CN113683790B - 一种多孔水凝胶及其制备方法和用途 - Google Patents

一种多孔水凝胶及其制备方法和用途 Download PDF

Info

Publication number
CN113683790B
CN113683790B CN202110974577.2A CN202110974577A CN113683790B CN 113683790 B CN113683790 B CN 113683790B CN 202110974577 A CN202110974577 A CN 202110974577A CN 113683790 B CN113683790 B CN 113683790B
Authority
CN
China
Prior art keywords
porous hydrogel
deionized water
porous
mixed system
hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110974577.2A
Other languages
English (en)
Other versions
CN113683790A (zh
Inventor
赵俭波
王文瑞
邓玉凤
岳瑶
常炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tarim University
Original Assignee
Tarim University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tarim University filed Critical Tarim University
Priority to CN202110974577.2A priority Critical patent/CN113683790B/zh
Publication of CN113683790A publication Critical patent/CN113683790A/zh
Application granted granted Critical
Publication of CN113683790B publication Critical patent/CN113683790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开一种多孔水凝胶及其制备方法和用途,其制备方法如下:步骤A:向去离子水中分别加入吐温80和亲水性SiO2纳米粒子,混合均匀得到混合体系A;步骤B:向混合体系A中依次加入单体原料、交联剂和引发剂,并超声溶解,得到混合体系B;步骤C:向混合体系B中分批次加入油相环己烷,进行振荡乳化,得到高内相乳液;步骤D:将高内相乳液置于水浴中加热,水浴结束后通风,然后用无水乙醇冲洗,即制得多孔水凝胶。采用上述方法制备得到多孔水凝胶,并将其应用于重金属离子的富集或分离。本发明制备得到多孔水凝胶具有快速吸水和较高吸水倍率等优点,可用于重金属离子的富集或分离。

Description

一种多孔水凝胶及其制备方法和用途
技术领域
本发明涉及多孔水凝胶制备技术领域。具体地说是一种多孔水凝胶及其制备方法和用途。
背景技术
水凝胶是一种具有三维交联网络的高含水率材料,能在水中显著溶胀并保持其原本的结构和性能,具有吸附容量大、速度快、去除率高、解吸容易、原材料丰富、环境友好等优点,适合低浓度重金属离子的富集与分离。若将多孔结构引入到水凝胶结构中,可显著增强水凝胶对重金属离子的吸附和分离效果,表现出极好的应用潜力。
高内相乳液法(High Internal Phase Emulsions,HIPEs)是以单体的水溶液为连续相,有机溶剂为分散相,以合适的乳化剂制成稳定的高内相乳液,其内相体积分数大于74%,最后引发连续相中的单体聚合即可制得多孔水凝胶,该方法简单高效,重复性好。
聚丙烯酰胺(Polyacrylamide,PAM)水凝胶交联网络上存在许多酰胺基团,可通过水解产生的羧基与金属离子相互作用,被广泛应用于重金属离子吸附。然而传统方法制备的PAM水凝胶结构过于规整,存在吸附速率慢,吸附量低的问题,为提高PAM水凝胶的吸附效率,以往工作多采用共聚或共混的方法对基体进行改性,但这些方法大多制备得到水凝胶往往存在多孔的平均孔径较大、孔隙率较低等问题,从而导致水凝胶的吸水性及吸水倍率较差,从而使得所制备的水凝胶在重金属离子的富集与分离上表现不理想。
发明内容
为此,本发明所要解决的技术问题在于提供一种多孔水凝胶及其制备方法,以弥补现有制备方法制备的水凝胶平均孔径大、孔隙率低等缺点,解决现有水凝胶吸水性和吸水倍率较差的问题;同时,还提供了多孔水凝胶的用途,即将多孔水凝胶用于重金属离子的富集与分离上,以解决当前方法制备的水凝胶在重金属离子的富集与分离上表现不理想等问题。
为解决上述技术问题,本发明提供如下技术方案:
一种多孔水凝胶的制备方法,包括如下步骤:
步骤A:向去离子水中依次加入吐温80和亲水性SiO2纳米粒子,混合均匀得到混合体系A;先加入吐温80,有助于亲水性SiO2纳米粒子溶解,如果先加入亲水性SiO2纳米粒子,会形成悬浮液,该悬浮液虽然在加入吐温80后会溶解,但该条件下形成的混合体系A在制备水凝胶过程中所起到的复合稳定剂的作用不如先加入吐温80后加入亲水性SiO2纳米粒子形成的混合体系A效果好,生成的高内向乳液其形貌结构也不如先加入吐温80后加入亲水性SiO2纳米粒子形成的混合体系A;
步骤B:向混合体系A中依次加入单体原料、交联剂和引发剂,并超声溶解,得到混合体系B;此处,按照单体、交联剂和引发剂的顺序依次加入不仅有利于多孔水凝胶制备原料混合更均匀,而且有助于在后续水浴加热中引发聚合反应,提高反应效率,制备得到孔径均一、结构稳定的多孔水凝胶;
步骤C:向混合体系B中分批次加入油相,并进行振荡乳化,得到高内相乳液;分批次加入环己烷有利于乳液的形成,若一次性加入可能会造成内相体积过大,溶液会分层,难以形成高内相乳液;
步骤D:将高内相乳液置于水浴中加热,水浴结束后通风,然后用无水乙醇冲洗,即制得多孔水凝胶。通风的目的是利于环己烷挥发,用无水乙醇冲洗的目的是洗去多孔凝胶内部存在的可能未反应的单体、交联剂、引发剂及吐温80等。
上述多孔水凝胶的制备方法,在步骤A中,吐温80的加入量占去离子水质量的2-12wt%;亲水性SiO2纳米粒子的加入量占去离子水质量的1-5wt%。
上述多孔水凝胶的制备方法,在步骤B中,单体原料的加入量与去离子水的质量之比为1:(4.5-5.5);交联剂的加入量与单体原料的质量之比为1:(8-12);引发剂的加入量与交联剂的质量之比为1:(1.5-2.5)。
上述多孔水凝胶的制备方法,在步骤B中,单体原料为丙烯酰胺和/或丙烯酸;交联剂为N,N-亚甲基双丙烯酰胺;引发剂为过硫酸钾或过硫酸铵;在步骤C中,油相为环己烷或正己烷。
上述多孔水凝胶的制备方法,在步骤B中,超声溶解的时间为2-8min,超声溶解的功率为200-600W。
上述多孔水凝胶的制备方法,在步骤C中,油相的加入量与去离子水的体积之比为10:1-3:1,油相分多次加入,如果油相用量多,加入次数也相应增加;油相分3-10次加入到混合体系B中,且每次加入油相的体积与去离子水的体积相同;振荡器转速1200-2800rpm,振荡时间2min,乳液即可形成。环己烷或正己烷作为高内相乳液的油相,在本发明中分多次加入到混合体系B中,且每次加入油相的体积与去离子水的体积相同,这主要是因为本发明技术人员经多次试验发现,这种混合方式制备得到的高内相乳液具有更好形貌结构,可以使制备得到的多孔水凝胶具有较小的平均孔径、较高的孔隙率,且吸水性和吸水倍率较好。
上述多孔水凝胶的制备方法,在步骤D中,水浴温度为50-80℃,水浴时间为6-20h。
上述多孔水凝胶的制备方法,在步骤A中,吐温80的加入量占去离子水质量的9wt%,亲水性SiO2纳米粒子的加入量占去离子水质量的3wt%;
在步骤B中,单体原料为丙烯酰胺,交联剂为N,N-亚甲基双丙烯酰胺,引发剂为过硫酸钾;丙烯酰胺的加入量与去离子水的质量之比为1:5;N,N-亚甲基双丙烯酰胺的加入量与丙烯酰胺的质量之比为1:10;过硫酸钾的加入量与N,N-亚甲基双丙烯酰胺的质量之比为1:2;超声溶解的时间为2min,超声溶解的功率为480W;
在步骤C中,油相为环己烷,环己烷的加入量与去离子水的体积之比为3:1,环己烷分3次加入到混合体系B中,且每次加入环己烷的体积与去离子水的体积相同;振荡器转速2000rpm,振荡时间2min;
在步骤D中,水浴温度为65℃,水浴时间为10h。
一种多孔水凝胶,由上述多孔水凝胶的制备方法制备得到。
一种多孔水凝胶的用途,将上述多孔水凝胶用于重金属离子的富集或分离。
本发明的技术方案取得了如下有益的技术效果:
(1)本发明技术人员在前期工作中基于Pickering粒子和吐温80协同稳定的高内相乳液制备了具有开孔结构的多孔水凝胶,在药物负载上表现优异。基于此,本发明采用高内相乳液法制备多孔水凝胶,通过扫描电镜(SEM)观察材料的表面形貌,测定材料的孔径大小及分布,并将其应用于Mn(Ⅱ)的吸附,为重金属离子高效分离提供新的思路。
(2)本发明的制备方法可以通过控制乳化剂吐温80和稳定剂亲水性SiO2纳米粒子的加入量可以控制制备得到的聚丙烯酰胺多孔水凝胶的孔径大小和孔隙率,因而本发明制备聚丙烯酰胺多孔水凝胶的方法具有可控性。另外,本发明通过控制反应体系中吐温80和亲水性SiO2纳米粒子的加入量,以及丙烯酰胺、N,N-亚甲基双丙烯酰胺、过硫酸钾和环己烷的用量,同时协同调节水浴反应的温度和反应时间,制备得到了具有快速吸水性和较高吸水倍率的聚丙烯酰胺多孔水凝胶。
(3)本发明将聚丙烯酰胺多孔水凝胶用于Mn(Ⅱ)吸附,当溶液pH为4时,可在80min达到吸附饱和,且Mn(Ⅱ)吸附量达到474.64mg/g,属于化学吸附,因而可以将该多孔水凝胶用于重金属离子的富集或分离中。
附图说明
图1本发明中高内相乳液显微形貌图(N20 3wt%、吐温80 6wt%);
图2本发明中高内相乳液显微形貌图(N20 3wt%、吐温80 9wt%);
图3本发明中高内相乳液显微形貌图(N20 2wt%、吐温80 6wt%);
图4本发明中高内相乳液显微形貌图(N20 4wt%、吐温80 6wt%);
图5本发明中PAM多孔水凝胶SEM图(N20 3wt%、吐温80 6wt%,50μm);
图6本发明中PAM多孔水凝胶SEM图(N20 3wt%、吐温80 9wt%,50μm);
图7本发明中PAM多孔水凝胶SEM图(N20 2wt%、吐温80 6wt%,50μm);
图8本发明中PAM多孔水凝胶SEM图(N20 4wt%、吐温80 6wt%,50μm);
图9本发明中PAM多孔水凝胶孔径分布图(N20 3wt%、吐温80 6wt%);
图10本发明中PAM多孔水凝胶孔径分布图(N20 3wt%、吐温80 9wt%);
图11本发明中PAM多孔水凝胶孔径分布图(N20 2wt%、吐温80 6wt%);
图12本发明中PAM多孔水凝胶孔径分布图(N20 4wt%、吐温80 6wt%);
图13本发明中PAM水凝胶平衡溶胀率曲线图;
图14本发明中pH值对PAM多孔水凝胶吸附量的影响曲线图;
图15本发明中PAM多孔水凝胶的吸附时间曲线图;
图16本发明中PAM多孔水凝胶准一级动力学拟合曲线图;
图17本发明中PAM多孔水凝胶准二级动力学拟合曲线图。
具体实施方式
1实验部分
1.1试剂与仪器
亲水性SiO2纳米粒子(N20),AR,国药集团;吐温80,AR,酷尔化学科技有限公司;环己烷,AR,国药集团;丙烯酰胺(AM),CP,天津市凯信化学工业有限公司;N,N-亚甲基双丙烯酰胺(MBA),AR,天津福晨化学试剂有限公司;过硫酸钾(KPS),分析纯,天津市凯通化学试剂有限公司;六水合氯化锰,分析纯,国药集团。
SHJ-6A恒温磁力搅拌水浴锅;MX-S涡旋振荡器;KQ3200DE数控超声波清洗器;OPTpro光学显微镜;HITACHI SU8000扫描电子显微镜;Anton-Paar QuantaPoreMaster60GT压汞孔渗仪;Thermo iCE 3400 AAS原子吸收光谱仪。
1.2高内相乳液法制备PAM多孔水凝胶
准确移取1mL去离子水置于指头瓶中,分别加入水相质量分数9wt%的吐温80和3wt%的亲水性SiO2纳米粒子(N20)后,再依次加入200mg AM、20mg MBA和10mg KPS,超声2min溶解,超声溶解的功率为480W,然后将3mL环己烷分3次加入到指头瓶中,每次加入1mL,在振荡器上振荡乳化,振荡器转速2000rpm,振荡时间2min,形成高内相乳液。最后,将指头瓶置于温度为65℃水浴锅中反应10h即可制的PAM多孔水凝胶,反应结束后,将PAM多孔水凝胶在通风橱中放置一段时间,待内相挥发完全,用无水乙醇多次冲洗后备用。吐温80、亲水性SiO2纳米粒子与水形成复合稳定剂,吐温80为乳化剂,亲水性SiO2纳米粒子作为稳定剂。
1.3PAM多孔水凝胶的孔洞结构分析
采用光学显微镜观察高内相乳液形貌;采用SEM观察PAM多孔水凝胶表面微观形貌;采用压汞孔渗仪测定多孔水凝胶孔径大小及分布,孔隙率则可通过Archimedes排水法测定。
1.4 PAM多孔水凝胶吸水性测定
PAM水凝胶吸水率的测定常采用茶袋法。准确称取0.1g干燥水凝胶样品放入尼龙滤袋中(300目,50mm×40mm),25℃下完全浸入去离子水中,应避免与烧杯壁接触。在预先设定的时间间隔后取出,将尼龙滤袋在空中悬挂3min以除去水分。采用公式(1)计算水凝胶溶胀率:
式中:SR为水凝胶的溶胀率,%;Ws为PAM水凝胶吸水前的质量,g;W0为空白茶袋的质量,g;Wt为水凝胶吸水后与茶袋的总重,g。
1.5 PAM多孔水凝胶对Mn(Ⅱ)的吸附
采用原子吸收光谱仪测定PAM多孔水凝胶对Mn(Ⅱ)吸附吸能。移取50mL浓度为1mg/mL Mn(Ⅱ)溶液置于烧杯中,在一定pH下加入0.1g干燥后的PAM水凝胶样品,保鲜膜封口后在30℃恒温摇床中振荡一定时间完成吸附。吸附结束后静置,移取上层清液,硝化后定容稀释,测定溶液中锰离子浓度。采用公式(2)计算PAM水凝胶对Mn(Ⅱ)吸附量,平行测定3次。
式中:Q为吸附容量,mg/g;C0为锰离子的初始浓度,mg/mL;C1为吸附后锰离子的浓度,mg/mL;V为溶液体积,mL;m为PAM水凝胶质量,g。
2结果与讨论
2.1 PAM多孔水凝胶表面形貌分析
通过改变亲水性SiO2纳米粒子和吐温80加入量制备4组高内相乳液,配比见表1所示。采用光学显微镜观察4组高内相乳液形貌,分别如图1-4所示。
表1 PAM多孔水凝胶平均孔径及孔隙率
从图1-4可以看出,粒子稳定剂和乳化剂用量会对高内相乳液形貌产生显著影响,乳化剂用量增大(图1和图2),乳液流动性增强,乳胶粒增多,粒径减小;粒子稳定剂用量增大(图3和图4),乳胶粒出现显著变形,呈现出不规则形状,乳液流动性降低。
采用SEM分别观察4组干燥后的PAM多孔水凝胶剖开后的横截面,其表面形貌如图5-8所示。
从图5-8可以看出,采用高内相乳液法可以制得具有明显开孔结构的多孔材料,孔洞表面有小孔连接,并且粒子稳定剂和乳化剂用量会显著影响孔洞结构。乳化剂用量较多时,表面形貌更为破碎,且形成了具有球形结构的弧面,弧面上形成的孔可能是由于较多的乳化剂被无水乙醇洗去(图5和图6);粒子稳定剂用量较多时,材料表面形貌多孔壁上的小孔数目明显减小,整体连通性降低(图7和图8)。
采用压汞仪法测定多孔水凝胶的孔径大小及分布,结果如图9-12所示。从图9-12中可以看出,PAM多孔水凝胶的孔径主要集中在50nm以内,可形成较多的微孔和介孔结构。2号样品和3号样品的粒径分布类似,且平均粒径相差不大(见表1),主要是由于2号样品中乳化剂用量较多,而3号样品中粒子稳定剂用量较少,增大乳化剂用量或减少粒子稳定剂用量对于多孔水凝胶孔洞结构具有相类似的作用,但粒子稳定剂用量减少会影响高内相乳液的稳定性。4号样品孔径大多数分布在5nm以上,基本没有微孔形成(图12),主要是由于过多的亲水性SiO2纳米粒子会导致两相界面膜中吐温80减少,进而影响了界面上微孔的形成(见表1),这也与前述SEM照片结果一致。
2.2PAM多孔水凝胶吸水性测试
采用茶袋法测试常规方法制备的PAM水凝胶(样品编号为5)和多孔水凝胶的平衡溶胀率,实验结果如图13所示。样品编号为5的制备方法为:在水溶液中加入丙烯酰胺,N,N-亚甲基双丙烯酰胺,过硫酸钾,水浴锅中65℃加热10h即可制的PAM水凝胶。与高内相乳液法相比,不加入复合稳定剂和环己烷。
如图13所示,与传统方法制备的PAM水凝胶相比,高内向乳液法制备的PAM多孔水凝胶具有更优异的吸水速率和最大吸水率。在24h时,样品5的饱和吸水率为308g/g,而PAM多孔水凝胶出现饱和吸水率的时间提前了4-8h,其中样品2饱和吸水率达402g/g,提高了23%。PAM水凝胶形成的孔洞结构可以显著增加材料的比表面积,有更多的亲水位点裸露,更有利于水分子的渗透与吸附,吸水性增强。
2.3 pH值对PAM水凝胶吸附Mn(Ⅱ)的影响
图14是PAM多孔水凝胶样品2在不同pH值下吸附2h后吸附量。从图14中可以看出,PAM多孔水凝胶吸附Mn(Ⅱ)最适pH值为4,2h吸附量可达473.62mg/g,随着pH值的增加,其吸附量呈下降趋势。主要是由于酸性条件下,PAM水凝胶分子侧链中含有大量羧基,由羧基形成的伯酰胺根阴离子可通过离子作用和螯合作用吸附金属阳离子(Mn2+),酸性过强的话,溶液中游离大量的H+,不利于羧酸根的形成,同时H+也会与Mn2+发生竞争吸附,而占据了更多吸附点位;而酸性过弱,调节pH时加入的氢氧化钠溶液中的Na+又会Mn2+形成竞争,同时溶液中的Mn2+也会发生水解形成氢氧化物沉淀,导致吸附量下降。
2.4 PAM多孔水凝胶对Mn(Ⅱ)的吸附动力学
图15为Mn(Ⅱ)吸附时间对PAM多孔水凝胶吸附效果的影响。由图15可知,在前40min内吸附量呈明显增加趋势,40至60min,吸附速率变慢,吸附量增加减缓,直至80min以后,吸附行为逐渐趋于平缓,吸附量达到饱和,最大吸附量为474.64mg/g。
采用准一级吸附动力学方程(3)和准二级吸附动力学方程(4)对聚丙烯酰胺多孔水凝胶的吸附动力学曲线进行拟合。
ln(Qe-Qt)=lnQe-K1t (3)
式中,t为吸附时间,min;Qt为t时刻吸附量,mg/kg;Qe为平衡吸附量,mg/g;K1为准一级动力学模型速率常数,min-1;K2为准二级动力学模型速率常数,g/(mg·min)。
表2 PAM多孔水凝胶的Mn(II)吸附动力学参数
由表2可知,实验测得Mn(Ⅱ)平衡吸附量为474.64mg/g,准一级动力学模拟结果为460.037mg/g,准二级动力学拟合结果为480.769mg/g,准二级动力学模型的结果最接近实验值。并且准二级动力学拟合系数R2为0.99845(见图17),准一级动力学拟合系数R2为0.96626(见图16),PAM多孔水凝胶动力学符合准二级动力学,对Mn(Ⅱ)的吸附过程属于化学吸附。
综上,本实施例以环己烷为油相,亲水性SiO2纳米粒子和吐温80为复合稳定剂制备高内相乳液,再以此高内相乳液为模板聚合连续相中的丙烯酰胺即可制得PAM多孔水凝胶。乳液显微镜照片及多孔水凝胶SEM照片表明粒子稳定剂及乳化剂用量会对孔洞结构产生显著影响,表现出可控性。压汞仪数据表明亲水性SiO2纳米粒子用量为水相体积3%,吐温80用量为水相体积9%时,所形成的多孔材料平均孔径为38.06nm,孔隙率为77.54%,20h饱和吸水率可达402g/g;,具有快速的吸水性和较高的吸水倍率。将此配比所制得的PAM多孔水凝胶应用于Mn(Ⅱ)吸附,结果表明溶液pH为4时吸附量最优,在80min时可达到吸附饱和,Mn(Ⅱ)吸附量为474.64mg/g,吸附动力学较符合准二级动力学方程,属于化学吸附过程。
在其他一些实施例中,本领域技术人员也可用丙烯酸为单体原料,过硫酸铵为引发剂,正己烷为油相,制备得到聚丙烯酸多孔凝胶,且所制备的聚丙烯酸多孔凝胶具有本实施例等同的技术效果,也可以用于重金属离子的分离和富集。

Claims (6)

1.一种多孔水凝胶的制备方法,其特征在于,包括如下步骤:
步骤A:向去离子水中依次加入吐温80和亲水性SiO2纳米粒子,混合均匀得到混合体系A;吐温80的加入量占去离子水质量的6-9wt%;亲水性SiO2纳米粒子的加入量占去离子水质量的2-3wt%;
步骤B:向混合体系A中依次加入单体原料、交联剂和引发剂,并超声溶解,得到混合体系B;单体原料的加入量与去离子水的质量之比为1:(4.5-5.5);交联剂的加入量与单体原料的质量之比为1:(8-12);引发剂的加入量与交联剂的质量之比为1:(1.5-2.5);单体原料为丙烯酰胺;交联剂为N,N-亚甲基双丙烯酰胺;引发剂为过硫酸钾或过硫酸铵;
步骤C:向混合体系B中分批次加入油相,并进行振荡乳化,得到高内相乳液;油相为环己烷或正己烷;
步骤D:将高内相乳液置于水浴中加热,水浴结束后通风,然后用无水乙醇冲洗,即制得多孔水凝胶;水浴温度为50-80℃,水浴时间为6-20h。
2.根据权利要求1所述的一种多孔水凝胶的制备方法,其特征在于,在步骤B中,超声溶解的时间为2-8min,超声溶解的功率为200-600W。
3.根据权利要求1所述的一种多孔水凝胶的制备方法,其特征在于,在步骤C中,油相的加入量与去离子水的体积之比为10:1-3:1,油相分3-10次加入到混合体系B中,且每次加入油相的体积与去离子水的体积相同;振荡器转速1200-2800rpm,振荡时间2min。
4.根据权利要求1所述的一种多孔水凝胶的制备方法,其特征在于,在步骤A中,吐温80的加入量占去离子水质量的9wt%,亲水性SiO2纳米粒子的加入量占去离子水质量的3wt%;
在步骤B中,单体原料为丙烯酰胺,交联剂为N,N-亚甲基双丙烯酰胺,引发剂为过硫酸钾;丙烯酰胺的加入量与去离子水的质量之比为1: 5;N,N-亚甲基双丙烯酰胺的加入量与丙烯酰胺的质量之比为1:10;过硫酸钾的加入量与N,N-亚甲基双丙烯酰胺的质量之比为1:2;超声溶解的时间为2min,超声溶解的功率为480W;
在步骤C中,油相为环己烷,环己烷的加入量与去离子水的体积之比为3:1,环己烷分3次加入到混合体系B中,且每次加入环己烷的体积与去离子水的体积相同;振荡器转速2000rpm,振荡时间2min;
在步骤D中,水浴温度为65℃,水浴时间为10h。
5.一种多孔水凝胶,其特征在于,由权利要求1-4任一所述的多孔水凝胶的制备方法制备得到。
6.一种多孔水凝胶的用途,其特征在于,将权利要求5所述的多孔水凝胶用于重金属离子的富集或分离。
CN202110974577.2A 2021-08-24 2021-08-24 一种多孔水凝胶及其制备方法和用途 Active CN113683790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110974577.2A CN113683790B (zh) 2021-08-24 2021-08-24 一种多孔水凝胶及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110974577.2A CN113683790B (zh) 2021-08-24 2021-08-24 一种多孔水凝胶及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN113683790A CN113683790A (zh) 2021-11-23
CN113683790B true CN113683790B (zh) 2023-12-22

Family

ID=78581848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110974577.2A Active CN113683790B (zh) 2021-08-24 2021-08-24 一种多孔水凝胶及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN113683790B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660179A (zh) * 2012-03-20 2012-09-12 常熟市屹浩食品包装材料有限公司 纳米TiO2-SiO2组合改性的PVA-液体石蜡复合涂膜保鲜包装材料及其制备方法
WO2015065100A1 (ko) * 2013-10-31 2015-05-07 주식회사 아모레퍼시픽 Mpc와 수용성 가교제를 이용한 구형 하이드로겔 입자
CN105693924A (zh) * 2016-03-27 2016-06-22 华南理工大学 一种乳液基软凝胶热驱动微型马达及其制备方法
CN109967044A (zh) * 2019-04-08 2019-07-05 青岛农业大学 Pickering-高内相溶液模板法制备的壳聚糖多孔凝胶材料及其制备方法
CN110724228A (zh) * 2019-11-19 2020-01-24 常州大学 一种形状记忆印迹凝胶的制备方法
CN111363188A (zh) * 2019-12-17 2020-07-03 华东理工大学 超轻纤维素纳米晶体气凝胶材料的制备方法
WO2020200300A1 (zh) * 2019-04-03 2020-10-08 苏州丝美特生物技术有限公司 一种利用纳米颗粒稳定和增强丝素蛋白微胶囊壳结构的方法
CN111875939A (zh) * 2020-06-15 2020-11-03 西安理工大学 无机电解质调控HAp稳定乳液特性制备多孔材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040068093A1 (en) * 2002-07-01 2004-04-08 The Procter & Gamble Company Polymerized hydrogel comprising low amounts of residual monomers and by-products

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660179A (zh) * 2012-03-20 2012-09-12 常熟市屹浩食品包装材料有限公司 纳米TiO2-SiO2组合改性的PVA-液体石蜡复合涂膜保鲜包装材料及其制备方法
WO2015065100A1 (ko) * 2013-10-31 2015-05-07 주식회사 아모레퍼시픽 Mpc와 수용성 가교제를 이용한 구형 하이드로겔 입자
CN105693924A (zh) * 2016-03-27 2016-06-22 华南理工大学 一种乳液基软凝胶热驱动微型马达及其制备方法
WO2020200300A1 (zh) * 2019-04-03 2020-10-08 苏州丝美特生物技术有限公司 一种利用纳米颗粒稳定和增强丝素蛋白微胶囊壳结构的方法
CN109967044A (zh) * 2019-04-08 2019-07-05 青岛农业大学 Pickering-高内相溶液模板法制备的壳聚糖多孔凝胶材料及其制备方法
CN110724228A (zh) * 2019-11-19 2020-01-24 常州大学 一种形状记忆印迹凝胶的制备方法
CN111363188A (zh) * 2019-12-17 2020-07-03 华东理工大学 超轻纤维素纳米晶体气凝胶材料的制备方法
CN111875939A (zh) * 2020-06-15 2020-11-03 西安理工大学 无机电解质调控HAp稳定乳液特性制备多孔材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Pickering乳液模板法制备结构可控的多孔聚合物微球和整体柱;邹声文;《中国优秀硕士学位论文全文数据库·工程科技Ⅰ辑》;B054-38 *
Stabilization of Oil-in-Water Pickering Emulsions with Surfactant-Modified SiO2 Nanoparticles;Koroleva, MY. et al.;《COLLOID JOURNAL》;第80卷(第6期);783-791 *

Also Published As

Publication number Publication date
CN113683790A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN106179277B (zh) 巯基化氧化石墨烯/聚乙烯醇大孔复合球吸附剂及其制备方法和应用
JP2007217670A (ja) イオンインプリントポリマーを利用した重金属イオンの選択的分離{selectiveseparationofheavymetalionusingthemetalionimprintedpolymer(miip)}
Zhao et al. Preparation of microgel/sodium alginate composite granular hydrogels and their Cu 2+ adsorption properties
CN104623973B (zh) 一种改性石英砂及其改性方法
CN105664897A (zh) 利用o/w/o双乳液模板制备磁性多孔微球吸附材料的方法
CN113457474B (zh) 一种纳米纤维膜材料、制备方法及其应用
CN105817213A (zh) 一种基于中空介孔二氧化硅的吸附剂及其制备方法和回收黄金的应用
CN113683790B (zh) 一种多孔水凝胶及其制备方法和用途
CN108970592A (zh) 一种磺酸型银离子多孔吸附剂及其制备方法与应用
CN114229819A (zh) 锶改性羟基磷灰石及其合成与应用方法
CN105854642B (zh) 一种含多羟基的亲水性聚丙烯腈纳滤膜的制备方法
CN108745326A (zh) 三维有序多孔炭材料的制备工艺及其中间体的制备工艺
CN113428856B (zh) 一种氮磷共掺杂的多孔碳材料、及其制备和应用方法
CN111393706B (zh) 一种超疏水海绵及其制备方法和应用
Zabiegaj et al. Carbon soot–ionic surfactant mixed layers at water/air interfaces
Butman et al. Adsorption of anion and cation dyes onto pillared montmorillonite
CN111389234A (zh) 一种三维多孔MnO2纳米线印迹膜及其制备方法与应用
CN114558558B (zh) 掺杂凹凸棒石的双交联水凝胶及其制备方法和应用
CN113559829A (zh) 一种铀/锂同步吸附材料的制备方法及应用
CN105621462B (zh) 一种制备氧化铝材料的方法
CN107022104A (zh) 一种乳液聚合法制备的三价砷离子印迹聚合物及其方法和应用
CN105749879A (zh) 一种孔道填充型分子/离子双位点印迹聚合物的制备方法
CN113634239B (zh) 一步Pickering双乳液法制备冠醚功能化纳米片的方法及其提锂应用
CN111569843B (zh) 一种处理双氯芬酸废水的材料及其制备方法与应用
Dong et al. Preparation of a Novel Sorbent Based on Pickering Emulsions Polymerization Method for Encapsulating Extractants and the Adsorption of Indium in an Aqueous Solution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant