CN113649041A - 一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用 - Google Patents

一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用 Download PDF

Info

Publication number
CN113649041A
CN113649041A CN202110663772.3A CN202110663772A CN113649041A CN 113649041 A CN113649041 A CN 113649041A CN 202110663772 A CN202110663772 A CN 202110663772A CN 113649041 A CN113649041 A CN 113649041A
Authority
CN
China
Prior art keywords
carbon nitride
modified carbon
oxidative coupling
methane
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110663772.3A
Other languages
English (en)
Inventor
张金龙
王灵芝
吴仕群
何承萱
岳文晖
李乐
黎建辉
张溢楠
庄弈齐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202110663772.3A priority Critical patent/CN113649041A/zh
Publication of CN113649041A publication Critical patent/CN113649041A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/52Gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/24Nitrogen compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种高效光催化甲烷非氧化偶联复合材料的制备方法,该材料在光催化甲烷非氧化偶联体系中可以得到很好的应用。本发明以尿素作为前驱体热聚合合成氮化碳纳米片(CN),通过光沉积法将Au、Pt纳米粒子分步沉积于氮化碳纳米片上,可得到金铂共改性的氮化碳材料。本发明所述方法可以简单通过控制光沉积的顺序控制所合成Au‑Pt共改性氮化碳中Pt的化学状态及位置分布,从而调控材料的光催化甲烷非氧化偶联反应活性。制备的Au‑Pt共改性氮化碳材料具有较高的可见光吸收效率、甲烷活化能力及电荷分离效率,Au纳米粒子及其表面的零价Pt是反应的高活性位点,Au‑Pt共改性氮化碳材料表现出优异的光催化甲烷非氧化偶联活性及稳定性。

Description

一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮 化碳的制备方法及其应用
技术领域
涉及一种用于光催化甲烷非氧化偶联反应材料,属于纳米材料领域、及光催化技术领域。
背景技术
甲烷储量丰富,是天然气的主要成分,也是近些年来在深海发现干冰的主要成分。随着化石能源的日益枯竭,甲烷被认为是化石能源的可替代能源之一。然而,甲烷也是一种严重的温室气体,其温室效应是CO2的25倍。因此,将甲烷合理应用及转化意义重大。除了传统的燃烧甲烷获得热能或者电能外,将甲烷转化为附加值更高的化学品更令人关注。甲烷非氧化偶联(NOCM)是甲烷转化的形式之一,它能获得H2和长碳链的烷烃。传统的热催化过程需要高温环境来驱动NOCM反应,不仅耗能,还会导致催化剂的高温失活。
近些年来的研究表明光催化技术具有独特的优势,它利用太阳能作为驱动能在常温下对甲烷进行转化,因此能降低反应温度、节省能源、避免催化剂的高温失活。然而,尽管光催化具有以上优势,但光催化NOCM效率仍然十分低下,提高催化剂的催化效率及稳定性仍然是该反应的重点及难点。目前,所报道的具有高活性的催化剂主要是贵金属类光催化剂。贵金属的作用一方面是作为活性位点,降低反应的活化能,另一方面是作为电子的聚集中心,提高电荷分离效率来促进更多的电子参加反应。目前为止,人们主要聚焦于单一金属对该反应的催化性能的提高及其作用机理,关于双金属协同促进光催化NOCM反应仍未见有报道。与单一金属相比,双金属共改性的催化剂因双金属的多功能作用或协同作用往往能展示高效的催化性能。此外,目前大多数的报道均为紫外光驱动的光催化甲烷非氧化偶联体系,关于可见光驱动下的光催化甲烷非氧化偶联催化剂鲜有报道。
因此,基于以上研究背景,从可见光的吸收、光生电荷的有效分离及甲烷活化三个方面考虑,本发明制备了Au-Pt共改性的氮化碳纳米材料,同时将材料与不同Au-Pt负载顺序的样品进行了系统对比。一方面,氮化碳可作为可见光吸收组分,促进更多可见光的吸收;另一方面,Au-Pt所形成的双金属作为甲烷的活化中心,从而提高光催化活性。该发明所制备的Au-Pt共改性的氮化碳纳米材料实现了可见光下的高效及高稳定甲烷非氧化偶联。
发明内容
本发明采用光沉积法将Au、Pt纳米粒子沉积到氮化碳纳米片上,先利用热聚合法制备氮化碳纳米材料,随后将氮化碳纳米材料分散于水醇混合液中,加入Au源后进行光沉积反应,随后利用类似的步骤光沉积Pt,最后得到Au-Pt共改性氮化碳纳米片材料。
本发明所用的热聚合制备氮化碳的方法如下:将2 g尿素均匀放置于瓷方舟中,将瓷方舟放置于马弗炉中空气氛围下煅烧4小时,煅烧温度为530℃,升温速率为2.3℃每分钟,将煅烧后的产物研磨成粉末状即得到样品。
本发明涉及的构建Au-Pt共改性氮化碳纳米片的方法如下:将200 mg氮化碳超声分散于30 mL水和10 mL乙醇中,加入2 mL氯金酸水溶液(1 g/100 mL),在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。离心后继续加入30 mL水和10 mL乙醇,再加入2.6 mL(2g/L)氯铂酸水溶液,在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。随后将混合液离心水洗两次,烘干待用。
本发明的优势体现在
1、采用氮化碳作为主体催化剂,其吸光范围广、可见光吸收能力强,解决了传统催化剂对太阳光利用率低的问题。
2、利用Au-Pt对氮化碳材料进行改性,利用贵金属对甲烷进行有效活化,解决了甲烷活化困难的难题。
3、利用光沉积法负载金属,通过控制负载金属的顺序可很好的调控金属的化学状态。
附图说明
图1a为实施例2中的Au4Pt1CN的合成策略示意图,(b-e)分别为Pt1CN、Au4CN、Au4Pt1CN及Pt1Au4CN的TEM图,(f)为AuCNNVs的HRTEM图,(g)为Au4Pt1CN的STEM图及对应的元素mapping图。电镜图表明单独负载Pt的样品Pt1CN中Pt纳米粒子尺寸较小,只有约3纳米。对于只负载4 wt%Au的样品Au4CN,所形成的Au的纳米粒子粒径较大,平均为25纳米。对于共负载4 wt%Au和1 wt%Pt的样品,无论是先负载Au还是先负载Pt,两种金属纳米粒子在粒径方面表现出和单独负载相同的性质,Au纳米粒子的尺寸较大而Pt纳米粒子的尺寸较小(图1 d,e)。HRTEM(图1f)及HAADF(图1g)表明部分Pt纳米粒子生长在氮化碳纳米片基底上,也有一部分Pt纳米粒子生长在较大的Au纳米粒子上,Pt纳米粒子平均粒径为2.6纳米。
图2为实施例1-2、对比例1-3中的CN、Pt1CN、Au4CN、Au4Pt1CN及Pt1Au4CN的XRD、FTIR、UV-DRS、N2吸附-脱附图。这些表征均证明了相应金属的成功负载及含量相似,且Au、Pt的负载顺序对光吸收性质、比表面积性质等没有影响。
图3分别为实施例及对比例样品Pt1CN(图3a)、Au4Pt1CN(图3b)、Pt1Au4CN(图3c)及Au4Pt1CN-used(图3d)的Pt 4f的XPS图。Pt1CN及Pt1Au4CN只含有氧化态的Pt,而Au4Pt1CN既含氧化态的Pt,又含有零价Pt(14.7%)。证明负载顺序对Pt的化学状态有明显影响,且反应前后Pt保持化学稳定。
图4为实施例1-2及对比例1-3中各样品的甲烷非氧化偶联活性图,可以发现负载贵金属后活性都得到了大幅提升,且双金属共负载的样品活性比单一金属负载的活性更高。其中,Au4Pt1CN活性最高,对甲烷的转化活性可达3.6 μmol g-1 h-1,比先负载Pt后负载Au的样品Pt1Au4CN活性更高,证明了不同化学状态Pt的影响。经过相应的计算可以发现,且Au与其上的Pt是反应的高活性位,对甲烷转化速率可达1185.9 μmol g-1 h-1。Au4Pt1CN在可见光下仍然具有0.5 μmol g-1 h-1的甲烷转化活性。以上结果证明了我们所合成Au-Pt共改性氮化碳对光催化甲烷转化的高活性。
图5为实施例1-2及对比例1-3中各样品的瞬态光电流、室温荧光发射光谱、电化学阻抗谱、时间分辨荧光寿命图。光电流图说明贵金属都能够促进氮化碳的光生电荷分离效率,且双金属比单金属作用更强;较低的荧光强度,意味着更好的电子空穴分离效率;较小的电化学阻抗,更有利于载流子的迁移;较长的荧光寿命,说明本催化剂光生载流子有更长的寿命;因此,光催化甲烷非氧化偶联性能得到提升。
图6为实施例2中样品的甲烷非氧化偶联循环实验,可发现本材料具有优秀的光稳定性。
以上实验结果证明我们所合成的Au-Pt共改性氮化碳具有优秀的光催化甲烷非氧化偶联性能及稳定性。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。
具体实施方案
本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
实施例1
氮化碳纳米片的合成
将2 g尿素均匀放置于瓷方舟中,将瓷方舟放置于马弗炉中空气氛围下煅烧4小时,煅烧温度为530℃,升温速率为2.3℃每分钟,将煅烧后的产物研磨成粉末状即得到氮化碳纳米片。样品定义为CN。
实施例2
Au-Pt共改性氮化碳纳米片的合成
将200 mg氮化碳超声分散于30 mL水和10 mL乙醇中,加入2 mL氯金酸水溶液(1g/100 mL),在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。离心后继续加入30 mL水和10 mL乙醇,再加入2.6 mL(2 g/L)氯铂酸水溶液,在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。随后将混合液离心水洗两次,烘干待用。样品定义为Au4Pt1CN。
对比例1
Pt纳米粒子改性氮化碳的合成
将200 mg氮化碳超声分散于30 mL水和10 mL乙醇中,2.6 mL(2 g/L)氯铂酸水溶液,在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。随后将混合液离心水洗两次,烘干待用。样品定义为Pt1CN。
对比例2
Au纳米粒子改性氮化碳的合成
将200 mg氮化碳超声分散于30 mL水和10 mL乙醇中,加入2 mL氯金酸水溶液(1g/100 mL),在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。随后将混合液离心水洗两次,烘干待用。样品定义为Au4CN。
对比例3
Pt-Au共改性氮化碳的合成
将200 mg氮化碳超声分散于30 mL水和10 mL乙醇中,加入2.6 mL(2 g/L)氯铂酸水溶液,在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。离心后继续加入30 mL水和10mL乙醇,再加入2 mL氯金酸水溶液(1 g/100 mL),在黑暗环境中搅拌30 min,在300 W氙灯下光照1 h。随后将混合液离心水洗两次,烘干待用。样品定义为Pt1Au4CN。
实验与数据
本发明提供的光催化甲烷非氧化偶联活性考察方法如下:
将0.2 g固体催化剂放置于45 cm3的自制石英反应器中,该反应器的口用橡胶塞塞住密闭,用真空泵连接针头抽取反应器中的空气,使得反应器内为真空状态,随后注入44.6 µmol纯CH4并静止1小时来达到吸附脱附平衡,将该反应器放置于氙灯下照射4小时。在反应前,所以的样品都经过了真空活化处理,具体为将样品放置于管式炉中,抽真空120摄氏度煅烧4小时来除去催化剂表面的吸附水及杂质气体分子。产物的检测利用气相色谱进行,用气相取样针抽取产物打入气相色谱,对碳氢化合物的检测采用火焰电离检测器,对于H2的检测采用热导检测器。产物对C2H6的选择性指的是产生C2H6所消耗的CH4数与产生所有碳氢化合物消耗的甲烷数的比值。

Claims (4)

1.一种用于光催化甲烷非氧化偶联反应材料的制备方法,其特征在于先通过热聚合法合成氮化碳纳米片,随后利用光沉积法在纳米片上负载Au及Pt纳米粒子,所制备Au-Pt共改性氮化碳材料具有优秀的光捕获能力、甲烷活化能力、电荷分离能力而表现出很好的光催化甲烷非氧化偶联性能,具体包括以下步骤:
第一步:将2 g尿素均匀放置于瓷方舟中,将瓷方舟放置于马弗炉中空气氛围下煅烧4小时,将煅烧后的产物研磨得到氮化碳(CN)粉末;第二步:将200 mg氮化碳超声分散于一定量水和乙醇中,加入2 mL氯金酸水溶液(1 g/100 mL),在黑暗环境中搅拌30 min,在300 W氙灯下光照一定时间;离心后继续加入一定量水和乙醇,再加入2.6 mL(2 g/L)氯铂酸水溶液,在黑暗环境中搅拌30 min,在300 W氙灯下光照一定时间;随后将混合液离心水洗两次,烘干即得到Au-Pt共改性氮化碳。
2.根据权利要求1所述的Au-Pt共改性氮化碳材料的制备方法,其特征在于:在第一步中,煅烧温度为530℃,升温速率为2.3℃每分钟。
3.根据权利要求1所述的的Au-Pt共改性氮化碳材料的制备方法,其特征在于:在第二步中,水和乙醇的量分别为30 mL和10mL。
4.根据权利要求1所述的Au-Pt共改性氮化碳材料的制备方法,其特征在于:在第二步中,氙灯光照时间为1小时。
CN202110663772.3A 2021-06-16 2021-06-16 一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用 Pending CN113649041A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110663772.3A CN113649041A (zh) 2021-06-16 2021-06-16 一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110663772.3A CN113649041A (zh) 2021-06-16 2021-06-16 一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113649041A true CN113649041A (zh) 2021-11-16

Family

ID=78488984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110663772.3A Pending CN113649041A (zh) 2021-06-16 2021-06-16 一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113649041A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433841A (zh) * 2019-07-22 2019-11-12 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
US20200392054A1 (en) * 2018-02-20 2020-12-17 The Johns Hopkins University Method for preparation of nanoceria supported atomic noble metal catalysts and the application of platinum single atom catalysts for direct methane conversion
CN112517082A (zh) * 2021-01-18 2021-03-19 福州大学 一种有机金属化合物修饰无机半导体复合光催化剂及其制备方法和应用
CN112624893A (zh) * 2020-12-25 2021-04-09 南开大学 一种轻质烷烃的催化偶联方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200392054A1 (en) * 2018-02-20 2020-12-17 The Johns Hopkins University Method for preparation of nanoceria supported atomic noble metal catalysts and the application of platinum single atom catalysts for direct methane conversion
CN110433841A (zh) * 2019-07-22 2019-11-12 盐城工学院 一种Ag-Pt双金属负载的含有氮空位氮化碳纳米片复合光催化剂的制备方法
CN112624893A (zh) * 2020-12-25 2021-04-09 南开大学 一种轻质烷烃的催化偶联方法
CN112517082A (zh) * 2021-01-18 2021-03-19 福州大学 一种有机金属化合物修饰无机半导体复合光催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JINJUAN XUE ET AL.: "\"Facile Photochemical Synthesis of Au/Pt/g‑C3N4 with Plasmon- Enhanced Photocatalytic Activity for Antibiotic Degradation\"", 《APPLIED MATERIALS & INTERFACES》, vol. 7, pages 9630 - 9637 *
JUNYU LANG ET AL.: "\"Highly efficient light-driven methane coupling under ambient conditions based on an integrated design of a photocatalytic system\"", 《GREEN CHEMISTRY》, vol. 22, pages 4670 *
XIN GUO ET AL.: "\"Au nanoparticle-controlled formation of metallic and oxidized Pt nanoparticles on graphitic carbon nitride nanosheets for H2 evolution\"", 《DALTON TRANSACTIONS》, vol. 50, pages 2 *

Similar Documents

Publication Publication Date Title
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
CN109331883B (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
CN103521252B (zh) 氮掺杂石墨烯复合半导体纳米粒子的光催化剂及制备方法
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN112076777B (zh) 一种用于co2还原的光催化剂及其制备方法
CN108940308B (zh) 一种铂钴复合金属光热催化剂的制备及其在甲烷二氧化碳重整中的应用
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN105618039B (zh) 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备
CN113145138B (zh) 热响应型复合光催化剂及其制备方法和应用
CN105817217A (zh) SrTiO3/石墨烯复合催化剂及制备方法和应用
CN111617790B (zh) 一种氮掺杂碳层包覆碳化钴锰复合材料及其应用
CN113058617A (zh) 一种光催化剂及其制备方法和应用
EP1188711A1 (en) Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
CN116550357A (zh) 一种g-C3N4纳米片光催化剂的制备方法及应用
CN114308079A (zh) 一种硫化镉-双助催化剂复合光催化材料及其制备方法与应用
CN109225217A (zh) 一种碳化植物叶片@ZnO/Au异质结多级结构组装体催化剂及其制备方法
CN109382088B (zh) SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法
Liu et al. A Z-scheme heterostructure constructed from ZnS nanospheres and Ni (OH) 2 nanosheets to enhance the photocatalytic hydrogen evolution
CN117138802A (zh) 一种Bi2MoO6@ZnIn2S4分级S型异质结构光催化剂及其制备方法
CN113649041A (zh) 一种用于高效光催化甲烷非氧化偶联反应的Au-Pt共改性氮化碳的制备方法及其应用
CN110433858A (zh) Ag/PANI/石墨烯复合光催化剂及制备方法与应用
CN108855222A (zh) ZCS@Ni-MOF纳米复合材料及其制备和应用
CN113797940A (zh) 一种硒化钴石墨氮化碳复合材料及其制备方法和应用
CN113117672A (zh) 一种支链烷烃重整光热催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211116

RJ01 Rejection of invention patent application after publication