CN113680348A - 一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用 - Google Patents

一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用 Download PDF

Info

Publication number
CN113680348A
CN113680348A CN202110986556.2A CN202110986556A CN113680348A CN 113680348 A CN113680348 A CN 113680348A CN 202110986556 A CN202110986556 A CN 202110986556A CN 113680348 A CN113680348 A CN 113680348A
Authority
CN
China
Prior art keywords
monomer
pms
carbon
catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110986556.2A
Other languages
English (en)
Other versions
CN113680348B (zh
Inventor
刘超
吴林骏
李乃稳
王跃森
李君�
黄滟淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110986556.2A priority Critical patent/CN113680348B/zh
Publication of CN113680348A publication Critical patent/CN113680348A/zh
Application granted granted Critical
Publication of CN113680348B publication Critical patent/CN113680348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种高效活化PMS的碳基单原子催化剂的制备方法、产品及应用,所述制备方法包括:1)制备PS球;2)制备ZIF@PS;3)制备CoSA‑N/OC。由该方法制得的PMS碳基单原子催化剂能够高效活化PMS,使活化后的PMS在不同的水体条件下都对水中新兴有机污染物具有很高的去除率,具有很高的实用价值。

Description

一种高效活化PMS的碳基单原子催化剂的制备方法、产品及 应用
技术领域
本发明涉及PMS催化剂技术领域,具体是一种高效活化PMS的碳基单原子催化剂的制备方法、产品及应用。
背景技术
新兴有机污染物在水生环境中的广泛传播受到越来越多的关注,主要包括抗生素、激素、个人护肤品、杀虫剂等。这些污染物主要通过家庭、医院、农业和工业活动进入水体。新烟碱类杀虫剂在环境中的积累,不仅会影响传粉昆虫的生存,还会对人类健康造成慢性危害。研究表明,长期接触新烟碱类杀虫剂会增加儿童患神经发育障碍和老年人患帕金森病和阿尔茨海默病的风险。目前已有针对这些污染物的微生物降解方法,但这种传统技术复杂、效率低、易受环境因素影响。
高级氧化技术因其操作简单、反应迅速、绿色高效等优点越来越受到人们的关注。基于硫酸根自由基(·SO4-)的高级氧化可潜在地用于去除水中的难降解有机污染物。硫酸根与药品和个人护理产品、杀虫剂和全氟化合物等不同类型微有机污染物的反应已得到充分研究。硫酸盐自由基通常由过硫酸盐,特别是过PMS(过一硫酸盐)或PDS(过二硫酸盐)的异质活化产生,并且通常伴随着羟基自由基(·OH-)的形成。除了自由基的产生外,在过硫酸根活化中也观察到非自由基途径。与非选择性自由基氧化不同,非自由基氧化仅对某些有机污染物有效,因此,过硫酸盐活化过程中自由基和非自由基途径的共存将为水/废水中真正复杂的污染物提供优于单一活化途径的一些优势。
Co2+可有效激活均质PMS,但其不利的健康影响阻碍了其应用。已经开发出各种氧化/硫化钴催化剂来减轻Co2+浸出,同时保持PMS活化的高效率。碳质材料是理想的载体,因为它们具有高表面积,能为金属的负载提供大量的位点。钴通过化学结合分散在碳质材料上可以减少Co2+浸出并提供非常规的电子分布,从而提高长期催化活性。虽然这种结合可以在很大程度上减轻活性位点的聚集,但最大限度地暴露活性位点仍然具有挑战性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种PMS的碳基单原子催化剂的制备方法,以至少达到高效活化PMS,使其能够有效去除水体微污染物的作用。
本发明的目的是通过以下技术方案来实现的:
一种高效活化PMS的碳基单原子催化剂的制备方法,包括以下步骤:
1)将单体PS球模板研磨后,加入到无水甲醇溶液中,并进行超声分散,得到分散体系;
2)向所述分散体系中添加Zn(NO3)2·6H2O和Co(NO3)2·6H2O,并搅拌不低于10min,然后添加二甲基咪唑的甲醇溶液,剧烈搅拌不低于1h,然后离心并洗涤,得到前驱体;
3)将步骤2)所得前驱体放入甲醇与氨水的混合溶液中浸泡不低于18h,得到PS@Zn/Co-ZIF,然后过滤和洗涤;
4)将步骤3)所得物料于氮气氛围中煅烧,即得。
现有技术中,单独的ZIF结构中碳含量较少,不具备为钴单原子提供载体的功能,本方法用ZIF包覆PS球(PS球为聚苯乙烯球,是相当稳定的聚合有机物),使其在煅烧后形成不同形式的碳结构,能够为单原子提供稳定的附着位点,从而使钴单原子不会聚集,增大其催化效率。Zn在高温煅烧后会直接流失,在流失过程中会蚀刻PS球,使PS球比表面积增大,而具有活化功能的Co会留在PS球内。也就是说,煅烧使PS球@ZIF变成钴单原子生物碳,其整体结构发生变化,煅烧之后的主要物质为碳和原子型钴以及少量的氮元素。煅烧步骤必须在氮气环境中进行,目的是使产物直接碳化,若在氧气中煅烧则会使产物氧化无法生成生物碳。
按本发明方法制备得到的催化剂,均具有催化效果,但为获得最优的催化效果,在本发明的一些实施方案中,可选用特定的物料用量,比如各物料按质量计的配比关系为:
每单体PS球模板为4-6g,配比:
Zn(NO3)2·6H2O为0.2-3g,Co(NO3)2·6H2O为0.1-3g和二甲基咪唑为4-6g;最佳的,每1gZn(NO3)2·6H2O配以不低于1g的,Co(NO3)2·6H2O;
在本发明的某些实施方案中,步骤1)中每1g PS球模板加入到4-6mL无水甲醇中。
在本发明的某些实施方案中,步骤3)中甲醇和氨水的体积比为2:1。
在本发明的某些实施方案中,步骤2)中剧烈搅拌时间为1.5-2.5h,步骤3)中的浸泡时间为20-26小时;
在本发明的某些实施方案中,步骤4)的煅烧温度800-1000℃,煅烧时间为1.5-2.5h。
在本发明的某些实施方案中,所述单体PS球模板的制备方法包括如下步骤:
A、取去除阻聚剂的苯乙烯单体,与PVP(即单体乙烯基吡咯烷酮)混合后,于氮气保护下70-80℃水浴加热10-20min,然后向反应体系中加入引发剂并搅拌至少18h,得到乳状液;水浴较能维持温度稳定,当然油浴对本发明而言也是允许的,其他合适的控温方式都可以用于本发明。本步骤中,水浴温度优选为75℃,加热时间优选为15min。
B、将乳状液冷却,得到分散的PS乳液,离心洗涤PS乳液后,获得单体PS球模板;采用上述方法制备的单体PS球模板,其粒度均匀,大小适当,分散效果好,单体PS球模板的直径一般为150-250nm。
本发明同时提供了去除苯乙烯单体中所含阻聚剂的方法,是将苯乙烯用10wt%的氢氧化钠溶液洗涤至少2次再用超纯水洗涤洗涤至少一次后,得到去除阻聚剂的苯乙烯单体;步骤A中,所述去除阻聚剂的苯乙烯单体与PVP的体积质量比为100ml:3.5-4.5g。
在本发明的某些实施方案中,所述引发剂为质量分数在1.5%-2%的硫酸钾溶液;一般而言,制备单体PS球模板时,每100mL去除阻聚剂的苯乙烯单体配置以75-90ml引发剂;引发剂加入后搅拌的时间可进一步控制在20-24h。
采用本发明方法制备得到的催化剂可用于高效活化PMS,使PMS能更好用于有机污染物的降解。
本发明的有益效果是:
1、本方法制得的一种PMS碳基单原子催化剂,可以高效活化PMS,使活化后的PMS对水体中的各种微污染物有很高的去除率,具有很高的实用价值。
2、本方法制得的一种PMS的碳基单原子催化剂,有良好的稳定性和可重复利用性并且由该催化剂活化后的PMS还可以降低水体毒理性质,能够很好的利用在实际水体中。
附图说明
图1为CoSA-N/OC的电镜图;
图2为CoSA-N/OC的XRD图谱;
图3为CoSA-N/OC拉曼光谱图
图4为CoSA-N/OC红外光谱图
图5为CoSA-N/OC不同Zn/Co摩尔比材料中Co溶出图
图6为CoSA-N/OC循环使用效果图
具体实施方式
下面进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
一、制备催化剂,以CoSA-N/OC表示。
(一)制备单体PS球模板
每30mL苯乙烯单体依次用10mL 10wt%NaOH溶液洗涤3次后再用超纯水洗涤3次,用以去除苯乙烯单体中的阻聚剂;然后,将苯乙烯单体加入到250mL超纯水中并加入PVP混合。再将该混合物在N2气氛下在水浴中加热15分钟,然后加入25mL含有0.5g K2S2O8的水溶液作为引发剂;最后在N2气氛下在持续搅拌(500rpm)。待乳状液冷却后,得到分散的PS乳液,将其离心洗涤即得到分散的单体PS球模版,如图1a所示。
实验条件如表1:
表1
Figure BDA0003230866550000031
Figure BDA0003230866550000041
(二)制备催化剂CoSA-N/OC
1、反应步骤:
取例1单体PS球模板完全研磨,分散到20mL无水甲醇中超声分散5分钟;然后,将Zn(NO3)2·6H2O和Co(NO3)2·6H2O溶解于混合溶液中再搅拌10分钟,然后将溶于20mL甲醇的二甲基咪唑快速加入上述溶液中并剧烈搅拌;最后,通过离心得到前驱体,用甲醇洗涤数次。再将其转移到50mL甲醇和氨水(2:1v/v)的混合溶液中浸泡,以触发PS@Zn/Co-ZIF(如图1b)的形成,触发所得物料在管式炉中的N2氛围下煅烧(加热速率为5℃/min)得到催化剂CoSA-N/OC。
2、不同实施例反应条件如表2(实验例6-11是不同锌钴摩尔比条件下的筛选实验):
表2
Figure BDA0003230866550000042
以烯啶虫胺(NTP)新烟碱类药物作为典型的微污染物进行实验探究本发明材料的催化活化效果,具体步骤包括:取实施例6-11的催化剂,检测Co溶出数据,并将CoSA-N/OC和PMS加入6组NTP溶液中(每组3份),并在5min、10min、15min、20min、30min分别检测溶液中剩余NTP浓度,计算去除率并记录实验数据,实验结果如表3和图5所示。
表3
Figure BDA0003230866550000051
可以看到,本发明产品对活化PMS并促进NTP降解有明显效果,在Zn:Co摩尔比为1:1的时候材料既有很高的催化性能,又能极大的减少其Co的溶出(如图5).
实施例9所得CoSA-N/OC的扫描电镜图如图1c所示,XRD图谱如图2所示,拉曼光谱如图3所示,可以看到石墨碳峰,且具有碳缺陷,说明产物结构利于催化的进行;实施例9所得CoSA-N/OC的红外光谱如图4所示,3330cm-1处的振动主要来自分子间-OH伸缩振动。2940、2860和1340cm-1处的C-H伸缩振动吸收带归因于烷烃。2110cm-1处的强吸收峰为C≡C;1680-1520cm-1处的尖锐吸收峰为C=C伸缩振动;1260-984cm-1处的吸收峰是由C-O的伸缩振动引起的;889cm-1处的吸收峰是由C-H引起的;波数引起的变形振动小于700cm-1,对应于Co-C/N的配位伸缩振动。。
(三)将表3实施例9所得催化剂用于活化PMS,并降解微污染物(以下实验均以表3实施例9催化剂为基础)
3.1以烯啶虫胺(NTP)新烟碱类药物作为典型的微污染物进行实验探究本发明材料的催化活化效果,具体步骤如下:
取实施例9催化剂,分别将PMS、CoSA-N/OC、(CoSA-N/OC和PMS)、(Co-ZIFs和PMS)加入6组NTP溶液中(每组3份),并在5min、10min、15min、20min、30min分别检测溶液中剩余NTP浓度,计算去除率并记录实验数据,实验结果如表4所示。
表4
Figure BDA0003230866550000061
由实验数据可知:单独的CoSA-N/OC和单独的PMS系统对NTP的吸附可以忽略不计而在CoSA-N/OC/PMS系统下实现了NTP的完全去除,这些结果证实CoSA-N/OC是NTP去除过程中PMS活化的有利催化剂。此外,Co-ZIFs对PMS的活化作用较小,其催化效果低于CoSA-N/OC。
3.2经催化剂活化PMS后,微污染物处理效果稳定性(即其他离子干扰性)验证
实际环境下,阴离子(如碳酸氢盐、氯化物、磷酸盐和硝酸盐)通常存在于大多数水生水环境中,因此我们将天然有机物(例如腐殖酸、HA)和一些阴离子包括HCO3 -、Cl-、H2PO4 -和NO3 -引入CoSA-N/OC/PMS系统以研究CoSA-N/OC/PMS系统对NTP降解的影响,具体实验步骤如下:
分别向6组(每组3份)CoSA-N/OC/PMS系统中添加1mM、5mM和10mMHA、HCO3 -、Cl-、H2PO4 -和NO3 -(以不加任何阴离子的一组为空白对照),然后将其加入NTP溶液中,并在5min、10min、15min、20min、30min分别检测溶液中剩余NTP浓度,计算去除率,实验数据由表5所示。
表5
Figure BDA0003230866550000062
Figure BDA0003230866550000071
由实验数据可知:天然有机酸与阴离子对CoSA-N/OC催化剂活化PMS降解NTP的影响较小,CoSA-N/O/PMS体系有很强的实际应用价值。
3.3检测CoSA-N/OC/PMS系统对不同微污染物的去除效率,具体实验步骤如下:
分别向5组(每组3份)CoSA-N/OC/PMS加入烯啶虫胺(NTP)、噻虫啉(ICP)、噻虫啉(TCP)、卡马西平(CBZ)和磺胺甲恶唑(SMX)等五种不同的微污染物然后振荡吸附,并在5min、10min、15min、20min、30min分别检测溶液中剩余对应微污染物浓度,计算吸去除率,实验数据由表6所示。
表6
Figure BDA0003230866550000072
有实验数据可知:对于不同的污染物,CoSA-N/OC/PMS系统都对其有很高的去除率,表明CoSA-N/OC确实是一种高效的单原子催化剂,具有很高的实际应用价值。
3.4循环利用
为了评估CoSA-N/OC在PMS活化中的可重用性和稳定性,在相同的反应条件下重复三次NTP降解实验。
第一次NTP降解实验包括6个平行试验,每个平行试验采用等量催化剂,第一次试验后回收催化剂,以回收的催化剂为原料,采用第一次重复试验的相同反应条件进行第二次NTP降解实验试验(由于催化剂有损耗,所以第二次试验可减少平行试验的数量,保持每个平行试验催化剂用量与第一次实验一致即可),第三次重复试验以此类推。
如图6所示,三次降解试验后,NTP去除效率分别为100%、98.5%和95.9%,表明CoSA-N/OC在长时间运行仍显示出良好的活化性能。其催化活性的损失可能是由于污染物吸附在CoSA-N/OC上而占据了活性位点所导致的。说明未使用过的和使用过的CoSA-N/OC在活化PMS降解NTP的性能上没有发现明显的差异,这表明催化剂结构的稳定性很强。综上所述,
由于良好的稳定性和可重复使用性,CoSA-N/OC能够很好的应用于实际水处理应用中。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (10)

1.一种高效活化PMS的碳基单原子催化剂的制备方法,其特征在于,包括以下步骤:
1)将单体PS球模板研磨后,加入到无水甲醇中,并进行超声分散,得到分散体系;
2)向所述分散体系中添加Zn(NO3)2·6H2O和Co(NO3)2·6H2O,并搅拌不低于10min,然后添加二甲基咪唑的甲醇溶液,剧烈搅拌不低于1h,然后离心并洗涤,得到前驱体;
3)将步骤2)所得前驱体放入甲醇与氨水的混合溶液中浸泡不低于18h,得到PS@Zn/Co-ZIF,然后过滤和洗涤;
4)将步骤3)所得物料于氮气氛围中煅烧,即得。
2.根据权利要求1所述的制备方法,其特征在于:各物料按质量计,配比关系为:
单体PS球模板为4-6g,
Zn(NO3)2·6H2O为0.2-3g,
Co(NO3)2·6H2O为0.1-3g,
二甲基咪唑为4-6g;
3.根据权利要求1所述的制备方法,其特征在于:步骤1)中,每1g PS球模板加入到4-6mL无水甲醇中。
4.根据权利要求1所述的制备方法,其特征在于:步骤3)中甲醇和氨水的体积比为2:1。
5.根据权利要求1所述的制备方法,其特征在于:步骤2)中剧烈搅拌时间为1.5-2.5h,步骤3)中的浸泡时间为20-26小时。
6.根据权利要求1-5任一项所述的制备方法,其特征在于:步骤4)中,煅烧温度为800-1000℃,煅烧时间为1.5-2.5h。
7.根据权利要求6所述的制备方法,其特征在于:所述单体PS球模板的制备方法包括如下步骤:
A、取去除阻聚剂的苯乙烯单体,与PVP混合后,于氮气保护下70-80℃水浴加热10-20min,然后向反应体系中加入引发剂并搅拌至少18h,得到乳状液;
B、将乳状液冷却,得到分散的PS乳液,离心洗涤PS乳液后,获得单体PS球模板;优选的,水浴加热温度为75℃,水浴加热时间为15min,去除苯乙烯单体阻聚剂的方法是将苯乙烯用10wt%的氢氧化钠溶液洗涤至少2次后再用超纯水洗涤洗涤至少一次,得到去除阻聚剂的苯乙烯单体;步骤A中,所述苯乙烯单体与PVP的体积质量比为100ml:3.5-4.5g。
8.根据权利要求7所述的制备方法,其特征在于:所述引发剂为质量分数为1.5%-2%的硫酸钾溶液;优选的,制备单体PS球模板时,每100mL去除阻聚剂的苯乙烯单体配以75-90ml所述引发剂;优选的,引发剂加入后搅拌的时间为20-24小时。
9.由权利要求1-8任一项权利要求所述的制备方法制得的一种碳基单原子催化剂。
10.如权利要求9所述的碳基单原子催化剂在高效活化PMS中的应用。
CN202110986556.2A 2021-08-26 2021-08-26 一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用 Active CN113680348B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110986556.2A CN113680348B (zh) 2021-08-26 2021-08-26 一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110986556.2A CN113680348B (zh) 2021-08-26 2021-08-26 一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用

Publications (2)

Publication Number Publication Date
CN113680348A true CN113680348A (zh) 2021-11-23
CN113680348B CN113680348B (zh) 2023-04-28

Family

ID=78582846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110986556.2A Active CN113680348B (zh) 2021-08-26 2021-08-26 一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用

Country Status (1)

Country Link
CN (1) CN113680348B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870883A (zh) * 2022-06-14 2022-08-09 南昌航空大学 一种空心碳基Fe单原子催化剂及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107224968A (zh) * 2017-08-08 2017-10-03 北京林业大学 一种新型固相萃取剂的制备方法及应用
CN110280286A (zh) * 2019-06-25 2019-09-27 南京理工大学 氮掺杂等级多孔碳纳米催化剂及其制备方法
JP6721813B1 (ja) * 2019-03-26 2020-07-15 華北水利水電大学 高分散CNTs@ZIF一次元線状ナノ構造材料の調製方法およびその適用
CN111697239A (zh) * 2020-06-28 2020-09-22 全球能源互联网研究院有限公司 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN112408577A (zh) * 2020-11-23 2021-02-26 广东石油化工学院 一种利用氮掺杂多孔碳锚定的单原子钴催化剂活化过硫酸盐降解水体中有机污染物的方法
CN112886030A (zh) * 2021-01-12 2021-06-01 厦门大学 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN112973754A (zh) * 2021-03-01 2021-06-18 南开大学 一种新型碳基材料负载过渡金属单原子催化剂的制备方法
CN113262824A (zh) * 2021-04-27 2021-08-17 广州紫科环保科技股份有限公司 一种复合光催化剂的制备及其在VOCs净化中的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107224968A (zh) * 2017-08-08 2017-10-03 北京林业大学 一种新型固相萃取剂的制备方法及应用
JP6721813B1 (ja) * 2019-03-26 2020-07-15 華北水利水電大学 高分散CNTs@ZIF一次元線状ナノ構造材料の調製方法およびその適用
CN110280286A (zh) * 2019-06-25 2019-09-27 南京理工大学 氮掺杂等级多孔碳纳米催化剂及其制备方法
CN111697239A (zh) * 2020-06-28 2020-09-22 全球能源互联网研究院有限公司 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN112408577A (zh) * 2020-11-23 2021-02-26 广东石油化工学院 一种利用氮掺杂多孔碳锚定的单原子钴催化剂活化过硫酸盐降解水体中有机污染物的方法
CN112886030A (zh) * 2021-01-12 2021-06-01 厦门大学 一种多孔凹形立方体CoNP@CoSA-N-C催化剂及其制备方法和应用
CN112973754A (zh) * 2021-03-01 2021-06-18 南开大学 一种新型碳基材料负载过渡金属单原子催化剂的制备方法
CN113262824A (zh) * 2021-04-27 2021-08-17 广州紫科环保科技股份有限公司 一种复合光催化剂的制备及其在VOCs净化中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XUEMEI LI ET AL.: "Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation", 《CHEMICAL ENGINEERING JOURNAL》 *
刘希涛等: "活化过硫酸盐在环境污染控制中的应用", 《中国环境科学出版社》 *
朵英贤等: "纳米塑料技术", 《浙江科学技术出版社》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114870883A (zh) * 2022-06-14 2022-08-09 南昌航空大学 一种空心碳基Fe单原子催化剂及其制备方法与应用
CN114870883B (zh) * 2022-06-14 2023-08-18 南昌航空大学 一种空心碳基Fe单原子催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN113680348B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Xie et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism
CN109499603B (zh) 用于活化过硫酸盐的Co3O4/三维氮掺杂石墨烯水凝胶催化剂及其制备和使用方法
CN103480333A (zh) 一种复合型石墨烯吸附剂及其制备方法、应用
CN111790399B (zh) 一种协同低温等离子体技术处理废水的催化剂及其制备和应用、处理苯酚废水的方法
CN104148666A (zh) 一种纳米银修饰石墨烯的方法
CN109759117A (zh) 一种利用碳纤维制备氮掺杂碳包覆金属纳米颗粒复合材料的方法
CN115805072B (zh) 一种负载型AgPt合金光催化剂及其制备方法和应用
CN112206826B (zh) 一种钴铁合金磁性壳聚糖碳化微球的制备方法及应用
CN113680348A (zh) 一种高效活化pms的碳基单原子催化剂的制备方法、产品及应用
CN107694563A (zh) 钯炭催化剂及其制备方法和应用
Ji et al. CDs@ Cr2O3 catalytic degradation of Orange II based on non-radical pathway
CN111437859B (zh) 一种高效的非金属碳基催化剂及其制备方法和应用
CN111250131A (zh) 一种Co3ZnC/Co@NGC磁性吸波材料及其制备方法和应用
CN109174199B (zh) 一种微波制备类芬顿催化剂并同步再生活性炭的方法及应用
CN103933937A (zh) 氧化石墨烯复合物与氧化镍负载石墨烯复合物的制备方法与应用
CN107376857A (zh) 一种用于吸附重金属的复合水凝胶材料及其制备方法
Su et al. High-yield synthesis of poly (m-phenylenediamine) hollow nanostructures by a diethanolamine-assisted method and their enhanced ability for Ag+ adsorption
Shen et al. Pd/Cu bimetallic nano-catalyst supported on anion exchange resin (A520E) for nitrate removal from water: High property and stability
JP2006056750A (ja) 多孔質炭素材料およびその製造方法
CN115430451B (zh) 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用
CN111744526A (zh) 一种中性条件下液相催化加氢还原Cr(VI)的封装型贵金属催化剂及其制备方法和应用
CN115445645B (zh) Cu2+1O@MXene类芬顿催化剂及其制备方法和应用
Cheng et al. The role of the Co reduction and Zn evaporation of ZnCo-MOF carbonization in peroxymonosulfate activation for levofloxacin purification from wastewater
CN115779856A (zh) 一种羟基磷灰石/活性炭复合除氟材料及其制备方法
CN115228476A (zh) 一种金属负载木质素碳材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant