CN113594462A - 一种三维网状复合水性粘结剂及制备方法和应用 - Google Patents

一种三维网状复合水性粘结剂及制备方法和应用 Download PDF

Info

Publication number
CN113594462A
CN113594462A CN202110849606.2A CN202110849606A CN113594462A CN 113594462 A CN113594462 A CN 113594462A CN 202110849606 A CN202110849606 A CN 202110849606A CN 113594462 A CN113594462 A CN 113594462A
Authority
CN
China
Prior art keywords
polymer
dimensional
binder
dimensional network
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110849606.2A
Other languages
English (en)
Other versions
CN113594462B (zh
Inventor
张莉莉
邵汉琦
余方苗
周昶吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Casnovo Materials Co ltd
Original Assignee
Zhejiang Casnovo Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Casnovo Materials Co ltd filed Critical Zhejiang Casnovo Materials Co ltd
Priority to CN202110849606.2A priority Critical patent/CN113594462B/zh
Publication of CN113594462A publication Critical patent/CN113594462A/zh
Application granted granted Critical
Publication of CN113594462B publication Critical patent/CN113594462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种三维网状复合水性粘结剂及制备方法和应用,多羟基水性高分子与环氧氯丙烷在一定浓度的碱性溶液中进行聚合,得到以稳定的氧原子连结的三维网状聚合物,再与酸性物理交联剂混合中和,形成以动态氢键维持的三维网状结构。所述三维网状复合水性粘结剂按照质量份包括:5份三维网状聚合物;1‑9份酸性物理交联剂。所述三维网状聚合物的各个重复单元通过氧原子连接,因而能与活性材料与集流体可形成强作用力,提高粘结性能的同时也能为钠离子提供离子传输通道提高导电性。

Description

一种三维网状复合水性粘结剂及制备方法和应用
技术领域
本发明属于钠离子二次电池应用领域,具体涉及一种三维网状复合水性粘结剂及制备方法和应用。
背景技术
锂离子电池(LIBs)因锂资源的匮乏而依赖于进口,不仅成本高,还存在有“卡脖子”的风险,难以支撑新能源汽车和大规模储能两个产业的需求与发展。目前锂离子电池技术难有重大突破,成本不仅无法得到控制,全球锂资源的价格还在不断攀升,对大规模储能应用造成阻碍。钠元素和锂元素的化学性质相近且自然中储量丰富。相比锂离子电池而言,钠离子电池(SIBs)的优势除成本低以外,还支持大倍率充电,充电时间短,因此有望在智能电网储能等应用中取代锂离子电池。
目前,钠离子电池所面临的主要问题是寻找合适的电极材料。正极材料的研究已取得了较大进展,但负极材料的研究相对缓慢。由于Na+的直径比Li+大34%,所以锂离子电池常用的石墨负极无法容纳Na+。磷由于形成的Na3P理论密度高(2596mAhg-1),工作电压(≈0.45V vs Na/Na+)合适,所以被认为是一种理想的钠离子电池用负极材料。磷有4种同素异形体,其中红磷的常温化学稳定性更好,成本更低,是最为理想的负极材料。然而,红磷也有一些不足,例如:低导电率(≈10-14S·cm-1)、体积会随着反复充放电过程而大幅度的增加或缩小(292%),使得结构被破坏。
发明内容
针对上述问题,本发明的目地在于提供一种三维网状复合水性粘结剂,保持红磷材料在电化学过程中的结构稳定。
一种三维网状复合水性粘结剂,按照质量份包括:5份三维网状聚合物;1-9份酸性物理交联剂。
进一步地,所述三维网状聚合物的各个重复单元通过氧原子连接。
另一方面,本发明还提供一种三位网状复合水性粘结剂的制备方法,包括以下步骤:
S10:在碱性条件下,将多羟基水性高分子和环氧氯丙烷进行缩聚反应,得到三维网状聚合物;
S20:获取酸性物理交联剂和所述三维网状聚合物进行交联得到所述水性粘结剂。
进一步地,所述多羟基水性高分子,环氧氯丙烷和酸性物理交联剂的质量比为(2-7):(2-3):(1-5)。
进一步地,所述碱性条件为:添加碱性溶液,控制pH为8-10。
进一步地,所述碱性溶液选自氢氧化钠溶液、氢氧化钾溶液、氨水。所述碱性溶液的pH为10-11.5。
进一步地,所述多羟基水性高分子选自阿拉伯胶、瓜多尔胶、卡拉亚胶、羧甲基纤维素钠、环糊精、刺槐豆胶中的至少一种。
进一步地,所述酸性物理交联剂选自柠檬酸、植酸、乙二胺四乙酸溶液中的至少一种。
进一步地,所述酸性物理交联剂的溶质质量百分比为1.5-15%。
再一方面,本发明还提供一种钠离子电池负极片,采用了上述三维网状复合水性粘结剂。
再一方面,本发明还提供一种钠离子电池,采用了上述电池负极片。
为了使本领域技术人员更加详细的了解本发明的技术方案,下面对本发明的技术进行详细的介绍。
针对现有技术中红磷的结构不稳定的特点,本发明旨在提供一种粘结剂用于保持红磷材料在电化学过程中保持稳定的结构,从而提高提高电极的导电性,改善电池的循环性能。
因此,本发明提供一种三维网状复合水性粘结剂,通过将多羟基水性高分子与环氧氯丙烷在一定浓度的碱性溶液中进行聚合,得到以稳定的氧原子连结的三维网状聚合物,再与酸性物理交联剂混合中和,形成以动态氢键维持的三维网状结构。氧原子连结的稳定三维网状结构能与活性材料与集流体可形成强作用力,提高粘结性能的同时也能为钠离子提供离子传输通道提高导电性。以动态氢键维持的三维网状结构则可以在充放电过程中适应红磷材料的体积变化,从而防止材料脱落,提高电化学循环性能。
所述三维网状复合水性粘结剂按照质量份包括:5份三维网状聚合物;1-9份酸性物理交联剂;其制备方法如下:
S10:将多羟基水性高分子加入碱性溶液中,控制溶液pH为8-10,在氮气环境下,升温至40-60℃,缓慢加入环氧氯丙烷,待环氧氯丙烷全部加完后,升温至150-180℃,保温8-14h,获得稳定的氧原子连结的三维网状聚合物。
S20:待所述三位网状聚合物冷却至40-60℃时,加入酸性物理交联剂,搅拌4-6h;然后冷却至室温,加入去离子水调节pH至7-8,得到所述三维网状复合水性粘结剂。
所述三维网状复合水性粘结剂可以应用于钠离子电池负极片中;所述钠离子电池负极包括:集流体和负极浆料,所述负极浆料负载在所述集流体上。
所述集流体优选铜箔;所述负极浆料包括P-C复合碳材料、导电剂和粘结剂。
所述P-C复合碳材料中红磷的质量占比为5-30%;所述导电剂为乙炔黑或super-p中的一种;所述粘结剂为本发明提供的三维网状复合水性粘结剂。所述P-C复合碳材料、粘结剂和导电剂的质量比为(1-3):(4-13):(95-85)。
所述负极浆料的固体含量为50-65%,粘度为2000-5000mPa·s。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例和对比例的剥离强度的测试结果对比图。
图2为实施例和对比例在1C电流下,循环前和循环100圈后的交流阻抗图。
图3为实施例和对比例在循环200圈后容量保持率对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
【实施例1】
本发明提供一种三维网状符合水性粘结剂,按照质量份包括1份三维网状聚合物和1份酸性物理交联剂。其制备方法如下:
S10:将多羟基水性高分子加入碱性溶液中,控制溶液pH为8-10,在氮气环境下,升温至40-60℃,缓慢加入环氧氯丙烷,待环氧氯丙烷全部加完后,升温至150-180℃,保温8-14h,获得稳定的氧原子连结的三维网状聚合物。
S20:待所述三位网状聚合物冷却至40-60℃时,加入酸性物理交联剂,搅拌4-6h;然后冷却至室温,加入去离子水调节pH至7-8,得到所述三维网状复合水性粘结剂。
其中,环氧氯丙烷和酸性物理交联剂的质量比为2:2:4;所述多羟基水性高分子选用羧甲基纤维素钠,所述碱性溶液选用氢氧化钠;所述酸性物理交联剂选用4wt%的乙二胺四乙酸。
所述三维网状复合水性粘结剂可以用于钠离子电池负极片。
所述钠离子电池负极包括:集流体和负极浆料。
所述负极浆料包括P-C复合碳材料、粘结剂和导电剂,三者的质量比为2:5:93。其中,所述P-C复合碳材料中红磷的质量占比为5%;所述导电剂为乙炔黑;所述粘结剂为本实施例提供的三维网状复合水性粘结剂。
选用铜作为集流体,所述负极浆料负载在所述集流体上,经匀浆、涂布、辊压后制成20cm*20cm极片,制成的极片作为负极与磷酸铁钠正极一起制成2025型扣电。
【实施例2】
本发明提供一种三维网状符合水性粘结剂,按照质量份包括3份三维网状聚合物和2份酸性物理交联剂。其制备方法如下:
S10:将多羟基水性高分子加入碱性溶液中,控制溶液pH为8-10,在氮气环境下,升温至40-60℃,缓慢加入环氧氯丙烷,待环氧氯丙烷全部加完后,升温至150-180℃,保温8-14h,获得稳定的氧原子连结的三维网状聚合物。
S20:待所述三位网状聚合物冷却至40-60℃时,加入酸性物理交联剂,搅拌4-6h;然后冷却至室温,加入去离子水调节pH至7-8,得到所述三维网状复合水性粘结剂。
其中,环氧氯丙烷和酸性物理交联剂的质量比为4:3:2;所述多羟基水性高分子选用羧甲基纤维素钠,所述碱性溶液选用氢氧化钠;所述酸性物理交联剂选用3.5wt%的柠檬酸水。
所述三维网状复合水性粘结剂可以用于钠离子电池负极片。
所述钠离子电池负极包括:集流体和负极浆料。
所述负极浆料包括P-C复合碳材料、粘结剂和导电剂,三者的质量比为1:8:91。其中,所述P-C复合碳材料中红磷的质量占比为7.5%;所述导电剂为乙炔黑;所述粘结剂为本实施例提供的三维网状复合水性粘结剂。
选用铜作为集流体,所述负极浆料负载在所述集流体上,经匀浆、涂布、辊压后制成20cm*20cm极片,制成的极片作为负极与磷酸铁钠正极一起制成2025型扣电。
对本发明实施例1和实施例2制备的2025型扣电进行性能测试。
对比例1用于和实施例1进行对比,区别在于,采用了PVDF作为粘结剂。
对比例2用于和实施例2进行对比,区别在于,采用了PVDF作为粘结剂。
参见图1,其为剥离强度的测试结果对比图,在相同的浆料配比情况下,本发明提供的粘结剂相比于PVDF具有更高的粘结强度。
参见图2,其为在1C电流下,循环前和循环100圈后的交流阻抗图。图中阻抗曲线中半圆直径代表电荷(Na+)转移阻抗,半圆直径越小,阻抗越小,离子导电率高。可以看出,采用实施例1提供的钠离子电池的电荷阻抗比采用PVDF的低,离子导电率高。
参见图3,其为实施例1和对比例1提供的扣电在循环200圈后容量保持率对比图。从图中可见,采用实施例1提供的钠离子电池在循环200圈后容量保持率在94.5%,远高于PVDF的80.4%,证明采用本发明提供的粘结剂的钠离子电池在充放电过程中,电极结构更稳定。
【实施例3】
本实施例提供一种三维网状符合水性粘结剂的制备方法,包括以下步骤:
S10:将瓜多尔胶加入氢氧化钾溶液中,控制溶液pH为8,在氮气环境下,升温至40℃,缓慢加入环氧氯丙烷,待环氧氯丙烷全部加完后,升温至150℃,保温8h,获得稳定的氧原子连结的三维网状聚合物。
S20:待所述三位网状聚合物冷却至40℃时,加入15wt%的植酸,搅拌4h;然后冷却至室温,加入去离子水调节pH至7,得到所述三维网状复合水性粘结剂。
其中,所述多羟基水性高分子,环氧氯丙烷和酸性物理交联剂的质量比为2:2:5。
【实施例4】
本实施例提供一种三维网状符合水性粘结剂的制备方法,包括以下步骤:
S10:将环糊精加入氨水中,控制溶液pH为10,在氮气环境下,升温至60℃,缓慢加入环氧氯丙烷,待环氧氯丙烷全部加完后,升温至180℃,保温14h,获得稳定的氧原子连结的三维网状聚合物。
S20:待所述三位网状聚合物冷却至60℃时,加入1.5wt%的乙二胺四乙酸溶液,搅拌6h;然后冷却至室温,加入去离子水调节pH至8,得到所述三维网状复合水性粘结剂。
其中,所述多羟基水性高分子,环氧氯丙烷和酸性物理交联剂的质量比为4:2:3。
【实施例5】
本实施例提供一种三维网状符合水性粘结剂的制备方法,包括以下步骤:
S10:将阿拉伯胶加入氢氧化钾溶液中,控制溶液pH为9,在氮气环境下,升温至50℃,缓慢加入环氧氯丙烷,待环氧氯丙烷全部加完后,升温至160℃,保温10h,获得稳定的氧原子连结的三维网状聚合物。
S20:待所述三位网状聚合物冷却至50℃时,加入10wt%的柠檬酸水,搅拌5h;然后冷却至室温,加入去离子水调节pH至8,得到所述三维网状复合水性粘结剂。
其中,所述多羟基水性高分子,环氧氯丙烷和酸性物理交联剂的质量比为6:3:2。
所述多羟基水性高分子,环氧氯丙烷和酸性物理交联剂的质量比为(2-7):(2-3):(1-5)。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种三维网状复合水性粘结剂,其特征在于,按照质量份包括:5份三维网状聚合物;1-9份酸性物理交联剂。
2.一种如权利要求1所述的三位网状复合水性粘结剂的制备方法,其特征在于,包括以下步骤:
S10:在碱性条件下,将多羟基水性高分子和环氧氯丙烷进行缩聚反应,得到三维网状聚合物;
S20:获取酸性物理交联剂和所述三维网状聚合物进行交联得到所述水性粘结剂。
3.根据权利要求2所述的制备方法,其特征在于,所述多羟基水性高分子,环氧氯丙烷和酸性物理交联剂的质量比为(2-7):(2-3):(1-5)。
4.根据权利要求2所述的制备方法,其特征在于,所述碱性条件为:添加碱性溶液,控制pH为8-10。
5.根据权利要求4所述的制备方法,其特征在于,所述碱性溶液选自氢氧化钠溶液、氢氧化钾溶液、氨水。
6.根据权利要求2所述的制备方法,其特征在于,所述多羟基水性高分子选自阿拉伯胶、瓜多尔胶、卡拉亚胶、羧甲基纤维素钠、环糊精、刺槐豆胶中的至少一种。
7.根据权利要求2所述的制备方法,其特征在于,所述酸性物理交联剂选自柠檬酸、植酸、乙二胺四乙酸溶液中的至少一种。
8.根据权利要求7所述的制备方法,其特征在于,所述酸性物理交联剂的溶质质量百分比为1.5-15%。
9.一种钠离子电池负极片,其特征在于,采用了如权利要求1所述的三维网状复合水性粘结剂。
10.一种钠离子电池,其特征在于,采用了如权利要求9所述的电池负极片。
CN202110849606.2A 2021-07-27 2021-07-27 一种三维网状复合水性粘结剂及制备方法和应用 Active CN113594462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110849606.2A CN113594462B (zh) 2021-07-27 2021-07-27 一种三维网状复合水性粘结剂及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110849606.2A CN113594462B (zh) 2021-07-27 2021-07-27 一种三维网状复合水性粘结剂及制备方法和应用

Publications (2)

Publication Number Publication Date
CN113594462A true CN113594462A (zh) 2021-11-02
CN113594462B CN113594462B (zh) 2022-09-20

Family

ID=78250321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110849606.2A Active CN113594462B (zh) 2021-07-27 2021-07-27 一种三维网状复合水性粘结剂及制备方法和应用

Country Status (1)

Country Link
CN (1) CN113594462B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093579A (zh) * 2009-12-10 2011-06-15 上海长光企业发展有限公司 特高粘度羧甲基纤维素钠的制备方法
CN107663428A (zh) * 2017-08-31 2018-02-06 中国科学院广州能源研究所 导电复合水性粘结剂及其一锅法制备方法和应用
CN108933245A (zh) * 2018-07-19 2018-12-04 西安交通大学苏州研究院 硅基负极材料及其制备方法
CN111180733A (zh) * 2020-01-03 2020-05-19 南方科技大学 三维网络水性复合粘结剂及其在锂离子电池中的应用
CN111430716A (zh) * 2020-03-31 2020-07-17 华南理工大学 一种水性大豆蛋白基超分子硫正极粘结剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093579A (zh) * 2009-12-10 2011-06-15 上海长光企业发展有限公司 特高粘度羧甲基纤维素钠的制备方法
CN107663428A (zh) * 2017-08-31 2018-02-06 中国科学院广州能源研究所 导电复合水性粘结剂及其一锅法制备方法和应用
CN108933245A (zh) * 2018-07-19 2018-12-04 西安交通大学苏州研究院 硅基负极材料及其制备方法
CN111180733A (zh) * 2020-01-03 2020-05-19 南方科技大学 三维网络水性复合粘结剂及其在锂离子电池中的应用
CN111430716A (zh) * 2020-03-31 2020-07-17 华南理工大学 一种水性大豆蛋白基超分子硫正极粘结剂及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邵自强等: "羧甲基纤维素的环氧氯丙烷交联改性研究", 《纤维素科学与技术》, vol. 15, no. 2, 30 June 2017 (2017-06-30), pages 26 - 29 *

Also Published As

Publication number Publication date
CN113594462B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN112909234A (zh) 一种锂负极或钠负极的制备方法与应用
CN107749467B (zh) 一种梭形结构碳包覆磷化铁电极材料及其制备方法
CN108615855A (zh) 一种碳包覆制备的磷酸钛钠材料及制备和应用
CN113046768B (zh) 一种氟磷酸钒氧钾及其制备方法和应用、一种钾离子电池
CN105185989B (zh) 一种钠离子电池导电聚合物/SnSex纳米花负极复合材料及其制备方法
CN114373982B (zh) 一种基于液态醚类有机电解液的少负极二次钠电池及其制备方法
CN115020855A (zh) 一种磷酸铁锂废旧电池的回收利用方法
CN111916748A (zh) 一种球形纳米石墨烯导电浆
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
CN114702614A (zh) 一种提高硫化聚丙烯腈电池循环稳定性的正极材料及其制备方法
CN111384446A (zh) 一种宽温电解液、二次电池及其用途
CN108565397B (zh) 锂金属电极表面氧化复合保护层结构及制备方法
CN114335534A (zh) 磷酸锆锂快离子导体包覆改性的钴酸锂正极材料及其制备方法与应用
CN113241431A (zh) 一种ZnS纳米花@NC的锂离子电池负极材料的制法和应用
CN111477854B (zh) 一种复合纳米材料及其制备方法和应用
CN113321198A (zh) 二元金属磷酸盐正极材料及其制备方法和应用
CN113594462B (zh) 一种三维网状复合水性粘结剂及制备方法和应用
CN115588772A (zh) 一种储能电站用耐低温锂离子电池组
CN115148946A (zh) 锂硫电池正极极片的制备方法以及锂硫电池
CN113078295A (zh) 一种全固态锌硫电池及其制造方法
CN111697234B (zh) 一种锂离子电池用水系交联型粘结剂及其制备方法和应用
CN110867563A (zh) 竹节状石墨烯管/硫复合材料的制备方法
CN117613250B (zh) 三维导电铅碳复合材料及其制备方法、负极、铅酸电池
CN114804211B (zh) 一种锂离子电池用高首效铁酸锂负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant