CN113621639A - 重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用 - Google Patents
重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用 Download PDFInfo
- Publication number
- CN113621639A CN113621639A CN202111026593.5A CN202111026593A CN113621639A CN 113621639 A CN113621639 A CN 113621639A CN 202111026593 A CN202111026593 A CN 202111026593A CN 113621639 A CN113621639 A CN 113621639A
- Authority
- CN
- China
- Prior art keywords
- recombinant
- aldc
- mmp1
- seq
- rbs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1022—Transferases (2.) transferring aldehyde or ketonic groups (2.2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1025—Acyltransferases (2.3)
- C12N9/1029—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
- C12N9/1247—DNA-directed RNA polymerase (2.7.7.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/88—Lyases (4.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
- C12P7/26—Ketones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y202/00—Transferases transferring aldehyde or ketonic groups (2.2)
- C12Y202/01—Transketolases and transaldolases (2.2.1)
- C12Y202/01006—Acetolactate synthase (2.2.1.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/07006—DNA-directed RNA polymerase (2.7.7.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y401/00—Carbon-carbon lyases (4.1)
- C12Y401/01—Carboxy-lyases (4.1.1)
- C12Y401/01005—Acetolactate decarboxylase (4.1.1.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/001—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
- C12N2830/002—Vector systems having a special element relevant for transcription controllable enhancer/promoter combination inducible enhancer/promoter combination, e.g. hypoxia, iron, transcription factor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用,重组嗜盐单胞菌的构建方法为:(1)在野生型嗜盐单胞菌Halomonas sp.TD01CGMCCNo.4353基因组上整合Mmp1RNA聚合酶表达单元;再敲除PhaC基因;(2)制备高拷贝表达载体pN59‑PMmp1‑RBS‑aldC‑S2‑alsS;(3)制备低拷贝表达载体pN85‑PMmp1‑RBS‑aldC;(4)向步骤(1)获得的菌株中导入高拷贝表达载体和低拷贝表达载体,得到重组嗜盐单胞菌TDZ‑2。利用重组嗜盐单胞菌进行全细胞催化丙酮酸生产乙偶姻,与体外酶催化相比,效率高,反应周期短,成本低,环保。
Description
技术领域
本发明属于生物工程技术与应用领域,具体涉及重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用。
背景技术
乙偶姻,又名3-羟基-2-丁酮,单体为无色或淡黄色液体,二聚体为白色结晶粉末。乙偶姻存在与很多食品中,具有奶香气味,常用作食品添加剂来提升食物中的奶香味。乙偶姻早前就被美国能源部列为30种值得优先开发的平台化合物之一,也是4-C平台化合物的一种,广泛应用于很多领域,如材料、医药生产和化学合成等领域,也是重要化学品如2,3-丁二醇,液态烃燃料和杂环化合物的前体物。
目前,乙偶姻工业化生产的主要方法是化学合成法和生物合成法。化学合成法主要包括2,3-丁二醇的氧化、丁酮的氯化水解和丁二酮的部分加氢等方法。但由于这些工艺能耗大,得率低且对环境有一定的污染,所以近年来,利用生物法生产乙偶姻越来越受研究者的关注。
生物合成法主要有微生物合成法,体外酶催化合成法和全细胞催化合成法。
微生物生产乙偶姻的特点主要有:产量较高,但得率较低,生产周期长,主要原因可能是微生物代谢复杂,体内合成不易调控。因此也有研究者使用基于纯化酶的体外合成生物系统生产乙偶姻,目前已实现从2,3-丁二醇、丙酮酸、甘油、乳酸、木糖等生产乙偶姻。Cui等在体外酶催化体系中,利用α-乙酰乳酸合成酶和α-乙酰乳酸脱羧酶,催化395.6g/L丙酮酸生产了186.7g/L乙偶姻,达到理论得率的94.3%。但纯化酶系统存在目前还无法彻底解决的缺点,如酶的制备成本较高,酶的稳定性较低。
相比之下,全细胞催化具有很多明显的优势:制备简单,成本低,效率高,稳定性好等,目前已实现利用全细胞催化以meso-2,3-丁二醇,双乙酰,葡萄糖和乙醛为底物合成乙偶姻,且乙偶姻的产量都较高。Zhou等[1]利用氧化葡糖杆菌全细胞催化生产乙偶姻,以2,3-丁二醇为底物,最终乙偶姻的产量达到165.9g/L。虽然乙偶姻的产量很高,但底物2,3-丁二醇价格昂贵。目前全细胞催化方法中,以乙醛为底物的催化体系中,乙偶姻的产量最高,达到222g/L[2],但该催化体系使用的细胞密度较高,达到30g CDW/L,且其底物乙醛较贵,难以储存,属于危险品,不利于乙偶姻的工业化制备。因此亟待开发一种利用廉价安全的全细胞催化方法。
发明内容
本发明的目的是克服现有技术的不足,提供一种重组嗜盐单胞菌。
本发明的第二个目的是提供一种重组嗜盐单胞菌的构建方法。
本发明的第三个目的是提供一种重组嗜盐单胞菌催化丙酮酸生产乙偶姻的应用。
本发明的技术方案概述如下:
一种重组嗜盐单胞菌的构建方法,包括如下步骤:
(1)在野生型嗜盐单胞菌Halomonas sp.TD01保藏登记号为CGMCCNo.4353基因组上整合Mmp1 RNA聚合酶表达单元,得到Halomonas sp.TD1.0;再将Halomonas sp.TD1.0基因组上聚羟基烷烃酸合成酶亚基基因PhaC敲除,得到Halomonas sp.TD1.0△phaC;
所述Mmp1 RNA聚合酶表达单元的核苷酸序列如SEQ ID NO.8所示;
所述聚羟基烷烃酸合成酶亚基基因PhaC的核苷酸序列如SEQ ID NO.9所示;
(2)在高拷贝表达载体pN59上通过CPEC的方法,插入PMmp1,得到pN59-PMmp1,并在pN59-PMmp1的多克隆位点区域插入RBS-aldC-S2-alsS,得到高拷贝表达载体pN59-PMmp1-RBS-aldC-S2-alsS;
所述高拷贝表达载体pN59的核苷酸序列如SEQ ID NO.1所示;
所述PMmp1为IPTG诱导型启动子,其核苷酸序列如SEQ ID NO.2所示;
所述RBS为大肠杆菌Escherichia coli MG1655强核糖体结合位点,其核苷酸序列如SEQ ID NO.3所示;
所述aldC为枯草芽孢杆菌Bacillus subtilis 168来源的α-乙酰乳酸脱羧酶基因,其核苷酸序列如SEQ ID NO.4所示;
所述S2的核苷酸序列如SEQ ID NO.5所示;
所述alsS为枯草芽孢杆菌Bacillus subtilis 168来源的α-乙酰乳酸合成酶基因,其核苷酸序列如SEQ ID NO.6所示;
(3)在低拷贝表达载体pN85上通过CPEC的方法插入PMmp1-RBS-aldC,得到低拷贝表达载体pN85-PMmp1-RBS-aldC;
所述低拷贝表达载体pN85的核苷酸序列如SEQ ID NO.7所示;
(4)向步骤(1)获得的Halomonas sp.TD1.0△phaC中导入高拷贝表达载体pN59-PMmp1-RBS-aldC-S2-alsS,得到重组嗜盐单胞菌TDZ-1;再向所述TDZ-1中导入低拷贝表达载体pN85-PMmp1-RBS-aldC,得到重组嗜盐单胞菌TDZ-2。
上述构建方法构建的重组嗜盐单胞菌。
上述重组嗜盐单胞菌催化丙酮酸生产乙偶姻的应用。
上述应用,包括如下步骤:
1)权利要求2的重组嗜盐单胞菌在60LB液体培养基中进行培养,培养至OD600为0.6-0.8,加入终浓度为0.5mM的IPTG,18-30℃下诱导12-16h,离心收集菌体;
2)按比例,向容器中加入底物丙酮酸,使终浓度为460-800mM,加入步骤1)获得的菌体,使OD600=5-15,加入10mM的MgCl2,0.2mM硫胺素焦磷酸,余量为pH 6.0的100mM高渗磷酸缓冲液,混合均匀后在40-45℃,220rpm反应,得到乙偶姻。
有益效果
本发明利用重组嗜盐单胞菌进行全细胞催化丙酮酸生产乙偶姻,与体外酶催化相比,效率高,反应周期短,成本低,环保。
附图说明
图1为重组嗜盐单胞菌转化460mM丙酮酸生产乙偶姻的生产曲线。
图2为重组嗜盐单胞菌转化800mM丙酮酸生产乙偶姻的生产曲线。
具体实施方式
下面结合实施例对本发明做进一步说明,下述实施例是为了使本领域的技术人员能够更好的理解本发明,但对本发明不作任何限制。
枯草芽孢杆菌购自BGSC芽孢杆菌遗传储备中心(Bacillus Genetic StockCenter),
20010315,美国,http://www.bgsc.org/。
Escherichia coli S17-1λpir,购自Biovector质粒载体菌种细胞基因保藏中心,20191011,中国,http://www.biovector.net/。
LB液体培养基:胰蛋白胨10g/L,酵母提取物5g/L,氯化钠20g/L,蒸馏水定容。
20LB固体培养基:胰蛋白胨10g/L,酵母提取物5g/L,氯化钠20g/L,蒸馏水定容至1L,加2%琼脂。
60LB液体培养基包括:胰蛋白胨10g/L,酵母提取物5g/L,氯化钠60g/L,蒸馏水定容至1L,5M NaOH水溶液调pH至9.0;
100mM高渗磷酸缓冲液(pH=6.0)包括:0.1M Na2HPO4水溶液和0.1M NaH2PO4水溶液以1:7.13体积比混合,添加NaCl使终浓度60g/L;
CPEC质粒构建方法来源于如下文章:Quan,J.and J.Tian(2009)."Circularpolymerase extension cloning of complex gene libraries and pathways."PLoS One4(7):e6441.
pN59载体(pSEVA341,The Standard European Vector Architecture(SEVA):acoherent platform for the analysis and development of complex prokaryoticphenotypes(2013).Nucleic acids research,41,75)
pN85载体(pSEVA321,The Standard European Vector Architecture(SEVA):acoherent platform for the analysis and development of complex prokaryoticphenotypes(2013).Nucleic acids research,41,75)
乙偶姻标准品从Sigma公司(http://www.sigmaaldrich.com/sigma-aldrich)购买。
所用限制性内切酶、去磷酸化酶、DNA连接酶等、分子生物学试剂从Thermo公司购买(http://www.thermoscientificbio.com/fermentas)。
所用丙酮酸钠,丙酮酸等其他生化试剂(如胰蛋白胨,酵母抽提物,NaCl,磷酸氢二钠,磷酸二氢钠、IPTG、MgCl2等)从生工生物工程(上海)股份有限公司购买(http:// www.sangon.com/)。
IPTG(异丙基β-D-1-硫代吡喃半乳糖苷)
实施例1:嗜盐单胞菌突变体Halomonas sp.TD1.0△phaC的构建
在野生型嗜盐单胞菌Halomonas sp.TD01(已于2010年11月9日保藏于中国微生物菌株保藏管理委员会普通微生物中心,保藏登记号为CGMCC No.4353)基因组上整合Mmp1RNA聚合酶表达单元,得到Halomonas sp.TD1.0;
具体步骤为:在野生型嗜盐单胞菌Halomonas sp.TD01(CGMCC No.4353)基因组上整合Mmp1 RNA聚合酶表达单元,得到Halomonas sp.TD1.0,以实现当IPTG存在时类T7启动子的激活转录,具体操作方法记载在如下文献中:Zhao H,Zhang H M,Chen X,Li T,Wu Q,et al.(2016).Novel t7-like expression systems used for halomonas.MetabolicEngineering,128,公众可根据文献内容改造Halomonas sp.TD01获得Halomonassp.TD1.0;
进一步利用CRISPR/Cas9技术(方法记录在如下文献中:Qin Q,Ling C,Zhao Y,Yang T,Yin J,Guo Y,et al.(2018).Crispr/cas9 editing genome of extremophilehalomonas spp.Metabolic Engineering,S1096717618300053.)将Halomonas sp.TD1.0基因组上编码聚羟基烷烃酸合成酶亚基基因PhaC敲除,得到Halomonas sp.TD1.0△phaC作为本发明的底盘细胞。
所述Mmp1 RNA聚合酶表达单元的核苷酸序列如SEQ ID NO.8所示;
所述聚羟基烷烃酸合成酶亚基基因PhaC的核苷酸序列如SEQ ID NO.9所示
实施例2:重组表达载体和重组嗜盐单胞菌的构建
1)载体pN59-PMmp1-RBS-aldC-S2-alsS和重组嗜盐单胞菌TDZ-1的构建
以引物pN59-F(SEQ ID NO.10)为上游引物,以pN59-R(SEQ ID NO.11)为下游引物,以pN59载体(SEQ ID NO.1)为模板,经PCR,制备片段pN59-1;
以引物PMmp1-F(SEQ ID NO.12)上游引物,以PMmp1-R(SEQ ID NO.13)为下游引物,以SEQ ID No.2所示PMmp1片段为模板,经PCR,制备片段PMmp1-1;
利用片段pN59-1和PMmp1-1,经CPEC方法制备载体pN59-PMmp1;
以引物RBS-aldC-S2-F(SEQ ID NO.14)为上游引物,以RBS-aldC-S2-R(SEQ IDNO.15)为下游引物,以枯草芽孢杆菌(Bacillus subtilis 168)基因组为模板,经PCR,制备含有RBS(大肠杆菌Escherichia coli MG1655强核糖体结合位点,SEQ ID NO.3)、基因aldC(枯草芽孢杆菌Bacillus subtilis 168来源的α-乙酰乳酸脱羧酶基因SEQ ID NO.4)和部分S2的片段RBS-aldC-1。
以引物S2-alsS-F(SEQ ID NO.16)为上游引物,以S2-alsS-R(SEQ ID NO.17)为下游引物,以枯草芽孢杆菌(Bacillus subtilis 168)基因组为模板,经PCR,制备含有另一部分S2和基因alsS(为枯草芽孢杆菌Bacillus subtilis 168来源的α-乙酰乳酸合成酶基因,SEQ ID NO.6)的片段alsS-1,最后利用引物RBS-aldC-S2-F和S2-alsS-R,利用片段RBS-aldC-1和alsS-1,制备融合片段RBS-aldC-S2-alsS,其中S2的核苷酸序列如SEQ ID NO.5所示。然后将融合片段RBS-aldC-S2-alsS与pN59-PMmp1通过BamHI/SdaI双酶切,经连接、转化后得到载体pN59-PMmp1-RBS-aldC-S2-alsS。将该载体电转至大肠杆菌S17-1λpir,得到含pN59-PMmp1-RBS-aldC-S2-alsS载体的大肠杆菌S17-1λpir。
将上述含pN59-PMmp1-RBS-aldC-S2-alsS载体的大肠杆菌S17-1λpri与实施例1所述的嗜盐单胞菌Halomonas sp.TD1.0△phaC接合。具体步骤为:将含pN59-PMmp1-RBS-aldC-S2-alsS载体的大肠杆菌S17-1λpri接种于5mL含25mg/L氯霉素抗性的LB液体培养基中,将Halomonas sp.TD1.0△phaC接种于5mL 60LB液体培养基中,分别于37℃,220rpm培养12h。收集1mL含pN59-PMmp1-RBS-aldC-S2-alsS载体的大肠杆菌S17-1λpri菌液和1mL Halomonassp.TD1.0△phaC菌液,分别用LB液体培养基和60LB液体培养基洗涤两次,以体积比为1:1比例混匀,滴种于20LB固体培养基上,37℃接合12h。最后涂布于含25mg/L氯霉素抗性60LB固体平板上,挑取单菌落PCR验证,得到重组嗜盐单胞菌TDZ-1。
2)载体pN85-PMmp1-RBS-aldC和重组嗜盐单胞菌TDZ-2的构建
以引物pN85-F(SEQ ID NO.18)为上游引物,以pN85-R(SEQ ID NO.19)为下游引物,以pN85载体(SEQ ID NO.7)为模板,经PCR,制备片段pN85-1。
以引物PMmp1-RBS-aldC-F(SEQ ID NO.20)为上游引物,以PMmp1-RBS-aldC-R(SEQ IDNO.21)为下游引物,以pN59-PMmp1-RBS-aldC-S2-alsS载体为模板,经PCR,制备片段PMmp1-RBS-aldC。
利用片段pN85-1和PMmp1-RBS-aldC,经CPEC方法制备载体pN85-PMmp1-RBS-aldC。将该载体电转至大肠杆菌S17-1λpir,得到含pN85-PMmp1-RBS-aldC载体的大肠杆菌S17-1λpir。
将上述含pN85-PMmp1-RBS-aldC载体的大肠杆菌S17-1λpri与重组嗜盐单胞菌TDZ-1 TDZ-1接合。最后接合产物涂布于含25mg/L氯霉素和100mg/L壮观霉素和50mg/L卡那霉素抗性的60LB固体平板上,挑取单菌落PCR验证,得到重组嗜盐单胞菌TDZ-2。
实施例3:重组嗜盐单胞菌TDZ-2催化丙酮酸生产乙偶姻的应用,包括如下步骤:
(1)将重组嗜盐单胞菌TDZ-2从平板上挑取单菌落,接种到5mL含25mg/L氯霉素和100mg/L壮观霉素抗性和50mg/L卡那霉素的60LB液体培养基中,37℃,220rpm培养12h,再以1%接种量转接至200mL含25mg/L氯霉素和100mg/L壮观霉素和50mg/L卡那霉素抗性的60LB液体培养基中,在37℃,220rpm条件下培养至OD600为0.6-0.8,加入终浓度为0.5mM的IPTG(异丙基β-D-1-硫代吡喃半乳糖苷),30℃,220rpm下诱导12h后,4℃,4500rpm收集菌体,利用100mM高渗磷酸缓冲液(pH 6.0)重悬洗涤一次菌体,再4℃,4500rpm离心菌体,最后用少量的100mM高渗磷酸缓冲液(pH 6.0)将菌体重悬。
(2)按比例,向容器中加入底物丙酮酸,使终浓度为460mM,加入步骤(1)获得的菌体,使OD600=5,加入10mM的MgCl2,0.2mM硫胺素焦磷酸,余量为pH 6.0的100mM高渗磷酸缓冲液,反应总体积为10mL,混合均匀后在40℃,220rpm反应6h后,重组嗜盐单胞菌TDZ-2的丙酮酸转化率可达99.2%,乙偶姻的产量达到206.1mM,得率达到0.448mol/mol,是理论得率的89.6%。产率达到34.4mM/h。
实施例4:重组嗜盐单胞菌TDZ-2催化丙酮酸生产乙偶姻的应用,包括如下步骤:
(1)将重组嗜盐单胞菌TDZ-2从平板上挑取单菌落,接种到5mL含25mg/L氯霉素和100mg/L壮观霉素抗性和50mg/L卡那霉素的60LB液体培养基中,37℃,220rpm培养12h,再以1%接种量转接至200mL含25mg/L氯霉素和100mg/L壮观霉素和50mg/L卡那霉素抗性的60LB液体培养基中,在37℃,220rpm条件下培养至OD600为0.6-0.8,加入终浓度为0.5mM的IPTG(异丙基β-D-1-硫代吡喃半乳糖苷),18℃,220rpm下诱导16h后,4℃,4500rpm收集菌体,利用100mM高渗磷酸缓冲液(pH 6.0)重悬洗涤一次菌体,再4℃,4500rpm离心菌体,最后用少量的100mM高渗磷酸缓冲液(pH 6.0)将菌体重悬。
(2)按比例,向容器中加入底物丙酮酸,使终浓度为460mM,加入步骤(1)获得的菌体,使OD600=15,加入10mM的MgCl2,0.2mM硫胺素焦磷酸,余量为pH 6.0的100mM高渗磷酸缓冲液,反应总体积为10mL,混合均匀后在45℃,220rpm反应6h后得到乙偶姻,结果如图1所示,重组嗜盐单胞菌TDZ-2的丙酮酸转化率可达99.2%,乙偶姻的产量达到221mM,得率达到0.487mol/mol,是理论得率的97.4%。产率达到36.8mM/h。
实施例5:重组嗜盐单胞菌TDZ-2催化丙酮酸生产乙偶姻的应用,包括如下步骤:
(1)将重组嗜盐单胞菌TDZ-2从平板上挑取单菌落,接种到5mL含25mg/L氯霉素和100mg/L壮观霉素抗性和50mg/L卡那霉素的60LB液体培养基中,37℃,220rpm培养12h,再以1%接种量转接至200mL含25mg/L氯霉素和100mg/L壮观霉素和50mg/L卡那霉素抗性的60LB液体培养基中,在37℃,220rpm条件下培养至OD600为0.6-0.8,加入终浓度为0.5mM的IPTG(异丙基β-D-1-硫代吡喃半乳糖苷),25℃,220rpm下诱导14h后,4℃,4500rpm收集菌体,利用100mM高渗磷酸缓冲液(pH 6.0)重悬洗涤一次菌体,再4℃,4500rpm离心菌体,最后用少量的100mM高渗磷酸缓冲液(pH 6.0)将菌体重悬。
(2)按比例,向容器中加入底物丙酮酸,使终浓度为800mM,加入步骤(1)获得的菌体,使OD600=9.6,加入10mM的MgCl2,0.2mM硫胺素焦磷酸,余量为pH 6.0的100mM高渗磷酸缓冲液,反应总体积为10mL,混合均匀后在45℃,220rpm反应2h后,结果如图2所示,重组嗜盐单胞菌TDZ-2的丙酮酸转化率可达97.1%,乙偶姻的产量达到320.5mM,得率达到0.400mol/mol,是理论得率的80.0%。产率达到160.2mM/h。
实施例6:补料法生产乙偶姻应用
为进一步提高乙偶姻产量,通过补料法进行乙偶姻的生产。
(1)将重组嗜盐单胞菌TDZ-2从平板上挑取单菌落,接种到5mL含25mg/L氯霉素和100mg/L壮观霉素抗性和50mg/L卡那霉素的60LB液体培养基中,37℃,220rpm培养12h,再以1%接种量转接至200mL含25mg/L氯霉素和100mg/L壮观霉素和50mg/L卡那霉素抗性的60LB液体培养基中,在37℃,220rpm条件下培养至OD600为0.6-0.8,加入终浓度为0.5mM的IPTG(异丙基β-D-1-硫代吡喃半乳糖苷),30℃,220rpm下诱导12h后,4℃,4500rpm收集菌体,利用100mM高渗磷酸缓冲液(pH 6.0)重悬洗涤一次菌体,再4℃,4500rpm离心菌体,最后用少量的100mM高渗磷酸缓冲液(pH 6.0)将菌体重悬。
(2)按比例,向容器中加入底物丙酮酸,使终浓度为800mM,加入步骤(1)获得的菌体,使OD600=10,10mM的MgCl2,0.2mM硫胺素焦磷酸,余量为pH 6.0的100mM高渗磷酸缓冲液,反应总体积为10mL,混合均匀后在45℃,220rpm反应,每反应2h后测体系pH值,用质量比为4:1的丙酮酸/丙酮酸钠混合溶液调整体系pH至反应最适pH(6.0-6.5),8h后,重组嗜盐单胞菌TDZ-2的丙酮酸转化率可达96.8%,乙偶姻的产量达到1041mM,得率达到0.426mol/mol,是理论得率的85.2%。产率达到130.2Mm/h。
参考文献:
[1]Zhou X,Zhou X,Zhang H,et al.Improving the performance of cellbiocatalysis and the productivity of acetoin from 2,3-butanediol using acompressed oxygen supply.Process Biochem,2018,64:46-50.
[2]Peng K,Guo D,Lou Q,et al.Synthesis of ligustrazine fromacetaldehyde by a combined biological–chemical approach.ACS Synth Biol,2020,9(11):2902-2908.
序列表
<110> 天津大学
清华大学
<120> 重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用
<160> 21
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3376
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ttaattaaag cggataacaa tttcacacag gaggccgcct aggccgcggc cgcgcgaatt 60
cgagctcaag cttgcggccg cgtcgtgact gggaaaaccc tggcgactag tcttggactc 120
ctgttgatag atccagtaat gacctcagaa ctccatctgg atttgttcag aacgctcggt 180
tgccgccggg cgttttttat tggtgagaat ccaggggtcc ccaataatta cgatttaaat 240
tggcgaaaat gagacgttga tcggcacgta agaggttcca actttcacca taatgaaata 300
agatcactac cgggcgtatt ttttgagtta tcgagatttt caggagctaa ggaagctaaa 360
atggagaaaa aaatcactgg atataccacc gttgatatat cccaatggca tcgtaaagaa 420
cattttgagg catttcagtc agttgctcaa tgtacctata accagaccgt tcagctggat 480
attacggcct ttttaaagac cgtaaagaaa aataagcaca agttttatcc ggcctttatt 540
cacattcttg cccgcctgat gaatgctcat ccggaatttc gtatggcaat gaaagacggt 600
gagctggtga tatgggatag tgttcaccct tgttacaccg ttttccatga gcaaactgaa 660
acgttttcat cgctctggag tgaataccac gacgatttcc ggcagtttct acacatatat 720
tcgcaagatg tggcgtgtta cggtgaaaac ctggcctatt tccctaaagg gtttattgag 780
aatatgtttt tcgtctcagc caatccctgg gtgagtttca ccagttttga tttaaacgtg 840
gccaatatgg acaacttctt cgcccccgtt ttcaccatgg gcaaatatta tacgcaaggc 900
gacaaggtgc tgatgccgct ggcgattcag gttcatcatg ccgtttgtga tggcttccat 960
gtcggcagaa tgcttaatga attacaacag tactgcgatg agtggcaggg cggggcgtaa 1020
tttgactttt gtccttttcc gctgcataac cctgcttcgg ggtcattata gcgatttttt 1080
cggtatatcc atcctttttc gcacgatata caggattttg ccaaagggtt cgtgtagact 1140
ttccttggtg tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga 1200
gcgggtgttc cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg 1260
ctctgcgagg ctggccgtag gccggccgat aatctcatga ccaaaatccc ttaacgtgag 1320
ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct 1380
ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt 1440
tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt cagcagagcg 1500
cagataccaa atactgttct tctagtgtag ccgtagttag gccaccactt caagaactct 1560
gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc 1620
gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg 1680
tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac ctacaccgaa 1740
ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg 1800
gacaggcatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga gcttccaggg 1860
ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga 1920
tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccgtg 1980
aaaggcaggc cggtccgtgg tggccacggc ctctaggcca gatccagcgg catctgggtt 2040
agtcgagcgc gggccgcttc ccatgtctca ccagggcgag cctgtttcgc gatctcagca 2100
tctgaaatct tcccggcctt gcgcttcgct ggggccttac ccaccgcctt ggcgggcttc 2160
ttcggtccaa aactgaacaa cagatgtgtg accttgcgcc cggtctttcg ctgcgcccac 2220
tccacctgta gcgggctgtg ctcgttgatc tgcgtcacgg ctggatcaag cactcgcaac 2280
ttgaagtcct tgatcgaggg ataccggcct tccagttgaa accactttcg cagctggtca 2340
atttctattt cgcgctggcc gatgctgtcc cattgcatga gcagctcgta aagcctgatc 2400
gcgtgggtgc tgtccatctt ggccacgtca gccaaggcgt atttggtgaa ctgtttggtg 2460
agttccgtca ggtacggcag catgtctttg gtgaacctga gttctacacg gccctcaccc 2520
tcccggtaga tgattgtttg cacccagccg gtaatcatca cactcggtct tttccccttg 2580
ccattgggct cttgggttaa ccggacttcc cgccgtttca ggcgcagggc cgcttctttg 2640
agctggttgt aggaagattc gatagggaca cccgccatcg tcgctatgtc ctccgccgtc 2700
actgaataca tcacttcatc ggtgacaggc tcgctcctct tcacctggct aatacaggcc 2760
agaacgatcc gctgttcctg aacactgagg cgatacgcgg cctcgaccag ggcattgctt 2820
ttgtaaacca ttgggggtga ggccacgttc gacattcctt gtgtataagg ggacactgta 2880
tctgcgtccc acaatacaac aaatccgtcc ctttacaaca acaaatccgt cccttcttaa 2940
caacaaatcc gtcccttaat ggcaacaaat ccgtcccttt ttaaactcta caggccacgg 3000
attacgtggc ctgtagacgt cctaaaaggt ttaaaaggga aaaggaagaa aagggtggaa 3060
acgcaaaaaa cgcaccacta cgtggccccg ttggggccgc atttgtgccc ctgaaggggc 3120
gggggaggcg tctgggcaat ccccgtttta ccagtcccct atcgccgcct gagagggcgc 3180
aggaagcgag taatcagggt atcgaggcgg attcaccctt ggcgtccaac cagcggcacc 3240
agcggcgcct gagaggggcg cgcccagctg tctagggcgg cggatttgtc ctactcagga 3300
gagcgttcac cgacaaacaa cagataaaac gaaaggccca gtctttcgac tgagcctttc 3360
gttttatttg atgcct 3376
<210> 2
<211> 129
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
cccatgagtt aattatattt gtggcattat agggaattgt gagcgctcac aattagctgt 60
caccggatgt gctttccggt ctgatgagtc cgtgaggacg aaacagcctc tacaaataat 120
tttgtttaa 129
<210> 3
<211> 26
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tactagagaa agaggagaaa tactag 26
<210> 4
<211> 765
<212> DNA
<213> 枯草芽孢杆菌(Bacillus subtilis 168)
<400> 4
atgaaacgag aaagcaacat tcaagtgctc agccgtggtc aaaaagatca gcctgtgagc 60
cagatttatc aagtatcaac aatgacttct ctattagacg gagtatatga cggagatttt 120
gaactgtcag agattccgaa atatggagac ttcggtatcg gaacctttaa caagcttgac 180
ggagagctga ttgggtttga cggcgaattt taccgtcttc gctcagacgg aaccgcgaca 240
ccggtccaaa atggagaccg ttcaccgttc tgttcattta cgttctttac accggacatg 300
acgcacaaaa ttgatgcgaa aatgacacgc gaagactttg aaaaagagat caacagcatg 360
ctgccaagca gaaacttatt ttatgcaatt cgcattgacg gattgtttaa aaaggtgcag 420
acaagaacag tagaacttca agaaaaacct tacgtgccaa tggttgaagc ggtcaaaaca 480
cagccgattt tcaacttcga caacgtgaga ggaacgattg taggtttctt gacaccagct 540
tatgcaaacg gaatcgccgt ttctggctat cacctgcact tcattgacga aggacgcaat 600
tcaggcggac acgtttttga ctatgtgctt gaggattgca cggttacgat ttctcaaaaa 660
atgaacatga atctcagact tccgaacaca gcggatttct ttaatgcgaa tctggataac 720
cctgattttg cgaaagatat cgaaacaact gaaggaagcc ctgaa 765
<210> 5
<211> 17
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
taaggatccg aaggaga 17
<210> 6
<211> 1710
<212> DNA
<213> 枯草芽孢杆菌(Bacillus subtilis 168)
<400> 6
atgacaaaag caacaaaaga acaaaaatcc cttgtgaaaa acagaggggc ggagcttgtt 60
gttgattgct tagtggagca aggtgtcaca catgtatttg gcattccagg tgcaaaaatt 120
gatgcggtat ttgacgcttt acaagataaa ggacctgaaa ttatcgttgc ccggcacgaa 180
caaaacgcag cattcatggc ccaagcagtc ggccgtttaa ctggaaaacc gggagtcgtg 240
ttagtcacat caggaccggg tgcctctaac ttggcaacag gcctgctgac agcgaacact 300
gaaggagacc ctgtcgttgc gcttgctgga aacgtgatcc gtgcagatcg tttaaaacgg 360
acacatcaat ctttggataa tgcggcgcta ttccagccga ttacaaaata cagtgtagaa 420
gttcaagatg taaaaaatat accggaagct gttacaaatg catttaggat agcgtcagca 480
gggcaggctg gggccgcttt tgtgagcttt ccgcaagatg ttgtgaatga agtcacaaat 540
acgaaaaacg tgcgtgctgt tgcagcgcca aaactcggtc ctgcagcaga tgatgcaatc 600
agtgcggcca tagcaaaaat ccaaacagca aaacttcctg tcgttttggt cggcatgaaa 660
ggcggaagac cggaagcaat taaagcggtt cgcaagcttt tgaaaaaggt tcagcttcca 720
tttgttgaaa catatcaagc tgccggtacc ctttctagag atttagagga tcaatatttt 780
ggccgtatcg gtttgttccg caaccagcct ggcgatttac tgctagagca ggcagatgtt 840
gttctgacga tcggctatga cccgattgaa tatgatccga aattctggaa tatcaatgga 900
gaccggacaa ttatccattt agacgagatt atcgctgaca ttgatcatgc ttaccagcct 960
gatcttgaat tgatcggtga cattccgtcc acgatcaatc atatcgaaca cgatgctgtg 1020
aaagtggaat ttgcagagcg tgagcagaaa atcctttctg atttaaaaca atatatgcat 1080
gaaggtgagc aggtgcctgc agattggaaa tcagacagag cgcaccctct tgaaatcgtt 1140
aaagagttgc gtaatgcagt cgatgatcat gttacagtaa cttgcgatat cggttcgcac 1200
gccatttgga tgtcacgtta tttccgcagc tacgagccgt taacattaat gatcagtaac 1260
ggtatgcaaa cactcggcgt tgcgcttcct tgggcaatcg gcgcttcatt ggtgaaaccg 1320
ggagaaaaag tggtttctgt ctctggtgac ggcggtttct tattctcagc aatggaatta 1380
gagacagcag ttcgactaaa agcaccaatt gtacacattg tatggaacga cagcacatat 1440
gacatggttg cattccagca attgaaaaaa tataaccgta catctgcggt cgatttcgga 1500
aatatcgata tcgtgaaata tgcggaaagc ttcggagcaa ctggcttgcg cgtagaatca 1560
ccagaccagc tggcagatgt tctgcgtcaa ggcatgaacg ctgaaggtcc tgtcatcatc 1620
gatgtcccgg ttgactacag tgataacatt aatttagcaa gtgacaagct tccgaaagaa 1680
ttcggggaac tcatgaaaac gaaagctctc 1710
<210> 7
<211> 3478
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
cccttgcaat gctggatttt ctgcctgtgg acagcccctc aaatgtcaat aggtgcgccc 60
ctcatctgtc agcactctgc ccctcaagtg tcaaggatcg cgcccctcat ctgtcagtag 120
tcgcgcccct caagtgtcaa taccgcaggg cacttatccc caggcttgtc cacatcatct 180
gtgggaaact cgcgtaaaat caggcgtttt cgccgatttg cgaggctggc cagctccacg 240
tcgccggccg aaatcgagcc tgcccctcat ctgtcaacgc cgcgccgggt gagtcggccc 300
ctcaagtgtc aacgtccgcc cctcatctgt cagtgagggc caagttttcc gcgaggtatc 360
cacaacgccg gcggccctac atggctctgc tgtagtgagt gggttgcgct ccggcagcgg 420
tcctgatccc ccgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggcgc 480
gcccagctgt ctagggcggc ggatttgtcc tactcaggag agcgttcacc gacaaacaac 540
agataaaacg aaaggcccag tctttcgact gagcctttcg ttttatttga tgcctttaat 600
taaagcggat aacaatttca cacaggaatg ctgagaccct agctagggag ctctctagaa 660
agcttctcac ggccgcgtcg tgactgggaa aaccctggcg actagtcttg gactcctgtt 720
gatagatcca gtaatgacct cagaactcca tctggatttg ttcagaacgc tcggttgccg 780
ccgggcgttt tttattggtg agaatccagg ggtccccaat aattacgatt taaattggcg 840
aaaatgagac gttgatcggc acgtaagagg ttccaacttt caccataatg aaataagatc 900
actaccgggc gtattttttg agttatcgag attttcagga gctaaggaag ctaaaatgga 960
gaaaaaaatc actggatata ccaccgttga tatatcccaa tggcatcgta aagaacattt 1020
tgaggcattt cagtcagttg ctcaatgtac ctataaccag accgttcagc tggatattac 1080
ggccttttta aagaccgtaa agaaaaataa gcacaagttt tatccggcct ttattcacat 1140
tcttgcccgc ctgatgaatg ctcatccgga atttcgtatg gcaatgaaag acggtgagct 1200
ggtgatatgg gatagtgttc acccttgtta caccgttttc catgagcaaa ctgaaacgtt 1260
ttcatcgctc tggagtgaat accacgacga tttccggcag tttctacaca tatattcgca 1320
agatgtggcg tgttacggtg aaaacctggc ctatttccct aaagggttta ttgagaatat 1380
gtttttcgtc tcagccaatc cctgggtgag tttcaccagt tttgatttaa acgtggccaa 1440
tatggacaac ttcttcgccc ccgttttcac catgggcaaa tattatacgc aaggcgacaa 1500
ggtgctgatg ccgctggcga ttcaggttca tcatgccgtt tgtgatggct tccatgtcgg 1560
cagaatgctt aatgaattac aacagtactg cgatgagtgg cagggcgggg cgtaatttga 1620
cttttgtcct tttccgctgc ataaccctgc ttcggggtca ttatagcgat tttttcggta 1680
tatccatcct ttttcgcacg atatacagga ttttgccaaa gggttcgtgt agactttcct 1740
tggtgtatcc aacggcgtca gccgggcagg ataggtgaag taggcccacc cgcgagcggg 1800
tgttccttct tcactgtccc ttattcgcac ctggcggtgc tcaacgggaa tcctgctctg 1860
cgaggctggc cgtaggccgg ccgcgatgca ggtggctgct gaacccccag ccggaactga 1920
ccccacaagg ccctagcgtt tgcaatgcac caggtcatca ttgacccagg cgtgttccac 1980
caggccgctg cctcgcaact cttcgcaggc ttcgccgacc tgctcgcgcc acttcttcac 2040
gcgggtggaa tccgatccgc acatgaggcg gaaggtttcc agcttgagcg ggtacggctc 2100
ccggtgcgag ctgaaatagt cgaacatccg tcgggccgtc ggcgacagct tgcggtactt 2160
ctcccatatg aatttcgtgt agtggtcgcc agcaaacagc acgacgattt cctcgtcgat 2220
caggacctgg caacgggacg ttttcttgcc acggtccagg acgcggaagc ggtgcagcag 2280
cgacaccgat tccaggtgcc caacgcggtc ggacgtgaag cccatcgccg tcgcctgtag 2340
gcgcgacagg cattcctcgg ccttcgtgta ataccggcca ttgatcgacc agcccaggtc 2400
ctggcaaagc tcgtagaacg tgaaggtgat cggctcgccg ataggggtgc gcttcgcgta 2460
ctccaacacc tgctgccaca ccagttcgtc atcgtcggcc cgcagctcga cgccggtgta 2520
ggtgatcttc acgtccttgt tgacgtggaa aatgaccttg ttttgcagcg cctcgcgcgg 2580
gattttcttg ttgcgcgtgg tgaacagggc agagcgggcc gtgtcgtttg gcatcgctcg 2640
catcgtgtcc ggccacggcg caatatcgaa caaggaaagc tgcatttcct tgatctgctg 2700
cttcgtgtgt ttcagcaacg cggcctgctt ggcttcgctg acctgttttg ccaggtcctc 2760
gccggcggtt tttcgcttct tggtcgtcat agttcctcgc gtgtcgatgg tcatcgactt 2820
cgccaaacct gccgcctcct gttcgagacg acgcgaacgc tccacggcgg ccgatggcgc 2880
gggcagggca gggggagcca gttgcacgct gtcgcgctcg atcttggccg tagcttgctg 2940
gactatcgag ccgacggact ggaaggtttc gcggggcgca cgcatgacgg tgcggcttgc 3000
gatggtttcg gcatcctcgg cggaaaaccc cgcgtcgatc agttcttgcc tgtatgcctt 3060
ccggtcaaac gtccgattca ttcaccctcc ttgcgggatt gccccggaat taattccccg 3120
gatcgatccg tcgatcttga tcccctgcgc catcagatcc ttggcggcaa gaaagccatc 3180
cagtttactt tgcagggctt cccaacctta ccagagggcg ccccagctgg caattccggt 3240
tcgcttgctg tccataaaac cgcccagtct agctatcgcc atgtaagccc actgcaagct 3300
acctgctttc tctttgcgct tgcgttttcc cttgtccaga tagcccagta gctgacattc 3360
atccggggtc agcaccgttt ctgcggactg gctttctacg tggctgccat ttttggggtg 3420
aggccgttcg cggccgaggg gcgcagcccc tggggggatg ggaggcccgc gttagcgg 3478
<210> 8
<211> 2652
<212> DNA
<213> 盐单胞菌(Halomonas sp)
<400> 8
atgtcaattg cggcggcggt gaacaaaaat gatttctcgg acgttgaact ggctgcgatc 60
ccgtttaaca ccctggcgga ccattacggt gcggatctgg cccgtgaaca gctgcaactg 120
gaacacgaaa gctatgtgat gggcgaagaa cgtttccgca aaatgctgga acgccaggaa 180
aaagcggaag aatttggtga tagctctgtt gccaaaccgc tgattatcac gctgctgccg 240
aaagtcacgc agcgtattac cgactggctg aacgaatggg cagatccgaa taaaaaaggc 300
cgcaaaccga ttgcttatac ccatctgaaa gatatcaaac cggaaacgct ggccttcatt 360
accatcaaag tggttctgaa taaactggcg ggtaaagatg acgcctttat gcagccgctg 420
gcatacgcta ttggtagttc catcgaagat gaagcacgtt tcggccgtat ccgcgaactg 480
gaaatggcac actttaaaaa atgcgctgaa gaaaacctga ataaacgtcg cggcaccgcg 540
tatcgcaaag cctttctgag tgtcgtggaa gcggatatgc tggacaaagg tctgctgggc 600
ggtgaatcat ggggcacgtg gaacaaaacc gatgtgatga atattggtat ctcgatgctg 660
gaaaaactga ttgaagccac gggcctggtt gaactgcgtg aaaaacgcaa ctttgaagaa 720
atggatcgta ttgtcatcgc agaagaatac gtgaaagcga tggccacccg cgcacagtca 780
ctggctggca tctcgccgat gtatcaaccg tgtgttgtcc cgccgaaacc gtgggtgagc 840
attacgggcg gtggctactg ggcaaacggt cgtaaaccga ccgctctgat ccgtacccat 900
acgcgcaaag cactgtatcg ctacgaagat gtttatatgc cggaagtcta caaagcgatt 960
aattatgccc aggaaacccc gtggcgtatc aaccgcaaag tgctggcggt ggttaacgaa 1020
ctggttaaat ggaaaaacaa cccggtcaaa gacatgccga gcattgataa actggaactg 1080
ccgcagcgtc cggatgacat cgataccaac gaagaagcgc tgcgttcttg gaaacgcgaa 1140
gccgcagctg tttaccgcaa agatgaacag cgtaaaagcc gctatctgag tatgtccttt 1200
gcactggaac aagctaacaa attctctaac aaaaaagcaa tctacttccc gtacaatatg 1260
gactggcgtg gccgcgtcta tgcactgccg atgttcaacc cgcagggtaa tgatatggtt 1320
aaaggcctgc tgaccctggc caaaggtaaa ccgattggta aagacggctt ttactggctg 1380
aaaatccatg gtgcaaacac ggctggcgtc gataaagtga cctttccgga acgtattaaa 1440
ttcatcgaag ataaccacga caatattatg cagtgcgcgg aaagcccgct ggacaatctg 1500
tggtggacgg aacaagattc tccgttttgc ttcctggcgt tttgtttcga atatgcccag 1560
gtcaccaaaa aaggtctggg ctgggtgtgc agtctgccga ttgccctgga tggttcatgt 1620
tcgggcatcc aacacttttc cgcaatgctg cgtgatgaca ttggtggccg cgctgttaac 1680
ctgctgccga gcgaaaccgt ccaggacatt tatggtatcg tggcagataa agttaatgaa 1740
gctctgaaag aactggtcat caacggcacg gataattaca ccgacacggt gaccgataaa 1800
tctaccggtg aaattatcga acgttatcgc ctgggcgaaa aagaactggc gcgtcagtgg 1860
ctggaatttg gcgtcacgcg tagcgtgacc aaacgctctg tgatgaccct ggcctacggt 1920
tcaaaagaat atggctttcg tgaccaggtt ctggaagata cgattcgccc ggcgatcgat 1980
tcgggtaaag gcgccatgtt caccaatccg agtcaagcgg cctcctttat ggcgaaacgc 2040
atttgggaag ccgtgagcgt taccgtcgtg gcagctgtgg gtgcgatgaa atggctgcaa 2100
tcatcggcca aactgatggc ggccgaagtg aaagacaaga aaaccaaaga agttctgcgt 2160
aaacgctgcg cggttcattg ggtcaccccg gatggtttcc cggtgtggca ggaatatcgt 2220
aaaccgaaac aaaaacgcgt tcacctgatg tttctgggta gttattacga tgcgcgtatg 2280
aaagaaacga gctctgactg ttccattgat gcccataaac aggaaagcgg tatctctccg 2340
aacttcgtgc atagccaaga tggcaatcac ctgcgtatga ccgttgtcta cgcgcgcgaa 2400
aaatataacg tggaaagttt tgccctgatt cacgactcct tcggcacgat cccggcagat 2460
gttccgaacc tgtttaaagc tgtgcgcgaa accatggtta atatgtacga aaacaatgac 2520
gtgctggcag atttttatga acagttcgct gaccaactgc atgaaagtca gctggataaa 2580
atgccggcgc tgccgccgaa aggtaaactg aatctgcaag acattctgaa atccgatttt 2640
gcattcgctt aa 2652
<210> 9
<211> 3376
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ttaattaaag cggataacaa tttcacacag gaggccgcct aggccgcggc cgcgcgaatt 60
cgagctcaag cttgcggccg cgtcgtgact gggaaaaccc tggcgactag tcttggactc 120
ctgttgatag atccagtaat gacctcagaa ctccatctgg atttgttcag aacgctcggt 180
tgccgccggg cgttttttat tggtgagaat ccaggggtcc ccaataatta cgatttaaat 240
tggcgaaaat gagacgttga tcggcacgta agaggttcca actttcacca taatgaaata 300
agatcactac cgggcgtatt ttttgagtta tcgagatttt caggagctaa ggaagctaaa 360
atggagaaaa aaatcactgg atataccacc gttgatatat cccaatggca tcgtaaagaa 420
cattttgagg catttcagtc agttgctcaa tgtacctata accagaccgt tcagctggat 480
attacggcct ttttaaagac cgtaaagaaa aataagcaca agttttatcc ggcctttatt 540
cacattcttg cccgcctgat gaatgctcat ccggaatttc gtatggcaat gaaagacggt 600
gagctggtga tatgggatag tgttcaccct tgttacaccg ttttccatga gcaaactgaa 660
acgttttcat cgctctggag tgaataccac gacgatttcc ggcagtttct acacatatat 720
tcgcaagatg tggcgtgtta cggtgaaaac ctggcctatt tccctaaagg gtttattgag 780
aatatgtttt tcgtctcagc caatccctgg gtgagtttca ccagttttga tttaaacgtg 840
gccaatatgg acaacttctt cgcccccgtt ttcaccatgg gcaaatatta tacgcaaggc 900
gacaaggtgc tgatgccgct ggcgattcag gttcatcatg ccgtttgtga tggcttccat 960
gtcggcagaa tgcttaatga attacaacag tactgcgatg agtggcaggg cggggcgtaa 1020
tttgactttt gtccttttcc gctgcataac cctgcttcgg ggtcattata gcgatttttt 1080
cggtatatcc atcctttttc gcacgatata caggattttg ccaaagggtt cgtgtagact 1140
ttccttggtg tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga 1200
gcgggtgttc cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg 1260
ctctgcgagg ctggccgtag gccggccgat aatctcatga ccaaaatccc ttaacgtgag 1320
ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct 1380
ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac caccgctacc agcggtggtt 1440
tgtttgccgg atcaagagct accaactctt tttccgaagg taactggctt cagcagagcg 1500
cagataccaa atactgttct tctagtgtag ccgtagttag gccaccactt caagaactct 1560
gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc 1620
gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg 1680
tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac ctacaccgaa 1740
ctgagatacc tacagcgtga gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg 1800
gacaggcatc cggtaagcgg cagggtcgga acaggagagc gcacgaggga gcttccaggg 1860
ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga 1920
tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccgtg 1980
aaaggcaggc cggtccgtgg tggccacggc ctctaggcca gatccagcgg catctgggtt 2040
agtcgagcgc gggccgcttc ccatgtctca ccagggcgag cctgtttcgc gatctcagca 2100
tctgaaatct tcccggcctt gcgcttcgct ggggccttac ccaccgcctt ggcgggcttc 2160
ttcggtccaa aactgaacaa cagatgtgtg accttgcgcc cggtctttcg ctgcgcccac 2220
tccacctgta gcgggctgtg ctcgttgatc tgcgtcacgg ctggatcaag cactcgcaac 2280
ttgaagtcct tgatcgaggg ataccggcct tccagttgaa accactttcg cagctggtca 2340
atttctattt cgcgctggcc gatgctgtcc cattgcatga gcagctcgta aagcctgatc 2400
gcgtgggtgc tgtccatctt ggccacgtca gccaaggcgt atttggtgaa ctgtttggtg 2460
agttccgtca ggtacggcag catgtctttg gtgaacctga gttctacacg gccctcaccc 2520
tcccggtaga tgattgtttg cacccagccg gtaatcatca cactcggtct tttccccttg 2580
ccattgggct cttgggttaa ccggacttcc cgccgtttca ggcgcagggc cgcttctttg 2640
agctggttgt aggaagattc gatagggaca cccgccatcg tcgctatgtc ctccgccgtc 2700
actgaataca tcacttcatc ggtgacaggc tcgctcctct tcacctggct aatacaggcc 2760
agaacgatcc gctgttcctg aacactgagg cgatacgcgg cctcgaccag ggcattgctt 2820
ttgtaaacca ttgggggtga ggccacgttc gacattcctt gtgtataagg ggacactgta 2880
tctgcgtccc acaatacaac aaatccgtcc ctttacaaca acaaatccgt cccttcttaa 2940
caacaaatcc gtcccttaat ggcaacaaat ccgtcccttt ttaaactcta caggccacgg 3000
attacgtggc ctgtagacgt cctaaaaggt ttaaaaggga aaaggaagaa aagggtggaa 3060
acgcaaaaaa cgcaccacta cgtggccccg ttggggccgc atttgtgccc ctgaaggggc 3120
gggggaggcg tctgggcaat ccccgtttta ccagtcccct atcgccgcct gagagggcgc 3180
aggaagcgag taatcagggt atcgaggcgg attcaccctt ggcgtccaac cagcggcacc 3240
agcggcgcct gagaggggcg cgcccagctg tctagggcgg cggatttgtc ctactcagga 3300
gagcgttcac cgacaaacaa cagataaaac gaaaggccca gtctttcgac tgagcctttc 3360
gttttatttg atgcct 3376
<210> 10
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
tctacaaata attttgttta agaattcgag ctcggtaccc 40
<210> 11
<211> 35
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
gccgcggcct aggcggcctc ctgtgtgaaa ttgtt 35
<210> 12
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
gaggccgcct aggccgcggc cgcgcgaatt cgagctcccc at 42
<210> 13
<211> 40
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
cgggtaccga gctcgaattc ttaaacaaaa ttatttgtag 40
<210> 14
<211> 68
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
attccggatc ctactagaga aagaggagaa atactagatg aaacgagaaa gcaacattca 60
agtgctca 68
<210> 15
<211> 48
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
ccaccgcccg agccaccgcc accttcaggg cttccttcag ttgtttcg 48
<210> 16
<211> 49
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
ggcggtggct cgggcggtgg tgggtcgatg acaaaagcaa caaaagaac 49
<210> 17
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
tcgccctgca ggttagagag ctttcgtttt catgagttcc ccg 43
<210> 18
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
ctcatgggcc ctagctaggg tctcagcatt cctgtgtgaa att 43
<210> 19
<211> 46
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
caactgaagg aagccctgaa taatctcacg gccgcgtcgt gactgg 46
<210> 20
<211> 37
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
accctagcta gggcccatga gttaattata tttgtgg 37
<210> 21
<211> 44
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
tgagattatt cagggcttcc ttcagttgtt tcgatatctt tcgc 44
Claims (4)
1.一种重组嗜盐单胞菌的构建方法,其特征是包括如下步骤:
(1)在野生型嗜盐单胞菌Halomonas sp.TD01保藏登记号为CGMCCNo.4353基因组上整合Mmp1 RNA聚合酶表达单元,得到Halomonas sp.TD1.0;再将Halomonas sp.TD1.0基因组上聚羟基烷烃酸合成酶亚基基因PhaC敲除,得到Halomonas sp.TD1.0△phaC;
所述Mmp1 RNA聚合酶表达单元的核苷酸序列如SEQ ID NO.8所示;
所述聚羟基烷烃酸合成酶亚基基因PhaC的核苷酸序列如SEQ ID NO.9所示;
(2)在高拷贝表达载体pN59上通过CPEC的方法,插入PMmp1,得到pN59-PMmp1,并在pN59-PMmp1的多克隆位点区域插入RBS-aldC-S2-alsS,得到高拷贝表达载体pN59-PMmp1-RBS-aldC-S2-alsS;
所述高拷贝表达载体pN59的核苷酸序列如SEQ ID NO.1所示;
所述PMmp1为IPTG诱导型启动子,其核苷酸序列如SEQ ID NO.2所示;
所述RBS为大肠杆菌Escherichia coli MG1655强核糖体结合位点,其核苷酸序列如SEQ ID NO.3所示;
所述aldC为枯草芽孢杆菌Bacillus subtilis 168来源的α-乙酰乳酸脱羧酶基因,其核苷酸序列如SEQ ID NO.4所示;
所述S2的核苷酸序列如SEQ ID NO.5所示;
所述alsS为枯草芽孢杆菌Bacillus subtilis 168来源的α-乙酰乳酸合成酶基因,其核苷酸序列如SEQ ID NO.6所示;
(3)在低拷贝表达载体pN85上通过CPEC的方法插入PMmp1-RBS-aldC,得到低拷贝表达载体pN85-PMmp1-RBS-aldC;
所述低拷贝表达载体pN85的核苷酸序列如SEQ ID NO.7所示;
(4)向步骤(1)获得的Halomonas sp.TD1.0△phaC中导入高拷贝表达载体pN59-PMmp1-RBS-aldC-S2-alsS,得到重组嗜盐单胞菌TDZ-1;再向所述TDZ-1中导入低拷贝表达载体pN85-PMmp1-RBS-aldC,得到重组嗜盐单胞菌TDZ-2。
2.权利要求1的构建方法构建的重组嗜盐单胞菌。
3.权利要求2的重组嗜盐单胞菌催化丙酮酸生产乙偶姻的应用。
4.根据权利要求3所述的应用,其特征是包括如下步骤:
1)权利要求2的重组嗜盐单胞菌在60LB液体培养基中进行培养,培养至OD600为0.6-0.8,加入终浓度为0.5mM的IPTG,18-30℃下诱导12-16h,离心收集菌体;
2)按比例,向容器中加入底物丙酮酸,使终浓度为460-800mM,加入步骤1)获得的菌体,使OD600=5-15,加入10mM的MgCl2,0.2mM硫胺素焦磷酸,余量为pH 6.0的100mM高渗磷酸缓冲液,混合均匀后在40-45℃,220rpm反应,得到乙偶姻。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111026593.5A CN113621639B (zh) | 2021-09-02 | 2021-09-02 | 重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111026593.5A CN113621639B (zh) | 2021-09-02 | 2021-09-02 | 重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113621639A true CN113621639A (zh) | 2021-11-09 |
CN113621639B CN113621639B (zh) | 2022-06-07 |
Family
ID=78388921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111026593.5A Active CN113621639B (zh) | 2021-09-02 | 2021-09-02 | 重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113621639B (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100233146A1 (en) * | 2002-09-09 | 2010-09-16 | Reactive Surfaces, Ltd. | Coatings and Surface Treatments Having Active Enzymes and Peptides |
US20150191756A1 (en) * | 2012-09-10 | 2015-07-09 | Mitsubishi Rayon Co., Ltd | Method for producing methacrylic acid and/or ester thereof |
CN105779488A (zh) * | 2016-03-23 | 2016-07-20 | 清华大学 | 一种诱导外源基因在革兰氏阴性菌中表达的系统及其应用 |
CN106520650A (zh) * | 2016-11-08 | 2017-03-22 | 江南大学 | 利用钝齿棒杆菌全细胞转化葡萄糖合成2,3‑丁二醇和乳酸 |
CN109266597A (zh) * | 2018-09-30 | 2019-01-25 | 清华大学 | 一种微生物生产短中长链聚羟基脂肪酸共聚物的方法 |
CN109971778A (zh) * | 2017-12-27 | 2019-07-05 | 北京蓝晶微生物科技有限公司 | 一种在盐单胞菌中快速基因编辑的载体组合及其应用 |
CN110004182A (zh) * | 2019-04-02 | 2019-07-12 | 清华大学 | 一种微生物胞内大颗粒内含物的制备方法及其应用 |
CN111607623A (zh) * | 2020-05-29 | 2020-09-01 | 江南大学 | 一种代谢工程改造大肠杆菌制备α-酮异戊酸的方法 |
CN112680433A (zh) * | 2019-10-18 | 2021-04-20 | 清华大学 | 一种利用嗜盐细菌生产并分泌蛋白的方法 |
-
2021
- 2021-09-02 CN CN202111026593.5A patent/CN113621639B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100233146A1 (en) * | 2002-09-09 | 2010-09-16 | Reactive Surfaces, Ltd. | Coatings and Surface Treatments Having Active Enzymes and Peptides |
US20150191756A1 (en) * | 2012-09-10 | 2015-07-09 | Mitsubishi Rayon Co., Ltd | Method for producing methacrylic acid and/or ester thereof |
CN105779488A (zh) * | 2016-03-23 | 2016-07-20 | 清华大学 | 一种诱导外源基因在革兰氏阴性菌中表达的系统及其应用 |
CN106520650A (zh) * | 2016-11-08 | 2017-03-22 | 江南大学 | 利用钝齿棒杆菌全细胞转化葡萄糖合成2,3‑丁二醇和乳酸 |
CN109971778A (zh) * | 2017-12-27 | 2019-07-05 | 北京蓝晶微生物科技有限公司 | 一种在盐单胞菌中快速基因编辑的载体组合及其应用 |
CN109266597A (zh) * | 2018-09-30 | 2019-01-25 | 清华大学 | 一种微生物生产短中长链聚羟基脂肪酸共聚物的方法 |
CN110004182A (zh) * | 2019-04-02 | 2019-07-12 | 清华大学 | 一种微生物胞内大颗粒内含物的制备方法及其应用 |
CN112680433A (zh) * | 2019-10-18 | 2021-04-20 | 清华大学 | 一种利用嗜盐细菌生产并分泌蛋白的方法 |
CN111607623A (zh) * | 2020-05-29 | 2020-09-01 | 江南大学 | 一种代谢工程改造大肠杆菌制备α-酮异戊酸的方法 |
Non-Patent Citations (2)
Title |
---|
WEI LI: "Metabolic engineering of the marine bacteria Neptunomonas concharum for the production of acetoin and meso-2,3-butanediol from acetate", 《BIOCHEMICAL ENGINEERING JOURNAL》, vol. 2019, no. 151, 31 December 2019 (2019-12-31) * |
杨永富等: "合成生物学时代基于非模式细菌的工业底盘细胞研究现状与展望", 《生物工程学报》, 25 March 2021 (2021-03-25) * |
Also Published As
Publication number | Publication date |
---|---|
CN113621639B (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113481136B (zh) | 重组嗜盐单胞菌及构建方法及催化柠檬酸制备衣康酸的应用 | |
CN110066829B (zh) | 一种CRISPR/Cas9基因编辑系统及其应用 | |
CN113684169B (zh) | 聚(3-羟基丁酸-4-羟基丁酸-5-羟基戊酸)三聚物及其微生物生产菌株构建 | |
KR102197375B1 (ko) | 저분자량 물질 및 단백질의 항생제 무함유 발효 조제를 위한 미생물 균주 및 방법 | |
KR102144998B1 (ko) | 효모에 내산성을 부여하는 폴리펩티드, 그를 코딩하는 폴리뉴클레오티드, 그 양이 증가되어 있는 효모 세포, 상기 효모 세포를 이용한 산물의 생산 방법 및 내산성 효모 세포를 생산하는 방법 | |
CZ289051B6 (cs) | Mutanta karboxylázy fosfoenolpyrohroznanu, kódový řetězec pro tuto mutantu, produkční mikroorganismus a způsob výroby aminokyseliny | |
US11578342B2 (en) | Recombinant Bacillus subtilis for synthesizing GDP-L-fucose and application thereof | |
KR101934615B1 (ko) | 위케라모미세스 시페리이로부터의 아세틸트랜스퍼라제 | |
CN112458034B (zh) | 一种基因工程构建的重组大肠杆菌及生物合成6’-唾液乳糖的方法 | |
CA2652689C (en) | Method of constructing gene transport support | |
CN112553135B (zh) | 一种腺苷工程菌及其构建方法与应用 | |
CN113621639B (zh) | 重组嗜盐单胞菌及构建方法与催化丙酮酸生产乙偶姻的应用 | |
CN114317384A (zh) | 生产2’-岩藻糖基乳糖的重组枯草芽孢杆菌及其构建方法和应用 | |
CN107223152B (zh) | 具有改变的一氧化碳脱氢酶(codh)活性的遗传工程细菌 | |
CN109971789A (zh) | 一种基因编辑系统及其在新金色分枝杆菌中的应用 | |
CN113151130A (zh) | 一种基因工程菌及其在生物转化甲烷制备异丁醇中的应用 | |
US6387683B1 (en) | Recombinant yeast PDI and process for production thereof | |
KR101831121B1 (ko) | 피리피로펜 생합성 유전자 클러스터 및 표지 유전자를 포함하는 핵산 구성체 | |
CN116004489A (zh) | 一种生产nmn的重组大肠杆菌及其应用 | |
CN114835818A (zh) | 一种基因编辑融合蛋白、其构建的腺嘌呤碱基编辑器及其应用 | |
CN112195190B (zh) | 来源于贝莱斯芽孢杆菌质粒的复制元件及其应用 | |
KR102669217B1 (ko) | 메탄자화균에서 사용하기 위한 발현 벡터 | |
CN112941124B (zh) | 一种全细胞催化制备依利格鲁司特中间体的方法 | |
CN118064417B (zh) | 一种3-脱氢莽草酸脱水酶突变体及其应用 | |
JP3013711B2 (ja) | 変異型ホスホエノールピルビン酸カルボキシラーゼとその遺伝子及びアミノ酸の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |