CN105618039B - 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备 - Google Patents

一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备 Download PDF

Info

Publication number
CN105618039B
CN105618039B CN201610078833.9A CN201610078833A CN105618039B CN 105618039 B CN105618039 B CN 105618039B CN 201610078833 A CN201610078833 A CN 201610078833A CN 105618039 B CN105618039 B CN 105618039B
Authority
CN
China
Prior art keywords
znga
peg
photochemical catalyst
reduction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610078833.9A
Other languages
English (en)
Other versions
CN105618039A (zh
Inventor
张丽
戴超华
阎建辉
张秀秀
周民杰
钟明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Science and Technology
Original Assignee
Hunan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Science and Technology filed Critical Hunan Institute of Science and Technology
Priority to CN201610078833.9A priority Critical patent/CN105618039B/zh
Publication of CN105618039A publication Critical patent/CN105618039A/zh
Application granted granted Critical
Publication of CN105618039B publication Critical patent/CN105618039B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/159Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with reducing agents other than hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂制备方法,该方法包括:(1)取物质的量之比为1:2的硝酸锌和硝酸镓于去离子水中形成混合液;(2)将聚乙二醇加入混合液中,后逐滴加入20%氨水,调节溶液pH值为弱碱性;(3)将反应体系转移至反应釜中进行水热、陈化反应;(4)反应产物抽滤、洗涤、干燥及焙烧后获得高比表面ZnGa2O4;(5)取ZnGa2O4分散于去离子水中并加入氯铂酸,将Pt4+还原沉积于ZnGa2O4表面;(6)将产物离心分离,用去离子水洗涤,干燥,即得Pt‑ZnGa2O4。本发明制备的产物微粒均匀,过程简单、节能、环保,稳定,在太阳光照射下能高效还原CO2

Description

一种太阳光驱动高效还原CO2的Pt-ZnGa2O4光催化剂的制备
技术领域
本发明涉及一种在分散剂作用下通过低温水热法、陈化制备出高比表面ZnGa2O4,再通过浸渍-还原法制备Pt-ZnGa2O4光催化纳米材料的方法,这种光催化材料在太阳光照射下有良好的CO2光催化还原性能。
背景技术
随着人类社会的不断发展,人口持续膨胀,能源危机和环境问题已是21世纪人类必须面临的两个严峻挑战。当今世界能源消耗的80%仍来自以石油、煤、天然气等为主的化石能源,从经济、环境和社会的角度来看,这种能源供应和消费趋势显然是不可持续的。随着工业的不断发展,森林数量的减少,碳排放的显著增加打破了自然界的碳循环平衡,导致大气中以CO2为主的温室气体的浓度持续增加,由此引发的环境问题也日益凸显。因此,开发CO2减排和转化技术对保护环境、推动经济和社会可持续发展具有重大而深远的意义。如何稳定控制大气中温室气体浓度的方案迅速成为研究热点,引起了环境、能源、物理、化学等多学科研究者的极大兴趣。人们一直努力寻找新的方法,试图将过量的CO2转化为有用的化学物质。CO2是热力学十分稳定的化合物,以其为原料生产的产物都是它的还原产物,要想完成这种转化必须对CO2进行活化,向CO2输入很高的电子形式的能量,即任何大规模使用CO2工艺都潜在耗能,不仅要继续消耗化石能源,而且会直接排放更多的CO2。因此,开发低能耗或者利用太阳能的CO2转化和利用技术对于解决环境和能源问题具有重要的战略意义。
自从20世纪70年代日本科学家发现TiO2光催化现象以来,大量的研究表明半导体材料,如金属氧化物(TiO2,ZnO,ZrO,WO3,CdO)和硫化物(CdS,ZnS)等都具有光催化活性。半导体光催化反应是以光能为驱动力的氧化-还原过程,其电子的激发与传递过程同绿色植物光合作用过程极为相似。大自然光合作用固定CO2合成有机物,是人类赖以生存的基础,由于环境的恶化,森林、植被的减少,“人工固碳”是降低大气温室效应的有效途径,光催化技术的应用为人工光合成还原CO2提供了借鉴。人工光合成还原CO2是利用太阳能激发半导体光催化材料产生光生电子-空穴,以诱发氧化-还原反应将CO2和H2O合成羧酸、醇、烷烃或其它有机物质,以实现碳的循环使用。与其它方法相比,该过程在常温常压下进行,原料简单易得,直接利用太阳能无需耗费辅助能源,因而被认为是最具前景的CO2转化方法。
尖晶石类化合物是一类重要的功能材料,种类繁多,在光诱导下具有光、电、磁及催化等功能特性,已被广泛应用于磁性材料、光学材料、气敏材料以及催化材料。ZnGa2O4的能带间隙较宽,无光腐蚀,化学稳定性良好,被认为是一种理想的光学材料,可作为光催化剂。由于单一ZnGa2O4的光催化效率相对不高,如果通过高温固相法制备样品容易发生团聚,降低了比表面积,限制了光催化活性的提高。采用温和的制备方法,并在制备过程中加入一些分散剂或络合剂可减轻产物的团聚现象,可极大的增加样品比表面积,提高单位面积上光催化活性点位,即提高光催化活性。
贵金属修饰对半导体光催化性质实际上是通过改变体系中电子的分布实现的。电中性并相互分开的金属和半导体有不同的Fermi能级,常常是金属的功函数(Φm)高于半导体的功函数(Φs),当金属与半导体接触后,电子就会不断地从半导体向金属迁移,直到两者的Fermi能级相等时为止。在两者电接触之后形成的空间电荷层中,金属表面将获得多余的负电荷,而在半导体表面上则有多余的正电荷。这样,半导体的能带就向上弯向表面生成损耗层,这种在金属-半导体界面上形成的能垒称为Schottky能垒,能有效地阻止半导体上的电子-空穴再结合,有利于光催化反应进行。研究表明,Pt以原子簇形态沉积在半导体表面,有一个最佳沉积量。其它贵金属Ag、Pd、Ru、Au等的修饰也有类似的电荷分离作用,但Pt具有最大的功函,效应最强。在催化剂表面担载Pt等金属相当于在半导体的表面构成一个以半导体及惰性金属为电极的短路微电池,半导体电极所产生的h+将液相中的有机物氧化,而e-则流向金属电极,将液相中的氧化态组分还原,降低e-和h+的复合率,提高了光催化剂的反应活性。
发明内容
本发明的目的之一是提供一种太阳光响应的Pt-ZnGa2O4光催化剂的制备方法。其特征为:将锌、镓硝酸盐所配置的混合盐用氨水作为沉淀剂,采用低温水热、陈化法合成ZnGa2O4,通过浸渍-还原法制备Pt-ZnGa2O4光催化剂,实现光催化剂光响应红移、光量子效率提高。本发明的目的之二是提供一种太阳光响应的Pt-ZnGa2O4光催化剂的应用,该光催化剂在模拟太阳光作用下,具有优异的光催化还原CO2活性。
本发明的一种太阳光响应的Pt-ZnGa2O4纳米光催化剂的制备方法包括以下步骤:
(1) 将Zn与Ga摩尔比为1:2分别称取所需硝酸锌和硝酸镓将其在磁力搅拌下溶解于去离子水中形成混合溶液;
(2) 聚乙二醇(PEG)按2~10%加入到步骤(1)制得的混合硝酸盐溶液中,加入量可以为2%、4%、6%、8%或10%,以反应理论可得到的ZnGa2O4的质量来衡量,待其完全溶解后,在磁力搅拌下逐滴加入20%氨水,调节溶液pH值为8~10;
(3) 将步骤(2)反应体系转移至水热反应釜中进行水热、陈化反应,反应温度为80~120℃,反应时间为6~12小时,其中水热反应温度可以为80、100或120℃,反应时间为6、8、10或12小时;
(4) 将步骤(3)的产物倒入真空抽滤装置中抽滤,用去离子水洗涤,真空干燥及焙烧后获得高比表面的纳米ZnGa2O4光催化剂,其中焙烧温度为300、400、500、600或700℃,时间为2、3、4或5小时;
(5) 称取步骤(4)获得的产品分散于去离子水中,充分搅拌形成悬浊液,加入适量的H2PtCl6水溶液,使Pt的重量负载量为ZnGa2O4的1~5%,还原溶液中Pt4+ 离子使其负载于ZnGa2O4表面;
(6) 将反应混合物离心分离,得到的沉淀物,用去离子水多次洗涤沉淀直至无Cl-检出,将沉淀物在373K干燥,即得所需Pt-ZnGa2O4
在上述方案的基础上,步骤(2)中所述的PEG可以为PEG-400、PEG-1000、PEG-4000PEG-6000、PEG-8000、PEG-10000中一种或几种的混合物;
在上述方案的基础上,步骤(5)中所述的还原Pt4+ 离子方法,可以为光还原法、液相氢气还原法和化学还原法中的一种或几种同时进行的方法;
在上述方案的基础上,该方法制备出了具有高比表面的Pt-ZnGa2O4纳米光催化剂,并对最佳条件下制备的Pt-ZnGa2O4纳米光催化剂进行了相关表征;XRD检测表明Pt-ZnGa2O4样品主要为尖晶石型ZnGa2O4衍射峰所组成(见图1);纳米粒子粒径均匀,平均约为5~10 nm(见图2a),HRTEM分析表明样品为尖晶石结构ZnGa2O4晶格相(见图2b中的晶面标记);EDX分析进一步证明纳米粒子由Pt、Zn、Ga和O元素组成(见图3);最佳条件下获得的样品比表面积为101.18m2·g-1;紫外-可见漫反射光谱分析表明,负载金属铂后的光催化剂发生了显著红移,且光吸收能力大大增加(见图4)。
本发明技术方案显著优点主要体现在:
(1)在ZnGa2O4制备过程中添加聚乙二醇(PEG)作为分散剂,减少了颗粒团聚几率,提供了较大比表面积和更多的活性中心;
(2)通过有效的还原手段,使Pt均匀沉积于纳米ZnGa2O4的表面,在金属-半导体界面上形成Schottky能垒,有效地阻止半导体上的电子-空穴再结合,提高量子效率;
(3)通过低温水热、陈化反应,生成的ZnGa2O4微粒均匀,制备过程简单、节能、环保,还原CO2活性高,使用寿命长,有利于实际应用开发。
附图说明
图1为最佳实验条件下ZnGa2O4和Pt-ZnGa2O4光催化剂的XRD图;
图2a,b分别为最佳实验条件下Pt-ZnGa2O4光催化剂的TEM和HRTEM图;
图3为最佳实验条件下Pt-ZnGa2O4光催化剂的EDX图;
图4为最佳实验条件下,ZnGa2O4和Pt-ZnGa2O4的UV-Vis DRS图。
具体实施方式
制备实施例1
称取Zn与Ga摩尔比为1:2的硝酸锌和硝酸镓在磁力搅拌下溶解于去离子水中形成混合溶液,将PEG-400按反应理论可得到的ZnGa2O4的质量的3%加入到混合硝酸盐溶液中,待其完全溶解后,在磁力搅拌下逐滴加入20%氨水,调节溶液pH值为8;将混合液转移至水热反应釜中进行水热、陈化反应,反应温度为80℃,反应时间12小时;将反应产物倒入真空抽滤装置中抽滤,用去离子水洗涤,真空干燥后500℃焙烧3h获得高比表面的纳米ZnGa2O4;取获得的ZnGa2O4产品分散于去离子水中,充分搅拌形成悬浊液,加入其Pt负载重量2%的H2PtCl6水溶液,将悬浊液倒入三颈烧瓶中,经超声波分散的悬浮液加入20mL甲醇溶液(H2O: MeOH=99:1),通入氮气,控制氮气流量为25L·h-1,再打开光源,以250W的高压汞灯光照8h。所得沉淀用去离子水反复清洗,直至无Cl-检出,沉淀于373K下干燥6h,即得所需产品Pt-ZnGa2O4
制备实施例2
称取Zn与Ga摩尔比为1:2的硝酸锌和硝酸镓在磁力搅拌下溶解于去离子水中形成混合溶液,将PEG-4000按反应理论可得到的ZnGa2O4的质量的4%加入到混合硝酸盐溶液中,待其完全溶解后,在磁力搅拌下逐滴加入20%氨水,调节溶液pH值为9;将混合液转移至水热反应釜中进行水热、陈化反应,反应温度为100℃,反应时间10小时;将反应产物倒入真空抽滤装置中抽滤,用去离子水洗涤,真空干燥后400℃焙烧4h获得高比表面的纳米ZnGa2O4;取获得的ZnGa2O4产品分散于去离子水中,超声波分散并充分搅拌形成悬浊液,加入其Pt负载重量4%的H2PtCl6水溶液,悬浊液转入三颈烧瓶中,于80℃水浴中搅拌30min后,通入H2还原Pt4+ 离子,H2流量330~340mL/min,还原反应6 h。反应混和物离心分离,所得沉淀用去离子水反复清洗,直至无Cl-检出,沉淀物373K下干燥6h,即得所需产品Pt-ZnGa2O4
制备实施例3
称取Zn与Ga摩尔比为1:2的硝酸锌和硝酸镓在磁力搅拌下溶解于去离子水中形成混合溶液,将PEG-10000按反应理论可得到的ZnGa2O4的质量的6%加入到混合硝酸盐溶液中,待其完全溶解后,在磁力搅拌下逐滴加入20%氨水,调节溶液pH值为10;将混合液转移至水热反应釜中进行水热、陈化反应,反应温度为120℃,反应时间8小时;将反应产物倒入真空抽滤装置中抽滤,用去离子水洗涤,真空干燥后300℃焙烧6h获得高比表面的纳米ZnGa2O4。称取一定量的ZnGa2O4放入一烧杯中,加入5mL无水乙醇超声10分钟,再加入H2PtCl6水溶液,使样品的Pt重量负载为5%,超声波分散后置于磁力搅拌器上不断搅拌形成悬浊液,并维持50℃恒温。另取10mL无水乙醇,5mL水合肼加入分液漏斗中,混合均匀,缓慢滴加到烧杯中,在50℃恒温下继续搅拌还原1h,静置,所得沉淀用蒸馏水洗涤,抽滤多次洗涤,直至无Cl-检出,沉淀物373K下干燥6h,即得所需产品Pt-ZnGa2O4
应用实施例1
光催化还原CO2反应在购制的石英反应器(300W氙灯为模拟太阳光光源,北京中教金源科技有限公司生产)中进行,将0.4gPt-ZnGa2O4分散至装有400mL水的反应器中,加入NaOH和无水Na2SO3作为牺牲剂,磁力搅拌均匀,使牺牲剂浓度为0.1M。然后将高纯CO2以200mL/min的流量通入反应器中,反应温度保持在恒温,在暗处搅拌吸附30 min后打开光源。光催化反应2、4、6、8h时取样,离心,取上清微孔滤膜过滤,滤液进一步处理后采用气相色谱仪分析甲醇的含量。实验结果表明,当反应温度为75℃,反应时间为6h时,反应液中甲醇含量最高,达5.72 mmol·gcat -1,随着反应的进行甲醇含量有所降低。
应用实施例2
在应用实施例1相同条件下进行了ZnGa2O4样品的光催化还原实验,其甲醇检出量很少。取Pt-ZnGa2O4最佳样品在黑暗条件下做CO2 还原对照实验和不加催化剂的情况下做CO2 还原对照实验,结果表明,无光照射和不加催化剂条件下反应液中没有检测出甲醇。

Claims (4)

1.一种太阳光驱动高效还原CO2的Pt-ZnGa2O4光催化剂的制备方法,其特征是在分散剂聚乙二醇(PEG)作用下,以硝酸锌和硝酸镓为原料,通过控制Zn与Ga的比例为1:2,采用水热、陈化法与液相还原法结合制备高比表面的Pt-ZnGa2O4纳米光催化剂,该光催化剂具有高效还原CO2成为甲醇的能力,其制备工艺包括以下步骤:
(1) 按Zn与Ga摩尔比为1:2分别称取所需硝酸锌和硝酸镓将其在磁力搅拌下溶解于去离子水中形成混合溶液;
(2) 聚乙二醇(PEG)按2~10%加入到步骤(1)制得的混合硝酸盐溶液中,加入量以反应理论可得到的ZnGa2O4的质量来衡量,待其完全溶解后,在磁力搅拌下逐滴加入20%氨水,调节溶液pH值为8~10;
(3) 将步骤(2)反应体系转移至水热反应釜中进行低温水热、陈化反应,反应温度为80~120℃,反应时间为6~12小时;
(4) 将步骤(3)的产物倒入真空抽滤装置中抽滤,用去离子水洗涤,真空干燥及焙烧后获得高比表面的纳米ZnGa2O4光催化剂,其中焙烧温度为300~700℃,焙烧时间为2~5h;
(5) 称取步骤(4)获得的ZnGa2O4分散于去离子水中,充分搅拌形成悬浊液,加入H2PtCl6水溶液,加入量为使Pt的重量负载量为ZnGa2O4的1~5%,液相还原法使溶液中Pt4+ 离子沉积于ZnGa2O4表面;
(6) 将反应混合物离心分离,得到的沉淀物,用去离子水多次洗涤沉淀直至无Cl-检出,将沉淀物在373K干燥,即得所需Pt-ZnGa2O4
2.根据权利要求1 所述的一种太阳光驱动高效还原CO2的Pt-ZnGa2O4光催化剂的制备方法,其特征在于:步骤(2)中所述的分散剂为PEG-400、PEG-1000、PEG-4000、PEG-6000、PEG-8000或PEG-10000中一种或几种混合物,加入量为2~10%,以提高产物的比表面积。
3. 根据权利要求1 所述的一种太阳光驱动高效还原CO2的Pt-ZnGa2O4光催化剂的制备方法:步骤(4)中所获得的ZnGa2O4产品分散于去离子水中,加入H2PtCl6水溶液,加入量为使Pt的重量负载量为ZnGa2O4的1~5%,通过光还原法、液相氢气还原法或化学还原法中的一种或几种同时进行的液相还原方法,使溶液中Pt4+ 离子还原沉积于ZnGa2O4表面。
4.权利要求1所述的制备方法制得的Pt-ZnGa2O4光催化剂应用于高效还原CO2以获得甲醇。
CN201610078833.9A 2016-02-04 2016-02-04 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备 Expired - Fee Related CN105618039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610078833.9A CN105618039B (zh) 2016-02-04 2016-02-04 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610078833.9A CN105618039B (zh) 2016-02-04 2016-02-04 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备

Publications (2)

Publication Number Publication Date
CN105618039A CN105618039A (zh) 2016-06-01
CN105618039B true CN105618039B (zh) 2018-02-16

Family

ID=56033612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610078833.9A Expired - Fee Related CN105618039B (zh) 2016-02-04 2016-02-04 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备

Country Status (1)

Country Link
CN (1) CN105618039B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106219666B (zh) * 2016-07-06 2019-03-29 广西大学 一种Pt掺杂In2O3光催化降解水中PFOA的方法
CN106268745A (zh) * 2016-09-30 2017-01-04 陕西科技大学 一种溶剂热法制备半导体光催化剂ZnGa2O4及其方法
CN109234760B (zh) * 2018-10-31 2020-12-25 北京化工大学 一种活性阴极及其制备方法和应用
CN109821534A (zh) * 2019-03-18 2019-05-31 长江师范学院 一种光催化降解染料废水的方法
WO2023028705A1 (en) * 2021-09-02 2023-03-09 The Royal Institution For The Advancement Of Learning/Mcgill University Method and catalyst for methane conversion to cyclohexane

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531035B (zh) * 2011-12-12 2015-12-16 湖南理工学院 一种高比表面ZnO/ZnAl2O4复合纳米空心球材料及其制备方法
CN102628185B (zh) * 2012-04-17 2015-07-29 陕西科技大学 一种八面体结构ZnGa2O4单晶的制备方法
CN102618927B (zh) * 2012-04-17 2014-12-24 陕西科技大学 一种微波水热制备ZnGa2O4单晶的方法
CN102716741A (zh) * 2012-07-02 2012-10-10 江西理工大学 一种Pt/ZnO复合空心微球光催化材料及其制备方法
CN104096560B (zh) * 2014-07-21 2016-04-13 安徽师范大学 一种ZnO/Pt异质纳米阵列结构材料、制备方法及其应用

Also Published As

Publication number Publication date
CN105618039A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
Yuan et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
US20220042184A1 (en) Preparation Method and Application of Non-noble Metal Single Atom Catalyst
Ma et al. Construction of Z-scheme system for enhanced photocatalytic H2 evolution based on CdS quantum dots/CeO2 nanorods heterojunction
CN105618039B (zh) 一种太阳光驱动高效还原CO2的Pt‑ZnGa2O4光催化剂的制备
Imran et al. Highly efficient sustainable photocatalytic Z-scheme hydrogen production from an α-Fe2O3 engineered ZnCdS heterostructure
Zhang et al. Construction of dual-channel for optimizing Z-scheme photocatalytic system
CN109331883B (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
Zhang et al. NiSe2/Cd0. 5Zn0. 5S as a type-II heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution
Saito et al. Highly sensitive ethanol gas sensor using pyramid-shaped ZnO particles with (0001) basal plane
Qian et al. Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
Cheng et al. Visible light responsive CdS sensitized TiO2 nanorod array films for efficient photocatalytic reduction of gas phase CO2
You et al. Preparation, visible light-driven photocatalytic activity, and mechanism of multiphase CdS/C3N4 inorganic-organic hybrid heterojunction
CN102266787A (zh) 一种新型不含贵金属光解水制氢催化剂的制备方法
Zhu et al. Simulated-sunlight-driven Cr (VI) reduction on a type-II heterostructured Sb 2 S 3/CdS photocatalyst
Wang et al. Zero-dimensional/two-dimensional Au25 (Cys) 18 nanoclusters/g-C3N4 nanosheets composites for enhanced photocatalytic hydrogen production under visible light
Liu et al. Preparation of BiOCl/Cu2O composite particles and its photocatalytic degradation of moxifloxacin
Zhang et al. Efficient photocatalytic CO2 reduction by the construction of Ti3C2/CsPbBr3 QD composites
CN113171784A (zh) 一种用于光解水产氢的MXene修饰的硒化镉量子点异质复合材料的制备方法
Luo et al. Lanthanide–titanium-oxalate clusters and their degradation products, photocurrent response and photocatalytic behaviours
Cui et al. Controlling Pt co-catalyst loading in a WO3 quantum dot and MoS2 nanosheet composite Z-scheme system for enhanced photocatalytic H2 evolution
Yang et al. Fabrication of Cu2O/MTiO3 (M= Ca, Sr and Ba) pn heterojunction for highly enhanced photocatalytic hydrogen generation
Sohail et al. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting
Wu et al. Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@ Cu-MOF-74 thin film
Wang et al. Boosting photocatalytic dehydrogenation and simultaneous selective oxidation of benzyl alcohol to benzaldehyde over flower-like MoS2 modified Zn0. 5Cd0. 5S solid solution

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180216

Termination date: 20190204

CF01 Termination of patent right due to non-payment of annual fee