が5mm以下の粒状体であることが好ましく、3mm以下の粒状体であることをより好ましく、1mm以下の粒状体であることが特に好ましい。スラグの粒径が小さくなるほどより効率的にリチウムを回収することができるが、微粉であると取り扱いが困難となり、また粉砕等の処理に要するコストもかかるため、取り扱い性や経済性の観点から、粒状体の平均粒径は0.5mm以上とすることが好ましい。スラグの粒径調整は、乾式処理を経てメタルと分離して得られたスラグを回収し、そのスラグに対して公知の粉砕、破砕処理等を施し、また篩分け処理を施すことによって行うことができる。平均粒径は、公知の方法により分析でき、例えば、レーザー回折散乱法により測定する累積体積50%における体積累積粒径である。レーザー回折散乱法に供する際のスラグの分散媒として例えばヘキサメタリン酸ナトリウムを用いることができる。
[精製工程]
 次に前記浸出液と塩基性物質とを接触させて、該浸出液に含まれる不要金属を難溶性物質の状態で沈殿させる。塩基性物質の添加方法は特に限定されないが、前述した浸出液に添加してもよく、浸出液から不溶物を固液分離して得られた液体分に添加してもよい。塩基性物質を接触させて浸出液のpHを上昇させることにより、浸出液中のリチウム以外の不要金属が沈殿を形成する。不要金属としては、特に限定されず、例えば、カルシウム、マグネシウム、マンガン、ケイ素、アルミニウムなどが挙げられる。
 前記浸出液と塩基性物質との接触は、浸出液と塩基性物質との混合物のpHが5以上14以下となるように行うことが好ましく、10以上12以下となるように行うことが特に好ましく、10以上11以下となるように行うことが最も好ましい。特に、浸出液と塩基性物質との混合物のpHは10以上となるように行うことが、マンガンやマグネシウム等の不要金属を効果的に析出させる点で好ましい。また、浸出液と塩基性物質との混合物のpHが12以下であることは、両性金属であるアルミニウムの再溶解を防ぐ点から好ましい。本発明では、スラグ中のアルミニウム/リチウム比が小さいことから水性液のpHを上記範囲としても浸出液中のリチウムとアルミニウムとの複合水酸化物の生成が少なく、効果的にリチウム回収効率を高めることができる。浸出液と塩基性物質との混合物のpHは固液分離開始時点における温度でのpHである。
 前記浸出液と塩基性物質との接触は、大気圧下の条件で行われることが簡便性の点で好ましい。前記浸出液と塩基性物質との接触は室温で行ってもよく、加熱してもよい。加熱する場合、リチウム回収効率の点、及び混合液の粘性低下効果の点から、前記浸出液と塩基性物質の混合物の温度が、室温以上100℃以下であることが好ましく、60℃以上90℃以下であることがより好ましい。
 塩基性物質の種類としては、水酸化ナトリウム溶液や水酸化マグネシウム、水酸化カルシウム、水酸化リチウムのようなアルカリ金属水酸化物又はアルカリ土類金属水酸化物等の水酸化物、炭酸ナトリウムや炭酸カリウム、炭酸カルシウム、炭酸リチウムのようなアルカリ金属炭酸塩又はアルカリ土類金属炭酸塩等の炭酸塩、酸化ナトリウムや、酸化カリウム、酸化カルシウム、酸化リチウムのようなアルカリ金属酸化物又はアルカリ土類金属酸化物等の酸化物、メチルアミン、ジメチルアミン、トリメチルアミンのようなアミン類が挙げられる。
 次いで、塩基性物質と浸出液との混合物に対する固液分離の方法としては、特に限定されず、公知の方法により行うことができる。固液分離により、不要金属を含む難溶性物質と、当該不要金属が低減されて精製されたリチウム含有液とを分離する。
[炭酸塩生成工程]
 本発明においては、上記精製工程において得られたリチウムを含む精製液に対し、炭酸塩又は炭酸ガスを接触させて、当該精製液中にリチウムの炭酸塩を生成させる。炭酸塩としては反応性の点から、アルカリ金属の炭酸塩が好ましく、中でも炭酸ナトリウムや炭酸カリウムが好ましい。また精製液は、炭酸塩又は炭酸ガスと反応させる前に濃縮させてもよく、その場合の濃縮倍率としては1.1~30倍が好ましく挙げられ、1.5~20倍がより好ましい。
 炭酸塩生成において、精製液の温度は60℃~100℃とすることが反応効率及び不純物除去の点で好ましい。
 以下実施例に基づき本発明を説明するが本発明は下記実施例に限定されるものではない。なお、以下で用いたフラックスはいずれもスラグの生成を促進する作用を有するものであった。
(組成分析)
 以下の実施例において、スラグ中の各金属元素の成分量は、スラグに対し10質量倍の60質量%硝酸、10質量倍の35質量%塩酸、30質量倍の超純水を添加し、110℃にて2時間混合して溶解処理して得られた溶解液をICP発光分光分析により組成分析して求めた。なお溶解処理では不溶分が生じる場合があったため、スラグ中のリチウム量及びアルミニウム量としては溶解処理に不溶な物質の重量を別途測定し、スラグの仕込量から不溶解物量を差し引いた重量を用いて算出したリチウム量を表1及び表2に記載するとともに、溶解処理によって得られた溶液中のアルミニウム濃度とリチウム濃度から、アルミニウムとリチウムの質量比を求め、表1及び表2に記載した。なお、不溶解分はメンブレンフィルターにより液分と分離した後、ガラスシャーレ上で、電気乾燥機を用いて50℃で2時間乾燥させた後に重さを測定して求めた。
 また浸出液及び中和液における金属元素の量についても同様にICP発光分光分析により組成分析して求めた。また、炭酸リチウム中のリチウムの量は、炭酸リチウムを溶解させた後に、同様にICP発光分光分析により組成分析して求めた。
(平均粒径)
 スラグの平均粒径の測定には、レーザー回折散乱法による測定装置としてホリバ社製装置を用いた。
(実施例1)
 原料スラグとして、アルミニウムが13.0質量%、リチウムが8.8質量%のものを用いた。
 本スラグは以下のようにして得たものであった。
 上記熔融工程において、(1)として、上述した無害化処理後のアルミニウム缶製リチウムイオン二次電池のスクラップを酸素濃度10体積%以下、残分が窒素及び二酸化炭素である低酸素雰囲気下、750℃に加熱してアルミニウムを選択的に融解させた。得られたアルミニウム融解物を手選別によってスクラップから除去した。次いで、アルミニウム除去後のスクラップをハンマーミルで粉砕した後に、目開き2mmの篩を用いて篩別後、得られた篩下とアルミニウムを含まないフラックス(カルシウム化合物等)と共に、炭素の存在下、還元雰囲気において1400℃での加熱により熔融処理を行った。熔融炉の炉壁を構成する炉材にはすべてマグネシアを用いた。
 上記の工程により、アルミニウム/リチウム質量比を1.5としたスラグを得た。スラグは平均粒径が0.5mm以上1mm以下となるように粉砕したものであった。
 上記スラグ10gに対し、水で40質量%に希釈した硫酸を77g加え、大気圧下、70℃に加熱し、pHを1未満に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として25質量%に水で希釈した水酸化カルシウムを64g添加し、70℃でのpHを11に調整した。析出物をろ過により固液分離した後、ろ過の残渣を100gの水で通水洗浄し、洗浄液を含めた精製液を得た。精製液中のリチウム量を、上記方法にて測定した。スラグからのリチウム回収率は表1の通りであった。
(実施例2)
 原料スラグとして、アルミニウムが13.9質量%、リチウムが5.2質量%のものを用いた。
 本スラグは実施例1において、リチウムイオン二次電池のスクラップからアルミニウムを選択的に融解させて除去し、アルミニウム除去後のスクラップをハンマーミルで粉砕した後に、目開き2mmの篩を用いて篩別後、得られた篩上を風力選別機により篩上に残留したアルミニウムを除去し、次いで、残留アルミニウムを除去した篩上と篩下とアルミニウムを含まないフラックス(カルシウム化合物等)と共に、熔融処理を行った以外は実施例1と同様にして得られたものであった。上記の工程により、アルミニウム/リチウム質量比を2.7としたスラグを得た。スラグは平均粒径を0.5mm以上1mm以下に粉砕したものを用いた。
 上記スラグ10gに対し、40質量%に水で希釈した硫酸を41g加え、大気圧下、70℃に加熱し、pHを2.3に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として5質量%に水で希釈した水酸化カルシウムを90g添加し、70℃でのpHを11に調整した。析出物をろ過により固液分離した後、100gの水で前記ろ過残渣を通水洗浄し、洗浄液を含めた精製液を得た。精製液中のリチウム量を、上記方法にて測定した。スラグからのリチウム回収率は表1の通りであった。
(実施例3)
 原料スラグとして、アルミニウムが19.1質量%、リチウムが5.5質量%のものを用いた。
 本スラグは実施例1において、ハンマーミルで粉砕した破砕物とアルミニウムを含まないフラックス(カルシウム化合物等)と共に熔融処理を行った以外は実施例1と同様にして得られたものであった。上記の工程により、アルミニウム/リチウム質量比を3.5としたスラグを得た。スラグは平均粒径を0.5mm以上1mm以下に粉砕したものを用いた。
 上記スラグ10gに対し、40質量%に水で希釈した硫酸を58g加え、大気圧下、70℃に加熱し、pHを1.1に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として15質量%に水で希釈した水酸化カルシウムを83g添加し、70℃でのpHを11に調整した。析出物をろ過により固液分離した後、170gの水で前記ろ過残渣を通水洗浄し、洗浄液を含めた精製液を得た。精製液中のリチウム量を、上記方法にて測定した。スラグからのリチウム回収率は表1の通りであった。
(実施例4)
 原料スラグとして、アルミニウムが27.9質量%、リチウムが4.9質量%のものを用いた。
 本スラグは実施例1において、熔融工程におけるフラックスとしてアルミナを用いて共に熔融処理を行った以外は実施例1と同様にして得られたものであった。上記の工程により、アルミニウム/リチウム質量比を5.7としたスラグを得た。スラグは平均粒径を0.5mm以上1mm以下に粉砕したものを用いた。
 上記スラグ10gに対し、30質量%に水で希釈した硫酸を140g加え、大気圧下、70℃に加熱し、70℃でのpHを1未満に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として15質量%に水で希釈した水酸化カルシウムを209g添加し、70℃でのpHを11に調整した。析出物をろ過により固液分離した後、100gの水で前記ろ過残渣を通水洗浄し、洗浄液を含めた精製液を得た。精製液中のリチウム量を、上記方法にて測定した。スラグからのリチウム回収率は表1の通りであった。
(比較例1)
 原料スラグとして、アルミニウムが29.4質量%、リチウムが3.9質量%のものを用いた。
 本スラグは実施例1において、(1)として上述したアルミニウム融解除去を行わずにハンマーミルで粉砕した破砕物を熔融に供した以外は実施例1と同様にして得られたものであった。スラグは平均粒径0.5mm以上1mm以下に粉砕したものを用いた。
 上記スラグ10gに対し、40質量%に水で希釈した硫酸を75g加え、大気圧下、70℃に加熱し、70℃でのpHを1未満に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として15質量%に水で希釈した水酸化カルシウムを110g添加し、70℃でのpHを11に調整した。析出物をろ過により固液分離した後、120gの水で前記ろ過残渣を通水洗浄し、洗浄液を含めた精製液を得た。精製液中のリチウム量を、上記方法にて測定した。スラグからのリチウム回収率は表1の通りであった。
(比較例2)
 原料スラグとして、アルミニウムが28.6質量%、リチウムが3.6質量%のものを用いた。
 本スラグは実施例1において、(1)として上述したアルミニウム融解除去を行わずにハンマーミルで粉砕した破砕物を熔融に供し、炉材にアルミナを用いた以外は実施例1と同様にして得られたものであった。スラグは平均粒径を0.5mm以上1mm以下に粉砕したものを用いた。
 上記スラグ10gに対し、40質量%に水で希釈した硫酸を75g加え、大気圧下、70℃に加熱し、70℃でのpHを1未満に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として15質量%に水で希釈した水酸化カルシウムを111g添加し、70℃でのpHを11に調整した。析出物をろ過により固液分離した後、前記ろ過残渣を120gの水で通水洗浄し、精製液を得た。精製液中のリチウム量を、上記方法にて測定した。スラグからのリチウム回収率は表1の通りであった。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、アルミニウム/リチウム質量比を6以下とすることで、リチウム回収率を大幅に高めることができる。
 (実施例5~8)
 原料スラグとして、アルミニウムが19.1質量%、リチウムが5.5質量%のものを用いた。
 本スラグは実施例1において、ハンマーミルで粉砕した破砕物とアルミニウムを含まないフラックス(カルシウム化合物等)と共に熔融処理を行った以外は実施例1と同様にして得られたものであった。上記の工程により、アルミニウム/リチウム質量比を3.5としたスラグを得た。スラグは平均粒径を表2の値となるように粉砕したものであった。
 上記スラグ15gに対し、40質量%に水で希釈した硫酸を113g加え、大気圧下、70℃に加熱し、70℃でのpHを1未満に調整した。得られた浸出液中のリチウム量及びリチウム回収率は表2の通りであった。
Figure JPOXMLDOC01-appb-T000002
 表2の通り、スラグ粒径が5mm以下である場合、リチウム回収率は59%以上と良好な結果となった。
 (実施例9)
 原料スラグとして、アルミニウムが13.9質量%、リチウムが5.2質量%、マグネシウムが3.7質量%、マンガンが2.9質量%のものを用いた。
 本スラグは実施例1において、リチウムイオン二次電池のスクラップからアルミニウムを選択的に融解させた後、ハンマーミルで粉砕した後に、目開き2mmの篩を用いて篩別後、得られた篩上を風力選別機にて篩上に残留したアルミニウムを除去し、次いで、残留アルミニウムを除去した篩上と篩下とアルミニウムを含まないフラックス(カルシウム化合物等)と共に、熔融処理を行った以外は実施例1と同様にして得られたものであった。上記の工程により、アルミニウム/リチウム質量比を2.7としたスラグを得た。スラグは平均粒径を0.5mm以上1mm以下に粉砕したものを用いた。
 上記スラグ18gに対し、40質量%に水で希釈した硫酸を68g加え、大気圧下、70℃に加熱し、70℃でのpHを1.8に調整した。得られたスラグを含む浸出液に対し大気圧下、70℃において、塩基性物質として5質量%に水で希釈した水酸化カルシウムを添加し、70℃でのpHを表3に記載の値に調整した。析出物をろ過により固液分離した後、前記ろ過残渣を180gの水で通水洗浄して精製液を得た。精製液中のリチウム量、マグネシウム量及びマンガン量を、上記方法にて測定した。結果を表3に示す。
 (実施例10及び11)
 浸出液において塩基性物質を添加して調製した70℃でのpHを表3に記載の値に変更した。それ以外は実施例9と同様にして、精製液を得た。精製液中のリチウム量、マグネシウム量及びマンガン量を、上記方法にて測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 (実施例12)
 実施例9で得られた精製液を減圧濃縮にて10倍に濃縮した後に、10質量%に水で希釈した硫酸2.5gを添加して70℃でのpHを7に調整した。この液に炭酸ナトリウムを加えて、80℃で反応させた後、析出した炭酸リチウムを加熱条件下でのろ過により固液分離して回収し、100℃で乾燥させた。炭酸リチウム中のリチウム量を測定し、スラグからのリチウム回収率を求めたところ52%であった。不純物金属の分析値から炭酸リチウム純度は98質量%であった。
 本発明は、廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を回収した際に生じたスラグから従来よりも効率よくリチウムを回収できるものである。本発明の方法は、従来建材等用途が限定されていた上記スラグを少ない工程で有効活用でき、環境負荷が少ないものである。

Claims (7)

  1.  廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を含む熔融した金属、およびアルミニウムとリチウムを少なくとも含む熔融したスラグを得た後、該有価金属を含む熔融した金属から分離されたアルミニウムとリチウムを少なくとも含むスラグからリチウムを回収する方法であって、
     前記スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下となるように、前記リチウムイオン二次電池の熔融条件を調整し、
     前記スラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得、
     前記浸出液と塩基性物質とを接触させて、該浸出液に含まれる不要金属を難溶性物質の状態で沈殿させ、固液分離により、リチウムが溶解している精製液を得る、リチウムの回収方法。
  2.  前記リチウムイオン二次電池を熔融する際に、熔融工程に存在するアルミニウム量を制御して、スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下となるように調整する、請求項1に記載の回収方法。
  3.  以下(1)~(3)の何れかの方法によって、熔融工程に存在するアルミニウム量を制御する請求項2に記載の回収方法。
    (1)選択的にアルミニウムを融解除去する、又は破砕分別により選択的にアルミニウムを除去することにより、熔融工程前に少なくとも一部のアルミニウムをリチウムイオン二次電池から分離する。
    (2)熔融工程で用いる炉において、熔融したスラグと接する部分にはアルミニウムを含まない炉材を使用し、熔融工程を施す。
    (3)熔融工程でスラグの生成を促すフラックスを添加する場合には、使用するフラックスとして、原料中のアルミニウム及びリチウムの含有量を基にスラグのアルミニウム/リチウムの値が6を超えないようなアルミニウム含有量を有するフラックスを用いる。
  4.  粒径5mm以下の粒状体に粉砕された該スラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得る、請求項1~3の何れか一項に記載の回収方法。
  5.  前記浸出液と塩基性物質との接触を、浸出液と塩基性物質との混合物のpHが10以上12以下となるように行う、請求項1~4の何れか一項に記載の回収方法。
  6.  リチウムが溶解している前記精製液と炭酸塩又は炭酸ガスとを接触させ、該液中にリチウムの炭酸塩を沈殿させる、請求項1~5の何れか一項に記載の回収方法。
  7.  廃棄処理対象のリチウムイオン二次電池を熔融し、有価金属を含む熔融した金属、およびアルミニウムとリチウムを少なくとも含む熔融したスラグを得た後、該有価金属を含む熔融した金属から分離されたアルミニウムとリチウムを少なくとも含むスラグから炭酸リチウムを製造する方法であって、
     前記スラグ中に含まれるリチウムに対するアルミニウムの質量比であるアルミニウム/リチウムの値が6以下となるように、前記リチウムイオン二次電池の熔融条件を調整し、
     前記スラグと水性液とを接触させて、該スラグ中に含まれるリチウムが浸出した浸出液を得、
     前記浸出液と塩基性物質とを接触させて、該浸出液に含まれる不要金属を難溶性物質の状態で沈殿させ、固液分離により、リチウムが溶解している精製液を得、
     リチウムが溶解している前記精製液と炭酸塩又は炭酸ガスとを接触させ、該液中にリチウムの炭酸塩を沈殿させる、炭酸リチウムの製造方法。
     
PCT/JP2021/015245 2020-10-19 2021-04-13 リチウムの回収方法及び炭酸リチウムの製造方法 WO2022085222A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21882366.4A EP4230753A1 (en) 2020-10-19 2021-04-13 Method for recovering lithium and method for producing lithium carbonate
US18/018,415 US20230295770A1 (en) 2020-10-19 2021-04-13 Method for recovering lithium and method for producing lithium carbonate
CN202180065531.7A CN116323998A (zh) 2020-10-19 2021-04-13 锂的回收方法及碳酸锂的制造方法
JP2022556383A JPWO2022085222A1 (ja) 2020-10-19 2021-04-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-175511 2020-10-19
JP2020175511 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022085222A1 true WO2022085222A1 (ja) 2022-04-28

Family

ID=81291195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015245 WO2022085222A1 (ja) 2020-10-19 2021-04-13 リチウムの回収方法及び炭酸リチウムの製造方法

Country Status (5)

Country Link
US (1) US20230295770A1 (ja)
EP (1) EP4230753A1 (ja)
JP (1) JPWO2022085222A1 (ja)
CN (1) CN116323998A (ja)
WO (1) WO2022085222A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228538A1 (ja) * 2022-05-26 2023-11-30 住友金属鉱山株式会社 リチウム含有スラグ、並びに有価金属の製造方法
WO2023228537A1 (ja) * 2022-05-26 2023-11-30 住友金属鉱山株式会社 リチウム含有スラグ、並びに有価金属の製造方法
EP4372108A1 (en) 2023-03-22 2024-05-22 Umicore Lithium recovery from slags

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242967A (ja) * 1997-12-25 1999-09-07 Nippon Mining & Metals Co Ltd 使用済みリチウム電池からの有価物回収方法
JP2002029613A (ja) 2000-07-12 2002-01-29 At & C:Kk 商品仕分けシステム
JP2019160429A (ja) 2018-03-07 2019-09-19 Jx金属株式会社 リチウム回収方法
JP2019173106A (ja) 2018-03-28 2019-10-10 Jx金属株式会社 リチウム回収方法
JP2019175546A (ja) * 2018-03-26 2019-10-10 住友金属鉱山株式会社 熔融分離装置、廃リチウムイオン電池からのアルミニウムの分離方法、及び廃リチウムイオン電池からの有価物の回収方法
JP2020029613A (ja) * 2018-08-20 2020-02-27 住友金属鉱山株式会社 リチウムの回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242967A (ja) * 1997-12-25 1999-09-07 Nippon Mining & Metals Co Ltd 使用済みリチウム電池からの有価物回収方法
JP2002029613A (ja) 2000-07-12 2002-01-29 At & C:Kk 商品仕分けシステム
JP2019160429A (ja) 2018-03-07 2019-09-19 Jx金属株式会社 リチウム回収方法
JP2019175546A (ja) * 2018-03-26 2019-10-10 住友金属鉱山株式会社 熔融分離装置、廃リチウムイオン電池からのアルミニウムの分離方法、及び廃リチウムイオン電池からの有価物の回収方法
JP2019173106A (ja) 2018-03-28 2019-10-10 Jx金属株式会社 リチウム回収方法
JP2020029613A (ja) * 2018-08-20 2020-02-27 住友金属鉱山株式会社 リチウムの回収方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228538A1 (ja) * 2022-05-26 2023-11-30 住友金属鉱山株式会社 リチウム含有スラグ、並びに有価金属の製造方法
WO2023228537A1 (ja) * 2022-05-26 2023-11-30 住友金属鉱山株式会社 リチウム含有スラグ、並びに有価金属の製造方法
EP4372108A1 (en) 2023-03-22 2024-05-22 Umicore Lithium recovery from slags
WO2024194327A1 (en) 2023-03-22 2024-09-26 Umicore Lithium recovery from slags

Also Published As

Publication number Publication date
JPWO2022085222A1 (ja) 2022-04-28
EP4230753A1 (en) 2023-08-23
US20230295770A1 (en) 2023-09-21
CN116323998A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
Yu et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review
US12027681B2 (en) Method for recovering valuable metals from waste lithium ion batteries
Dobó et al. A review on recycling of spent lithium-ion batteries
CN110085939B (zh) 一种废旧磷酸铁锂电池正极片的分离回收方法
Yang et al. Recovery and regeneration of LiFePO 4 from spent lithium-ion batteries via a novel pretreatment process
TWI718398B (zh) 自鋰離子二次電池廢料回收鋰之方法
JP2021512215A (ja) リチウム電池をリサイクルする方法
CN110148801B (zh) 一种废旧磷酸铁锂电池正极片的真空分离方法
WO2022085222A1 (ja) リチウムの回収方法及び炭酸リチウムの製造方法
CN113517484B (zh) 废钴酸锂电池的处理方法及其产物
JP2019160429A (ja) リチウム回収方法
KR20210152565A (ko) 리튬 배터리 캐소드용 전구체 화합물의 제조 방법
WO2021090571A1 (ja) リチウムの分離方法
JP7271833B2 (ja) リチウムの回収方法
CN112779421B (zh) 一种废旧锂离子电池正极材料回收方法
CN110828888A (zh) 锂离子电池正极材料的全干法提纯方法及提纯得到的锂离子电池正极材料
JP6869444B1 (ja) リチウムの分離方法
CN107069134A (zh) 一种废旧锂电池正极材料与集流体分离的方法
CN105846006B (zh) 一种利用电弧炉回收废旧车用电池中锂金属的方法
JP7286085B2 (ja) リチウムイオン電池からのリチウムの回収方法
JP2023518880A (ja) 還元およびカルボニル化による電池の再利用
Ren et al. Lithium and manganese extraction from manganese-rich slag originated from pyrometallurgy of spent lithium-ion battery
JPH1046266A (ja) 二次電池廃品からのコバルト回収方法
JP2022164547A (ja) リチウムイオン二次電池からのリチウムの回収方法
JPH09157769A (ja) 再利用可能な希土類含有化合物の回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556383

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021882366

Country of ref document: EP

Effective date: 20230519