CN108855222A - ZCS@Ni-MOF纳米复合材料及其制备和应用 - Google Patents

ZCS@Ni-MOF纳米复合材料及其制备和应用 Download PDF

Info

Publication number
CN108855222A
CN108855222A CN201810489854.9A CN201810489854A CN108855222A CN 108855222 A CN108855222 A CN 108855222A CN 201810489854 A CN201810489854 A CN 201810489854A CN 108855222 A CN108855222 A CN 108855222A
Authority
CN
China
Prior art keywords
mof
zcs
preparation
nanocomposite
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810489854.9A
Other languages
English (en)
Other versions
CN108855222B (zh
Inventor
佘厚德
马雄
孙毅东
李良善
苏碧桃
王其召
王磊
黄静伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201810489854.9A priority Critical patent/CN108855222B/zh
Publication of CN108855222A publication Critical patent/CN108855222A/zh
Application granted granted Critical
Publication of CN108855222B publication Critical patent/CN108855222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Ni‑MOF包覆ZCS的纳米复合材料Zn0.5Cd0.5S@Ni‑MOF(x%)的制备方法,是先以乙醇为溶剂,采用溶剂热法合成了Zn0.5Cd0.5S;再将Ni(NO3)2·6H2O、聚乙烯吡咯烷酮、Zn0.5Cd0.5S溶于乙醇中,超声、搅拌后于80℃~90℃保持4~8小时,离心分离,产物用乙醇洗涤,干燥,即得目标产物ZCS@Ni‑MOF。光催化性能测试结果表明,在可见光照射下,ZCS@Ni‑MOF的产氢速率最高可达2800μmol/h/0.1g,是纯ZCS的5.6倍。

Description

ZCS@Ni-MOF纳米复合材料及其制备和应用
技术领域
本发明涉及一种Ni-MOF纳米复合材料的制备,尤其涉及一种Ni-MOF包覆ZCS的纳米复合材料的制备,只要作为光催化剂用于光解水产氢反应中。
背景技术
近年来,由于工业生产过度使用化石燃料,导致能源短缺和环境污染。氢气作为可再生的清洁燃料是取代传统化石燃料最有前景的能源载体之一。由于太阳能的巨大潜力,太阳能光解生产氢是生产氢能最直接、最有效的手段。自20世纪70年代以来,本田和藤岛已经使用二氧化钛将水光催化转化为H2和O2,越来越多的研究人员开始探索如何通过光催化将水转化为氢。在制备良好和应用的光催化剂中,ZnxCd1-xS基材料等金属硫化物由于其可调带隙和低成本而被认为是有前途的候选材料。例如,Zn0.5Cd0.5S的带隙可以通过材质中Zn和Cd的添加比例调整。根据之前的报道,Zn0.5Cd0.5S在可见光照射下的水分解过程中表现出一定的性能,在反应前后保持一致的化学稳定性。然而,Zn0.5Cd0.5S的应用由于其强烈的电子空穴复合仍然受到限制。为了减少载流子的光诱导复合,贵金属通常被用作助催化剂,例如,Pt是最活泼的放氢助催化剂,但其成本高,稀释性差,成为其实际应用的障碍。因此,发掘低成本的非贵金属助催化剂已经成为一个挑战。
近年来,结晶性多孔材料(MOFs)由于其比表面积大,孔径大小易于控制,易于改性等优点,在各个领域引起了广泛的研究。例如,MOFs已成功地与一系列活性物质(包括金属纳米粒子,金属氧化物和有机聚合物)结合在一起,不仅展现了他们构建的MOFs和NPs的固有性质,而且还具有其在新领域的协同性能。它们被用于水分子捕获,工业分离,气体储存,光催化等领域。然而,在核壳NPs@MOFs纳米结构中使用光催化剂作为核的报道很少。
发明内容
本发明的目的是提供了Zn0.5Cd0.5S@Ni-MOF复合材料的制备方法;
本发明的另一目的,是对制备的Zn0.5Cd0.5S@Ni-MOF复合材料的结构及在光解水产氢的应用性能进行研究。
一、ZCS@Ni-MOF复合材料的制备
(1)Zn0.5Cd0.5S的合成
以乙醇为溶剂,采用溶剂热法合成了Zn0.5Cd0.5S。具体合成工艺为:将Zn(NO3)2·6H2O和Cd(NO3)2·4H2O溶于乙醇中形成混合液;再向混合液中加入(NH4)2S,并搅拌15~25分钟,然后加热至180~220℃下反应22~26小时;产物用蒸馏水和乙醇交替洗涤,干燥,即得Zn0.5Cd0.5S,标记为ZCS。
Zn(NO3)2·6H2O和Cd(NO3)2·4H2O的摩尔比控制在1:1.5~1:0.5;
(NH4)2S的加入量为Zn(NO3)2·6H2O和Cd(NO3)2·4H2O总摩尔量的4~6倍。
(2)Zn0.5Cd0.5S@Ni-MOF(x%)核壳纳米材料的合成
将Ni(NO3)2·6H2O、聚乙烯吡咯烷酮(PVP,可提供配位基团使其与Ni2+形成配位化合物)、Zn0.5Cd0.5S溶于乙醇中,超声处理5~15min,再搅拌15~25min,然后于80~90℃保持4~8小时,离心分离,产物用乙醇洗涤,干燥,即得目标产物Zn0.5Cd0.5S@Ni-MOF,标记为ZCS@Ni-MOF。
Ni(NO3)2·6H2O与聚乙烯吡咯烷酮(PVP)的质量比为1:2~1:3;Ni(NO3)2·6H2O与Zn0.5Cd0.5S的摩尔比为1:0.5~1:0.3。
所制备的ZCS@Ni-MOF(x%)中,Ni-MOF的质量百分数为5~20%。
二、Ni-MOF包覆ZCS复合材料的表征
1、XRD图
图1为ZCS和ZCS@Ni-MOF(5~20%)的XRD图。从图1a中可以看出,样品在27.4、31.6、45.75、54.1处的所有111,200,220,311面均代表所有样品Zn0.5Cd0.5S@NiMOF的衍射峰与纯Zn0.5Cd0.5S相比几乎没有偏移。图1b显示了光催化产氢反应前后Zn0.5Cd0.5S@Ni-MOF(15%)的XRD衍射峰。可以清楚地看到,反应前后Zn0.5Cd0.5S@Ni-MOF(15%)的XRD衍射峰几乎没有变化,表明Zn0.5Cd0.5S@Ni-MOF(15%)非常稳定。
2、SEM图
图2 (a、b)为Ni-MOF和(c、d)Zn0.5Cd0.5S的扫描电镜谱图。从图中可以合成的Ni-MOF是均匀的八面体,分散性较好,Zn0.5Cd0.5S样品是大小为50~100nm左右的纳米颗粒,而且分散比较均匀。图(e、f)是包裹了Ni-MOF之后的Zn0.5Cd0.5S@Ni-MOF(15%)的透射电镜图。从图中可以明显看出核壳结构,而且样品整体的纳米尺寸变大,外层为Ni-MOF,内层为Zn0.5Cd0.5S纳米颗粒,并且包覆了Ni-MOF后,样品有所团聚。
3、XPS谱
为了进一步评估Zn0.5Cd0.5S@Ni-MOF(15%)中元素的存在状态,对样品做了XPS分析。图3显示了Zn 2p31/2,Zn 2p33/2(a),Cd 3d3/2,Cd 3d5/2(b),S 2p3/2,S 2p1/2(c)和Ni 2p1/2,Ni2p3/2(d)的XPS谱图。以284.6eV的C 1s峰作为参考结合分析。从图3(a、b)可以看出,在1022.6和1045.6 eV处的结合能分别与Zn 2p3/2和2p1/2的结合能一致。在405.3和412.1 eV处的结合能分别为Cd 3d5/2和Cd 3d3/2的结合能相对应。并且这四个峰形比较是尖锐,表明Zn和Cd的化合价都是+2。图3c是S 2p的XPS谱图,根据前面分析可知Zn0.5Cd0.5S@Ni-MOF(15%)的S2p峰可以拟合为结合能分别在161.7和162.8eV处的S 2p3/2和S 2p1/2峰。图3d显示的是在结合能852.8和871.9eV处是Ni 2p拟合出的Ni 2p3/2和2p1/2峰,根据对照结合能标准表可以发现Ni-MOF中的Ni为+2价。当Zn0.5Cd0.5S@Ni-MOF(15%)中的电子处于激发中间态时,它们将减弱H+还原成H2的能力,研究人员发现Ni具有相对较小的氢吸附热(约109~134kJ / mol,Pt为109 kJ / mol)。此外,根据交换电流与氢生成过程中MH的结合强度(M代表过渡金属)之间的关系,Ni的活化能在所有非贵金属中最低,甚至可以起到在产氢过程中的作用相当于Pt。这些概念解释了质子Ni或其氧化物与Pt相比在还原过程中可能发挥的作用:它们通过促进氢气吸附 - 还原 - 解吸过程来促进传质过程。
4、紫外-可见吸收光谱
图4a是Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF(x%)样品的UV-vis DRS光谱图。 从UV-vis DRS谱图中可以看出Zn0.5Cd0.5S纳米粒子的吸收边在520nm处。与Zn0.5Cd0.5S纳米粒子相比,光催化剂Zn0.5Cd0.5S@Ni-MOF(15%)具有更强的吸收强度,并且吸收边红移至560nm,表明在Zn0.5Cd0.5S光催化剂中引入的Ni-MOF具有明显的带隙变化。图4显示了不同比例Zn0.5Cd0.5S@Ni-MOF(x%)样品的UV-vis DRS光谱,从图中可以看出Zn0.5Cd0.5S@Ni-MOF(x%)的紫外可见漫反射光谱随着包裹Ni-MOF少到多,Zn0.5Cd0.5S@Ni-MOF的吸收强度依次增大。图4b是激发波长为380nm时Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF(x%)的光致发光光谱图。从图中可以看出Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF的光致发光峰位于472nm,这可归因于锌空位,ZnS相关发光性能以及光生电子和空穴的复合所引起的,并且可以看出Zn0.5Cd0.5S@Ni-MOF(15%)的荧光峰强度明显弱于其他包覆Ni-MOF量的Zn0.5Cd0.5S@Ni-MOF(x%),表明Zn0.5Cd0.5S@Ni-MOF(15%)纳米复合材料中光生电子和空穴的复合几率更低,更有利于光催化过程中光生电子的传输,也就是说Zn0.5Cd0.5S@Ni-MOF(15%)具有最好的光催化产氢活性。
三、ZCS@Ni-MOF(x%)复合材料的光催化性能
1、光电化学性能
采用三电极系统(CHI-660DCo.,Shanghai,China)在LED灯(λ>420nm,CEL-LED100)照明条件下获得光电极的光电化学(PEC)性能。
图5 (a) 图是Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF(x%)的光电流曲线图,图5(b)是Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF(x%)的奈奎斯特曲线图。从图5 (b)中可以看出,与Zn0.5Cd0.5S纳米粒子相比,光催化剂Zn0.5Cd0.5S@Ni-MOF(x%)的半圆半径随着Ni-MOF包覆量的曾加变得越来越小,表明随着Ni-MOF量的增加Zn0.5Cd0.5S@Ni-MOF(x%)的阻抗越来越小,当包覆Ni-MOF的量达到15%时曲线具有最小的半圆半径,说明Zn0.5Cd0.5S@Ni-MOF(15%)的阻抗最小。图5 (a)是Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF(x%)的瞬态光电流曲线图,从图中可以看出随着Ni-MOF包覆量的增加Zn0.5Cd0.5S@Ni-MOF(x%)的瞬态光电流越来越大,当Ni-MOF包覆量达到15%时,Zn0.5Cd0.5S@Ni-MOF(15%)的光电流强度约是纯Zn0.5Cd0.5S光电流的8倍,表明Zn0.5Cd0.5S@Ni-MOF(15%)在硫酸钠缓冲溶液中具有比Zn0.5Cd0.5S更低的界面电荷转移电阻。即Zn0.5Cd0.5S@Ni-MOF(15%)表面上的界面电荷转移比在Zn0.5Cd0.5S表面界面上的电荷转移要快。采用牺牲剂硫化钠和亚硫酸钠捕获Zn0.5Cd0.5S和Zn0.5Cd0.5S@Ni-MOF(15%)表面上产生的光致空穴,一定程度上减小避免光生电子和空穴的复合效率。从图5中可以得出Zn0.5Cd0.5S@Ni-MOF(15%)比Zn0.5Cd0.5S具有更好的光催化产氢活性。
2、光催化性能测试
Zn0.5Cd0.5S@Ni-MOF(x%)的光催化活性在反应器中进行。在每个试验中,将0.1g光催化剂粉末分散在100 ml0.5M Na2S·9H2O和0.5M Na2SO3的水溶液中。然后使用与420nm截止滤器(0.1MNaNO2水溶液)组合的300WXe灯在可见光照射下混合物。在测试周期期间,使用气相色谱(GC-9560,中国)每小时一次分离放出的H2。H2的量通过热导检测器(Ar载体)测量。
在LED灯(λ>420nm,CELLED100)照明的条件下,采用三电极系统获得光电阳极的光电化学(PEC)性能。铂丝和Ag/AgCl分别用作反电极和参比电极。工作电极在氟化锡氧化物(FTO)的导体玻璃上制成。将样品(10mg)均匀分散于无水乙醇中并超声20分钟,然后将其缓慢滴加到FTO玻璃上。工作电极在红外灯照射下干燥30分钟。电解质是在石英器皿中的0.5MNa2SO4(pH=7.5)水溶液。用0.5V的偏压电压进行光电化学测试。使用通过FTO背面的照明,照明面积约为1.0cm2
图6(a)为可见光照射下,在100 ml 0.5 M Na2S和0.5 M Na2SO3水溶液中ZCS和Zn0.5Cd0.5S@Ni-MOF(5~20%)的光催化H2析出速率(加入光催化剂:0.1g);利用封闭气体循环系统对水解产生的光催化氢气进行了测试,在可见光照射下,使用0.5 M Na2S和0.5 MNa2SO3作为保护剂。图6a显示了在可见光照射下,Zn0.5Cd0.5S@Ni-MOF(5~20%)比纯ZCS具有更高的产氢性能。当Ni-MOF量达到15%时,产氢速率可达2800μmol/h/0.1g,是纯ZCS的5.6倍。
稳定性是催化剂的一个非常重要的因素,图6b显示了在相同条件下进行的H2析出的Zn0.5Cd0.5S@Ni-MOF(15%)的循环稳定性实验。通过循环稳定性实验可以发现,经过四个循环后,Zn0.5Cd0.5S@Ni-MOF(15%)的析氢速率几乎没有下降。也就是说,经过长时间的光催化反应后,Zn0.5Cd0.5S@Ni-MOF(15%)的化学性质没有变化。说明Zn2p和Cd3d的结合能在反应前没有变化,Zn0.5Cd0.5S@Ni-MOF(15%)在保持高性能的同时具有良好的循环稳定性。值得注意的是,S2-也表现出良好的稳定性,这是因为溶液中的牺牲剂S2-和SO3 2-能够抑制Zn0.5Cd0.5S@Ni-MOF(15%)中的S2-氧化。
综上所述,我们合成了Zn0.5Cd0.5S@Ni-MOF,可以提高可见光照射下的光催化活性。ZCS中掺杂的Ni可以捕获光诱导电子,然后在反应过程中将H+还原成H2,S2-与ZCS在Na2SO3/Na2S溶液中捕获光致空穴。因此,光致电子和光致空穴被分开。光诱导电子可以与O2结合形成O2-,孔和O2-可以用来催化苯甲醇形成苯甲醛。接下来,电子和空穴迁移到催化剂表面上的活性位点。催化剂表面的电子可以减少H+在水中产生氢气,而O2 -和空穴将醇氧化成相应的醛。在这个过程中,光诱导电荷载体的分离是关键的一步,因为光诱导电子和空穴往往会迅速重组,这反过来将加剧不利的光催化活性的氢气演变和催化氧化。
附图说明
图1为ZCS和Zn0.5Cd0.5S@Ni-MOF(x%)的XRD图。
图2为Ni-MOF(a,b),Zn0.5Cd0.5S(c,d) 的扫描电镜图,(e,f)为Zn0.5Cd0.5S @Ni-MOF(15%)的透射电镜谱图。
图3为Zn,Cd,S和Ni的高分辨率XPS谱。
图4为ZCS和Zn0.5Cd0.5S@Ni-MOF(x%)的紫外-可见吸收光谱(a)及在380nm激发的合成Cd0.5Zn0.5S的光致发光光谱(b)。
图5为ZCS和Zn0.5Cd0.5S@Ni-MO(x%)F电极的EIS奈奎斯特曲线(a)电极在0.5M硫酸钠缓冲溶液中可见光照射下的光电流曲线(b)。
图6为ZCS和Zn0.5Cd0.5S@Ni-MOF(x%)的光催化H2析出速率(a)及Zn0.5Cd0.5S@Ni-MOF(15%)的产氢循环稳定性(b)。
具体实施方式
实施例1
(1)Zn0.5Cd0.5S的合成:将2.5mmol Zn(NO3)2·6H2O和2.5mmol Cd(NO3)2·4H2O溶于20ml乙醇中;再将7.5mmol(NH4)2S滴入上述混合溶液中并搅拌20分钟,然后将其转移到Teflon衬里中(内衬用不锈钢高压釜密封)并向其中加入50ml乙醇,在200℃保持24小时。反应结束后后,交替使用蒸馏水和乙醇清洁洗涤,产物在80℃的烘箱中干燥,即得Zn0.5Cd0.5S;
(2)Zn0.5Cd0.5S@Ni-MOF(15%)核壳纳米结构的合成:将4.5 mmol Ni(NO3)2·6H2O、3gPVP、0.3g Zn0.5Cd0.5S溶于200ml C2H6O中,将混合溶液先超声处理15 min,再搅拌20 min,使用回流装置在85℃反应6小时;离心分离,产物用乙醇洗涤10次,80 ℃下干燥,即得Zn0.5Cd0.5S@Ni-MOF(15%)。
ZCS@Ni-MOF(15%)用于光解水产氢反应中,产氢速率可达2800μmol/h/0.1g。
实施例2
(1)Zn0.5Cd0.5S的合成:同实施例1;
(2)Zn0.5Cd0.5S@Ni-MOF(5%)的合成:将1.5 mmol Ni(NO3)2·6H2O、1g PVP、0.3 gZn0.5Cd0.5S溶于200ml C2H6O中,将混合溶液先超声处理15 min,再搅拌20 min,使用回流装置在85℃反应6小时,离心分离,产物用乙醇洗涤10次,80℃下干燥,即得Zn0.5Cd0.5S@Ni-MOF。该品种中Ni-MOF的含量为5%,记为ZCS@Ni-MOF(5%)。
ZCS@Ni-MOF(5%)用于光解水产氢反应中,产氢速率可达1100 μmol/h/0.1g。
实施例3
(1)Zn0.5Cd0.5S的合成:同实施例1;
(2)Zn0.5Cd0.5S@Ni-MOF(10%)的合成:将3.0 mmol Ni(NO3)2·6H2O、2g PVP、0.3gZn0.5Cd0.5S溶于200ml C2H6O中,将混合溶液先超声处理15min,再搅拌20min,使用回流装置在85℃反应6小时,离心分离,产物用乙醇洗涤10次,80℃下干燥,即得Zn0.5Cd0.5S@Ni-MOF。该品种中Ni-MOF的含量为10%,记为ZCS@Ni-MOF(10%)。
ZCS@Ni-MOF(10%)用于光解水产氢反应中,产氢速率可达1500 μmol/h/0.1g。
实施例4
(1)Zn0.5Cd0.5S的合成:同实施例1;
(2)Zn0.5Cd0.5S@Ni-MOF(20%)的合成:将6.0mmol Ni(NO3)2·6H2O、4g PVP、0.3gZn0.5Cd0.5S溶于200ml C2H6O中,将混合溶液先超声处理15min,再搅拌20min,使用回流装置在85℃反应6小时,离心分离,产物用乙醇洗涤10次,80℃下干燥,即得Zn0.5Cd0.5S@Ni-MOF。该品种中Ni-MOF的含量为20%,记为ZCS@Ni-MOF(20%)。
ZCS@Ni-MOF(20%)用于光解水产氢反应中,产氢速率可达2200 μmol/h/0.1g。

Claims (6)

1.ZCS@Ni-MOF纳米复合材料的制备方法,包括以下步骤:
(1)Zn0.5Cd0.5S的合成:将Zn(NO3)2·6H2O和Cd(NO3)2·4H2O溶于乙醇中形成混合液;再向混合液中加入(NH4)2S,并搅拌20~30分钟,然后加热至180℃~220℃下反应22~26小时;产物用蒸馏水和乙醇交替洗涤,干燥,即得Zn0.5Cd0.5S,标记为ZCS;
(2)ZCS@Ni-MOF纳米复合材料的合成:将Ni(NO3)2·6H2O、聚乙烯吡咯烷酮、Zn0.5Cd0.5S溶于乙醇中,超声处理5~15min,再搅拌15~25min,然后于80℃~90℃保持4~8小时,离心分离,产物用乙醇洗涤,干燥,即得目标产物ZCS@Ni-MOF。
2.如权利要求1所述ZCS@Ni-MOF米复合材料的制备方法,其特征在:步骤(1)中,Zn(NO3)2·6H2O和Cd(NO3)2·4H2O的摩尔比控制在1:1.5~1:0.5。
3.如权利要求1所述ZCS@Ni-MOF纳米复合材料的制备方法,其特征在:步骤(1)中,(NH4)2S的加入量为Zn(NO3)2·6H2O和Cd(NO3)2·4H2O总摩尔量的4~6倍。
4.如权利要求1所述ZCS@Ni-MOF纳米复合材料的制备方法,其特征在:步骤(2)中,Ni(NO3)2·6H2O与聚乙烯吡咯烷酮的质量比为1:2~1:3。
5.如权利要求1所述ZCS@Ni-MOF纳米复合材料的制备方法,其特征在:步骤(2)中,Ni(NO3)2·6H2O与Zn0.5Cd0.5S的摩尔比为1:0.5~1:0.3。
6.如权利要求1所述方法制备的ZCS@Ni-MOF纳米复合材料作为光催化剂用于光解水产氢反应中。
CN201810489854.9A 2018-05-21 2018-05-21 ZCS@Ni-MOF纳米复合材料及其制备和应用 Active CN108855222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810489854.9A CN108855222B (zh) 2018-05-21 2018-05-21 ZCS@Ni-MOF纳米复合材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810489854.9A CN108855222B (zh) 2018-05-21 2018-05-21 ZCS@Ni-MOF纳米复合材料及其制备和应用

Publications (2)

Publication Number Publication Date
CN108855222A true CN108855222A (zh) 2018-11-23
CN108855222B CN108855222B (zh) 2020-12-01

Family

ID=64333106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810489854.9A Active CN108855222B (zh) 2018-05-21 2018-05-21 ZCS@Ni-MOF纳米复合材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN108855222B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152737A (zh) * 2019-05-10 2019-08-23 三峡大学 Zr-MOF改性ZnCdS纳米微球复合材料及其应用
CN115990522A (zh) * 2022-12-10 2023-04-21 福州大学 一种MOF/CdZnS复合材料的制备及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073021A1 (en) * 2008-12-24 2010-07-01 Intrinsiq Materials Limited Fine particles
CN103111309A (zh) * 2013-02-04 2013-05-22 陕西科技大学 三维海胆状ZnS/CdS复合半导体光催化纳米材料的制备方法
CN106252676A (zh) * 2016-07-28 2016-12-21 青岛大学 一种量子点修饰金属有机骨架嵌入碳纳米管材料的制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073021A1 (en) * 2008-12-24 2010-07-01 Intrinsiq Materials Limited Fine particles
CN103111309A (zh) * 2013-02-04 2013-05-22 陕西科技大学 三维海胆状ZnS/CdS复合半导体光催化纳米材料的制备方法
CN106252676A (zh) * 2016-07-28 2016-12-21 青岛大学 一种量子点修饰金属有机骨架嵌入碳纳米管材料的制备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110152737A (zh) * 2019-05-10 2019-08-23 三峡大学 Zr-MOF改性ZnCdS纳米微球复合材料及其应用
CN115990522A (zh) * 2022-12-10 2023-04-21 福州大学 一种MOF/CdZnS复合材料的制备及应用

Also Published As

Publication number Publication date
CN108855222B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
Pan et al. Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@ C nanospheres
Kumar et al. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
Meng et al. Insight into the transfer mechanism of photogenerated carriers for WO3/TiO2 heterojunction photocatalysts: is it the transfer of band–band or Z-scheme? Why?
Zhang et al. CdS/ZnO: a multipronged approach for efficient reduction of carbon dioxide under visible light irradiation
Luo et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
Baraton Nano-TiO2 for solar cells and photocatalytic water splitting: scientific and technological challenges for commercialization
CN112264049B (zh) 一种用于光催化固氮合成氨的Mo或Fe掺杂Zn1-xIn2S4催化剂的制备方法
Moniruddin et al. Designing CdS-Based Ternary Heterostructures Consisting of Co-Metal and CoO x Cocatalysts for Photocatalytic H2 Evolution under Visible Light
Xie et al. A Z-scheme Pd modified ZnIn2S4/P25 heterojunction for enhanced photocatalytic hydrogen evolution
Xiang et al. Cu/CdS/MnO x Nanostructure-Based Photocatalyst for Photocatalytic Hydrogen Evolution
CN101143712B (zh) 一种利用太阳能分解水制氢纳米电极制备方法
Xi et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution
Zhang et al. Investigation on the Photocatalytic Hydrogen Evolution Properties of Z-Scheme Au NPs/CuInS2/NCN-CN x Composite Photocatalysts
CN113058617B (zh) 一种光催化剂及其制备方法和应用
Yang et al. Efficient H 2 evolution on Co 3 S 4/Zn 0.5 Cd 0.5 S nanocomposites by photocatalytic synergistic reaction
CN105044180A (zh) 一种异质结光电极的制备方法和用途
Yu et al. Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis
Liang et al. P-Type Cobalt Phosphide Composites (CoP–Co2P) Decorated on Titanium Oxide for Enhanced Noble-Metal-Free Photocatalytic H2 Evolution Activity
Song et al. In-situ partial cation exchange-derived ZnIn2S4 nanoparticles hybridized 1D MIL-68/In2S3 microtubes for highly efficient visible-light induced photocatalytic H2 production
Xie et al. Construction of a Z-scheme CdIn2S4/ZnS heterojunction for the enhanced photocatalytic hydrogen evolution
CN109317184A (zh) 双功能β-FeOOH/eg-C3N4复合纳米材料及其制备方法和应用
Fang et al. Fabrication of ultrathin two-dimensional/two-dimensional MoS2/ZnIn2S4 hybrid nanosheets for highly efficient visible-light-driven photocatalytic hydrogen evolution
Liu et al. CaBi 6 O 10: a novel promising photoanode for photoelectrochemical water oxidation
Zhang et al. Facile and robust construction of a 3D-hierarchical NaNbO 3-nanorod/ZnIn 2 S 4 heterojunction towards ultra-high photocatalytic H 2 production
Chen et al. Crucial effect of halogen on the photocatalytic hydrogen evolution for Bi19X3S27 (X= Cl, Br) nanomaterials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant