CN113707712A - 高耐压硅基氮化镓功率半导体器件及其制作方法 - Google Patents

高耐压硅基氮化镓功率半导体器件及其制作方法 Download PDF

Info

Publication number
CN113707712A
CN113707712A CN202110996238.4A CN202110996238A CN113707712A CN 113707712 A CN113707712 A CN 113707712A CN 202110996238 A CN202110996238 A CN 202110996238A CN 113707712 A CN113707712 A CN 113707712A
Authority
CN
China
Prior art keywords
groove
layer
gallium nitride
algan layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110996238.4A
Other languages
English (en)
Other versions
CN113707712B (zh
Inventor
曹震
张洪伟
王倩
焦李成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110996238.4A priority Critical patent/CN113707712B/zh
Publication of CN113707712A publication Critical patent/CN113707712A/zh
Application granted granted Critical
Publication of CN113707712B publication Critical patent/CN113707712B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提出一种高耐压硅基氮化镓功率半导体器件及其制作方法,旨在有效降低器件漏边缘的高峰电场并改善漏端下方衬底中分布不均匀的电场,提高氮化镓器件的耐压特性。在器件台面刻蚀的过程中,在漏端和源端同时形成一定深度的沟槽,在沟槽中通过填充高K介质材料,将漏端的高K介质与漏电极短接。在器件关断时,通过高K介质材料的反极化作用有效降低器件漏端的高峰电场,同时通过高K介质的电场调制作用有效改善器件的纵向电场分布,达到显著提升硅基AlGaN/GaN器件击穿电压的目的。相比传统的硅基AlGaN/GaN器件结构和采用肖特基‑欧姆混合接触漏极的硅基AlGaN/GaN器件结构,击穿电压分别提升了79.43%和46.81%,促进了硅基AlGaN/GaN器件在高耐压功率集成电路中的应用。

Description

高耐压硅基氮化镓功率半导体器件及其制作方法
技术领域
本发明涉及功率半导体器件领域,尤其涉及一种高耐压硅基氮化镓功率半导体器件及其制作方法。
背景技术
AlGaN/GaN高电子迁移率晶体管(High Electron Mobility Transistors,HEMTs)器件,由于具有电子迁移率高、电流大、击穿电压高等特点,广泛应用于高频大功率、高温环境等场合,成为现阶段电力电子器件的研究热点并展现出极大的应用潜力。而在诸类衬底(碳化硅,蓝宝石和硅)的氮化镓外延中,硅衬底生长的氮化镓外延(GaN-on-Si)由于其在降低制造成本以及大尺寸外延生长方面的巨大潜力,被认为是新型功率电子器件的主流技术。然而由于硅基AlGaN/GaN HEMT器件还存在研究理论体系不够完善,器件的可靠性存在不足等一些问题,导致实际应用中的器件参数指标距离理论值存在较大差距。随着对器件性能优化的呼声越来越高,新的理论研究与结构设计的需求也显得越来越迫切。如今,关于高压、高温、高频和大功率GaN功率器件的研究是国际半导体的一个前沿热点,也是当今微电子领域的战略制高点之一。
然而对于硅基AlGaN/GaN HEMT器件,器件的漏端由于电场集聚存在高峰电场,从而会导致器件提前发生击穿和电流崩塌等问题。器件漏端边缘和漏端下方GaN缓冲层与硅衬底中的高峰电场并没有达到理想的优化效果,并且器件硅衬底的耐压耗尽效果不佳,导致器件的耐压特性提升受到限制,从而阻碍了一定外延厚度的硅基AlGaN/GaN HEMT器件在高压功率转换电路中的大规模应用。
发明内容
本发明提出了一种高耐压新型硅基氮化镓功率半导体器件,旨在有效降低器件漏边缘的高峰电场并改善漏端下方衬底中分布不均匀的电场,提高氮化镓器件的耐压特性。基于硅基AlGaN/GaN器件结构,包括增强型和耗尽型的结构,在器件台面刻蚀(Mesaetching)的过程中,在器件的漏端和源端同时形成一定深度的沟槽,在沟槽中通过填充高介电常数(>20ε0)的压电介质材料如锆钛酸铅等,将漏端的高K介质与漏电极短接。在器件关断时,通过高K介质铁电材料的反极化作用有效降低器件漏端的高峰电场,同时通过高K介质的电场调制作用有效改善器件的纵向电场分布,达到显著提升硅基AlGaN/GaN器件击穿电压的目的。
本发明的技术方案如下:
一种高耐压硅基氮化镓功率半导体器件,包括:
衬底,上述衬底的材料为硅Si或碳化硅SiC半导体材料;
缓冲层,上述缓冲层为在衬底上生长的具有一定厚度的氮化镓GaN层;
铝镓氮AlGaN层,上述铝镓氮AlGaN层形成在缓冲层之上,并在缓冲层与铝镓氮AlGaN层之间形成二维电子气层;
其特殊之处在于,还包括:
第一沟槽和第二沟槽,上述第一沟槽和第二沟槽通过在铝镓氮AlGaN层的相对两端,从表面向下刻蚀形成;上述第一沟槽和第二沟槽内填满介电常数大于20ε0的压电介质材料,填满压电介质材料的第一沟槽和第二沟槽表面与铝镓氮AlGaN层表面位于同一平面;
源电极,上述源电极部分覆盖在铝镓氮AlGaN层表面的一端,部分覆盖在填满压电介质材料的第一沟槽表面,使得第一沟槽内的压电介质材料与源电极短接;
漏电极,上述漏电极部分覆盖在铝镓氮AlGaN层表面的另一端,部分覆盖在填满压电介质材料的第二沟槽表面,使得第二沟槽内的压电介质材料与漏电极短接;
钝化层,上述钝化层沉积在铝镓氮AlGaN层表面;
栅电极,上述栅电极位于钝化层上,并通过在钝化层上开孔与铝镓氮AlGaN层表面中间部位接触。
进一步地,上述第一沟槽和第二沟槽的深宽比的范围是5:1~1:10。
进一步地,上述第一沟槽和第二沟槽的宽度范围是1μm~20μm。
进一步地,上述第一沟槽和第二沟槽的深度为铝镓氮AlGaN层厚度的1/5~2倍。
进一步地,上述第一沟槽和第二沟槽的深度与铝镓氮AlGaN层、二维电子气层及缓冲层三层厚度之和相等,槽底为衬底上表面。
进一步地,上述压电介质材料的介电常数范围是20ε0~1000ε0
进一步地,上述压电介质材料为锆钛酸铅Pb(ZrxTi1-x)O3
进一步地,上述缓冲层的厚度为1~20μm;上述铝镓氮AlGaN层的厚度为2nm~200nm;衬底的掺杂浓度值为1×1013cm-3~1×1015cm-3
进一步地,上述栅电极包括增强型的和耗尽型的栅电极。
本发明还提供一种上述高耐压硅基氮化镓功率半导体器件的制作方法,其特征在于,包括以下步骤:
步骤1、选取硅Si或碳化硅SiC半导体材料作为衬底;
步骤2、在衬底上生长一定厚度的氮化镓GaN层;
步骤3、在氮化镓GaN层上形成一定厚度的铝镓氮AlGaN层;
步骤4、在铝镓氮AlGaN层表面进行台面刻蚀,分别在铝镓氮AlGaN层的相对两端形成一定深宽比的第一沟槽和第二沟槽;
步骤5、通过脉冲气相淀积PLD或者磁控溅射PVD工艺在第一沟槽和第二沟槽之中填满介电常数大于20ε0的压电介质材料,并进行平坦化处理,使填满压电介质材料的第一沟槽和第二沟槽表面与铝镓氮AlGaN层表面位于同一平面;
步骤6、在铝镓氮AlGaN层表面的相对两端做欧姆接触电极形成源电极和漏电极;源电极部分覆盖在铝镓氮AlGaN层表面的一端,部分覆盖在填满压电介质材料的第一沟槽表面;漏电极部分覆盖在铝镓氮AlGaN层表面的另一端,部分覆盖在填满压电介质材料的第二沟槽表面;
步骤7、在铝镓氮AlGaN层表面中间位置做肖特基接触形成栅电极;
步骤8、在器件表面淀积钝化层;
步骤9、刻蚀钝化层,露出栅电极、源电极及漏电极。
本发明的有益效果如下:
1、本发明提出一种高耐压新型硅基氮化镓功率半导体器件,在源极与漏极下方刻蚀沟槽,并在沟槽内填满高介电常数的压电介质材料,将漏端的高K(介电常数)介质与漏电极短接。在器件关断时,通过高K介质铁电材料的反极化作用有效降低器件漏端的高峰电场,同时通过高K介质的电场调制作用有效改善器件漏端下方GaN/Si界面处的纵向电场分布,从而可以有效抑制高峰电场导致的衬底中因高峰电场导致的雪崩击穿的提前发生和泄漏电流迅速增加,达到显著提升硅基AlGaN/GaN器件击穿电压的目的。
2、本发明采用高K介质体电场调制方法使得器件的耐压性能和可靠性整体提升。
3、本发明提出的器件结构相比传统的硅基AlGaN/GaN器件结构和采用肖特基-欧姆混合接触漏极的硅基AlGaN/GaN器件结构,新结构的击穿电压分别提升了79.43%和46.81%。本发明有效解决了一定GaN厚度(1~5μm)的硅基AlGaN/GaN器件击穿电压易于饱和的问题,促进了硅基AlGaN/GaN器件在高耐压功率集成电路中的应用。
附图说明
图1为本发明实施例的结构示意图(正视图)。
图2为本发明提出的器件结构与传统的硅基AlGaN/GaN器件结构和采用肖特基-欧姆混合接触漏极的硅基AlGaN/GaN器件结构击穿电压曲线。
图中附图标记为:
1-源电极;2-钝化层;3-栅电极;4-漏电极;5-第二沟槽;6-铝镓氮AlGaN层;7-二维电子气层;8-缓冲层;9-衬底;10-第一沟槽。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
再其次,本发明结合示意图进行详细描述,在详述本发明实施例时,所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
同时在本发明的描述中,需要说明的是,术语中的“上和下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一或第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图1所示,本实施例的高耐压新型硅基氮化镓功率半导体器件包括:
硅Si或碳化硅SiC半导体材料的衬底9;本实施例衬底9的掺杂浓度根据器件的特性要求设定,典型值为1×1013cm-3~1×1015cm-3
在衬底9上生长的具有一定厚度的氮化镓GaN缓冲层8;本实施例缓冲层8的厚度位于1~20μm范围内即可,如5μm、12μm、18μm等。
在氮化镓缓冲层8上形成的具有一定厚度的薄层铝镓氮AlGaN层6,在缓冲层8与铝镓氮AlGaN层6之间形成二维电子气层7;本实施例铝镓氮AlGaN层6的厚度位于2nm~200nm范围内即可,如10μm、98μm、156μm等。
通过在铝镓氮AlGaN层6的表面进行台面刻蚀,而在其表面相对两端形成的具有一定深宽比的第一沟槽10和第二沟槽5;第一沟槽10和第二沟槽5之中填满高介电常数的压电介质材料,如锆钛酸铅Pb(ZrxTi1-x)O3等铁电材料,在其他实施例中压电介质材料的介电常数大于20ε0即可,优选位于20ε0~1000ε0范围;第一沟槽10和第二沟槽5的深宽比的范围是5:1~1:10,第一沟槽10和第二沟槽5的宽度范围可以是1μm~20μm,深度可以为铝镓氮AlGaN层6厚度的1/5~2倍,从图中可以看出,本实施例第一沟槽10和第二沟槽5的底部延伸至衬底9的表面,在其他实施例中,第一沟槽10和第二沟槽5的底部可以延伸至铝镓氮AlGaN层6或氮化镓缓冲层8等。
通过在铝镓氮AlGaN层6的表面进行台面刻蚀,而在其表面相对两端形成源电极1与漏电极4;从图中可以看出,源电极1部分覆盖在铝镓氮AlGaN层6表面的一端,部分覆盖在填满压电介质材料的第一沟槽10表面,使得第一沟槽10内的压电介质材料与源电极1短接;漏电极4部分覆盖在铝镓氮AlGaN层6表面的另一端,部分覆盖在填满压电介质材料的第二沟槽5表面,使得第二沟槽5内的压电介质材料与漏电极4短接。
沉积在铝镓氮AlGaN层6表面的钝化层2。
位于铝镓氮AlGaN层6表面中间位置的栅电极3,并通过在钝化层2上刻蚀开孔露出,栅电极3包括增强型的和耗尽型的栅电极。
通过下述方法制作:
1)选取Si元素半导体材料或者SiC化合物半导体材料作为衬底;
2)在衬底上生长一定厚度的氮化镓层厚度为1~20μm;
3)在氮化镓层上形成一定厚度(2nm~200nm)的铝镓氮AlGaN层;
4)进行台面刻蚀,在器件的源漏两端分别形成深宽比为5:1~1:10的第一沟槽和第二沟槽;
5)通过脉冲气相淀积(PLD)或者磁控溅射(PVD)工艺在第一沟槽和第二沟槽之中填满介电常数为20ε0~1000ε0,如锆钛酸铅Pb(ZrxTi1-x)O3等铁电材料,并进行平坦化处理;
6)在器件的两端做欧姆接触电极形成源电极和漏电极;源电极部分覆盖在铝镓氮AlGaN层表面的一端,部分覆盖在填满压电介质材料的第一沟槽表面,使得第一沟槽内的压电介质材料与源电极短接;漏电极部分覆盖在铝镓氮AlGaN层表面的另一端,部分覆盖在填满压电介质材料的第二沟槽表面,使得第二沟槽5内的压电介质材料与漏电极短接;
7)在器件中间位置附近做形成栅电极,包括增强型和耗尽型的栅电极;
8)器件表面淀积钝化层;
9)器件表面刻蚀钝化层形成栅、源、漏电极。
经Sentaurus SPROCESS软件仿真,本发明提出的器件结构分别相比传统的硅基AlGaN/GaN器件结构和采用肖特基-欧姆混合接触漏极的硅基AlGaN/GaN器件结构,器件击穿电压分别提升了79.43%和46.81%,如图2所示,其中a曲线为传统的硅基AlGaN/GaN器件结构击穿电压曲线,曲线b为采用肖特基-欧姆混合接触漏极的硅基AlGaN/GaN器件结构击穿电压曲线,曲线c为本发明提出的器件结构击穿电压曲线。本发明有效解决了一定GaN厚度(1~5μm)的硅基AlGaN/GaN器件击穿电压易于饱和的问题,促进了硅基AlGaN/GaN器件在高耐压功率集成电路中的应用。
当然,除了本实施例提出的硅衬底和碳化硅衬底的HEMT器件,其他衬底包括氮化镓衬底、金刚石衬底、氧化钙衬底等材料形成的HEMT器件也视为属于本申请权利要求的保护范围,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换的方案也落入本发明的保护范围。

Claims (10)

1.高耐压硅基氮化镓功率半导体器件,包括:
衬底(9);
缓冲层(8),所述缓冲层(8)为在衬底上生长的具有一定厚度的氮化镓GaN层;
铝镓氮AlGaN层(6),所述铝镓氮AlGaN层(6)形成在缓冲层(8)之上,并在缓冲层(8)与铝镓氮AlGaN层(6)之间形成二维电子气层(7);
其特征在于,还包括:
第一沟槽(10)和第二沟槽(5),所述第一沟槽(10)和第二沟槽(5)通过在铝镓氮AlGaN层(6)的相对两端,从表面向下刻蚀形成;所述第一沟槽(10)和第二沟槽(5)内填满介电常数大于20ε0的压电介质材料,填满压电介质材料的第一沟槽(10)和第二沟槽(5)表面与铝镓氮AlGaN层(6)表面位于同一平面;
源电极(1),所述源电极(1)部分覆盖在铝镓氮AlGaN层(6)表面的一端,部分覆盖在填满压电介质材料的第一沟槽(10)表面,使得第一沟槽(10)内的压电介质材料与源电极(1)短接;
漏电极(4),所述漏电极(4)部分覆盖在铝镓氮AlGaN层(6)表面的另一端,部分覆盖在填满压电介质材料的第二沟槽(5)表面,使得第二沟槽(5)内的压电介质材料与漏电极(4)短接;
钝化层(2),所述钝化层(2)沉积在铝镓氮AlGaN层(6)表面;
栅电极(3),所述栅电极(3)位于钝化层(2)上,并通过在钝化层(2)上开孔与铝镓氮AlGaN层(6)表面中间部位接触。
2.根据权利要求1所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述第一沟槽(10)和第二沟槽(5)的深宽比的范围是5:1~1:10。
3.根据权利要求2所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述第一沟槽(10)和第二沟槽(5)的宽度范围是1μm~20μm。
4.根据权利要求2所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述第一沟槽(10)和第二沟槽(5)的深度为铝镓氮AlGaN层(6)厚度的1/5~2倍。
5.根据权利要求2所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述第一沟槽(10)和第二沟槽(5)的深度与铝镓氮AlGaN层(6)、二维电子气层(7)及缓冲层(8)三层厚度之和相等,槽底为衬底(9)的上表面。
6.根据权利要求1-5任一所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述压电介质材料的介电常数范围是20ε0~1000ε0
7.根据权利要求6所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述压电介质材料为锆钛酸铅Pb(ZrxTi1-x)O3
8.根据权利要求7所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述缓冲层(8)的厚度为1~20μm;所述铝镓氮AlGaN层(6)的厚度为2nm~200nm;衬底(9)的掺杂浓度值为1×1013cm-3~1×1015cm-3
9.根据权利要求8所述的高耐压硅基氮化镓功率半导体器件,其特征在于:所述栅电极(3)包括增强型的和耗尽型的栅电极;所述衬底(9)的材料为硅Si或碳化硅SiC半导体材料。
10.一种权利要求1-9任一所述高耐压硅基氮化镓功率半导体器件的制作方法,其特征在于,包括以下步骤:
步骤1、选取相关材料作为衬底;
步骤2、在衬底上生长一定厚度的氮化镓GaN层;
步骤3、在氮化镓GaN层上形成一定厚度的铝镓氮AlGaN层;
步骤4、在铝镓氮AlGaN层表面进行台面刻蚀,分别在铝镓氮AlGaN层的相对两端形成一定深宽比的第一沟槽和第二沟槽;
步骤5、通过脉冲气相淀积PLD或者磁控溅射PVD工艺在第一沟槽和第二沟槽之中填满介电常数大于20ε0的压电介质材料,并进行平坦化处理,使填满压电介质材料的第一沟槽和第二沟槽表面与铝镓氮AlGaN层表面位于同一平面;
步骤6、在铝镓氮AlGaN层表面的相对两端做欧姆接触电极形成源电极和漏电极;源电极部分覆盖在铝镓氮AlGaN层表面的一端,部分覆盖在填满压电介质材料的第一沟槽表面;漏电极部分覆盖在铝镓氮AlGaN层表面的另一端,部分覆盖在填满压电介质材料的第二沟槽表面;
步骤7、在铝镓氮AlGaN层表面中间位置做肖特基接触形成栅电极;
步骤8、在器件表面淀积钝化层;
步骤9、刻蚀钝化层,露出栅电极、源电极及漏电极。
CN202110996238.4A 2021-08-27 2021-08-27 高耐压硅基氮化镓功率半导体器件及其制作方法 Active CN113707712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110996238.4A CN113707712B (zh) 2021-08-27 2021-08-27 高耐压硅基氮化镓功率半导体器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110996238.4A CN113707712B (zh) 2021-08-27 2021-08-27 高耐压硅基氮化镓功率半导体器件及其制作方法

Publications (2)

Publication Number Publication Date
CN113707712A true CN113707712A (zh) 2021-11-26
CN113707712B CN113707712B (zh) 2022-09-23

Family

ID=78656070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110996238.4A Active CN113707712B (zh) 2021-08-27 2021-08-27 高耐压硅基氮化镓功率半导体器件及其制作方法

Country Status (1)

Country Link
CN (1) CN113707712B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065923A1 (en) * 2004-09-24 2006-03-30 Infineon Technologies Ag. High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure
CN101510564A (zh) * 2009-03-27 2009-08-19 复旦大学 一种基于锆钛酸铅材料的隧道开关
US20110012173A1 (en) * 2008-03-21 2011-01-20 Hidekazu Umeda Semiconductor device
CN101971307A (zh) * 2008-03-19 2011-02-09 住友化学株式会社 半导体装置及半导体装置的制造方法
JP2012227456A (ja) * 2011-04-22 2012-11-15 Panasonic Corp 半導体装置
CN105140302A (zh) * 2015-07-14 2015-12-09 电子科技大学 电荷补偿耐压结构垂直氮化镓基异质结场效应管
CN106252404A (zh) * 2016-10-18 2016-12-21 电子科技大学 一种具有高k介质槽的纵向增强型mis hemt器件
CN106373991A (zh) * 2016-11-01 2017-02-01 电子科技大学 一种氮面增强型氮化镓基异质结场效应管
CN206322705U (zh) * 2016-12-28 2017-07-11 成都海威华芯科技有限公司 一种GaN HEMT器件
US20170200833A1 (en) * 2016-01-07 2017-07-13 Lawrence Livermore National Security, Llc Three dimensional vertically structured misfet/mesfet
US20190103471A1 (en) * 2017-09-29 2019-04-04 Texas Instruments Incorporated Ldmos with high-k drain sti dielectric
CN111916493A (zh) * 2019-05-07 2020-11-10 中国科学院上海硅酸盐研究所 一种用于铁电栅GaN基增强型HEMT器件的异质结构及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060065923A1 (en) * 2004-09-24 2006-03-30 Infineon Technologies Ag. High-voltage-resistant semiconductor component having vertically conductive semiconductor body areas and a trench structure
CN101971307A (zh) * 2008-03-19 2011-02-09 住友化学株式会社 半导体装置及半导体装置的制造方法
US20110012173A1 (en) * 2008-03-21 2011-01-20 Hidekazu Umeda Semiconductor device
CN101510564A (zh) * 2009-03-27 2009-08-19 复旦大学 一种基于锆钛酸铅材料的隧道开关
JP2012227456A (ja) * 2011-04-22 2012-11-15 Panasonic Corp 半導体装置
CN105140302A (zh) * 2015-07-14 2015-12-09 电子科技大学 电荷补偿耐压结构垂直氮化镓基异质结场效应管
US20170200833A1 (en) * 2016-01-07 2017-07-13 Lawrence Livermore National Security, Llc Three dimensional vertically structured misfet/mesfet
CN106252404A (zh) * 2016-10-18 2016-12-21 电子科技大学 一种具有高k介质槽的纵向增强型mis hemt器件
CN106373991A (zh) * 2016-11-01 2017-02-01 电子科技大学 一种氮面增强型氮化镓基异质结场效应管
CN206322705U (zh) * 2016-12-28 2017-07-11 成都海威华芯科技有限公司 一种GaN HEMT器件
US20190103471A1 (en) * 2017-09-29 2019-04-04 Texas Instruments Incorporated Ldmos with high-k drain sti dielectric
CN111916493A (zh) * 2019-05-07 2020-11-10 中国科学院上海硅酸盐研究所 一种用于铁电栅GaN基增强型HEMT器件的异质结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹震等: "具有半绝缘多晶硅完全三维超结横向功率器件", 《物理学报》 *

Also Published As

Publication number Publication date
CN113707712B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
JP6066933B2 (ja) 半導体デバイスの電極構造
CN107978642B (zh) 一种GaN基异质结二极管及其制备方法
CN111477690B (zh) 基于P-GaN帽层和叉指结构的横向肖特基二极管及其制备方法
CN104347696A (zh) 半导体装置以及其制造方法
CN110544723B (zh) 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法
CN108258035A (zh) 一种GaN基增强型场效应器件及其制作方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN110729346B (zh) 一种低导通电阻高耐压能力的宽禁带半导体整流器件
CN115411095A (zh) 具有介电调控混合场板终端的sbd结构及其制备方法
CN113178480B (zh) 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法
CN112820648B (zh) 一种氮化镓金属氧化物半导体晶体管及其制备方法
CN210897283U (zh) 一种半导体器件
CN108831932B (zh) 一种氮化镓横向mis-肖特基混合阳极二极管
CN111739801A (zh) 一种SOI基p-GaN增强型GaN功率开关器件的制备方法
CN218274610U (zh) 一种混合栅型GaN基的高电子迁移率晶体管
CN111446287A (zh) 一种mosfet器件及其制备方法
CN113707712B (zh) 高耐压硅基氮化镓功率半导体器件及其制作方法
CN110416318A (zh) 一种氮化镓基二极管结构及其制备方法
CN212542443U (zh) 一种氮化镓晶体管结构及氮化镓基外延结构
CN113078204B (zh) 一种氮化镓3d-resurf场效应晶体管及其制造方法
CN110265485B (zh) 具有肖特基势垒AlGaN/GaN异质结的横向晶体管及其制作方法
CN110676308B (zh) 肖特基二极管的制备方法
CN114141767A (zh) 一种IGZO晶体管和GaN HEMT栅控电路的集成结构及其制备方法
CN108352408A (zh) 半导体装置、电子部件、电子设备以及半导体装置的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant