CN113583278A - 一种超薄复合阴离子交换膜的制备方法 - Google Patents

一种超薄复合阴离子交换膜的制备方法 Download PDF

Info

Publication number
CN113583278A
CN113583278A CN202110442464.8A CN202110442464A CN113583278A CN 113583278 A CN113583278 A CN 113583278A CN 202110442464 A CN202110442464 A CN 202110442464A CN 113583278 A CN113583278 A CN 113583278A
Authority
CN
China
Prior art keywords
porous film
solution
vbc
dvb
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110442464.8A
Other languages
English (en)
Inventor
魏子栋
王建川
陈四国
李莉
袁伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202110442464.8A priority Critical patent/CN113583278A/zh
Publication of CN113583278A publication Critical patent/CN113583278A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/405Impregnation with polymerisable compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明提供一种超薄复合阴离子交换膜制备方法,属于燃料电池技术领域;本发明通过无溶剂原位聚合的方法在多孔薄膜孔道里实现聚电解质填充,一方面,无溶剂引入可以保证多孔膜填充致密;另一方面,利用聚电解质单体原位自交联聚合可以保证聚电解质不发生泄露现象;通过改善制备工艺的和调控交联剂摩尔比例,可以使超薄复合阴离子交换膜与基底膜几乎保持相同薄的厚度(4μm),复合膜的机械强度超过150MPa,并获得超过1W/cm2的较高燃料电池功率密度;本发明方法简单易行,生产成本低廉,采用本发明制备的阴离子交换膜可以应用于碱性燃料电池;用本发明制造的碱性燃料电池,可以应用于燃料电池动力汽车,各种航天器,便携式能源设备等。

Description

一种超薄复合阴离子交换膜的制备方法
一、技术领域:
本发明属于燃料电池技术领域,特别涉及一种超薄复合阴离子交换膜的制备方法。
二、背景技术:
传统化石能源带来的环境问题迫使人类追求更为高效、清洁的能源途径,我国提出在2060年要达到“碳中和”目标,而燃料电池因其能量转换效率高和无污染的优点,成为解决上述问题的重要途径之一。目前政策推广的质子交换膜燃料电池因过度依赖贵金属催化剂而导致成本高昂,困扰其大规模应用。与质子交换膜燃料电池相比,碱性阴离子交换膜燃料电池则可以使用非贵金属替代贵金属铂作为催化剂,被认为是一种更有潜力的燃料电池类型。而作为碱性阴离子交换膜燃料电池的核心部件,具有高电导率、良好的机械稳定性和化学稳定性的高性能阴离子交换膜一直是碱性燃料电池商业化的核心障碍。为了降低燃料电池的欧姆内阻,获得更高的功率输出,阴离子交换膜应在保证基本性能的基础上,厚度尽可能薄。然而,均相阴离子交换膜阴的厚度降低到10μm以下的超薄状态,气体燃料渗透的风险以及机械稳定性都将面临巨大风险。因此,通过超薄复合化来制备阴离子交换膜,从而提高碱性燃料电池性能,具有重要意义。
虽然至今国内外针对复合阴离子交换膜的制备做了大量研究,但真正能把复合阴离子交换膜做到超薄(<10μm)层次的研究几乎没有。中国专利“超薄交联复合增强聚合物阴离子交换膜及其制备方法与应用”(专利申请号:201811436085.2)公布了一种采用廉价超薄多孔膜为基底,在孔道内热引发聚合制备的交联复合膜,厚度降低至10μm,并具有较高的机械强度、尺寸稳定性和导电性能,但基于此膜的燃料电池功率密度仅为379mW/cm2。已有的研究表明,采用基体多孔膜复合的复合阴离子交换膜普遍具有较高的机械稳定性,展现出巨大的应用前景。但是,厚度低于10μm,且气体阻隔性能以及机械稳定性满足燃料电池应用要求的超薄复合阴离子交换膜仍未见报道。
三、发明内容:
本发明的目的是针对目前阴离子交换膜厚度较高(意味着电池膜欧姆内阻大)、气体渗透率风险大、以及燃料电池性能低下等缺点,提供一种超薄复合阴离子交换膜的制备方法。在聚合物多孔薄膜表面处理以及反应混合物调配的基础上,通过无溶剂原位聚合法,在聚合物多孔膜孔道里实现聚电解质单体原位聚合并交联,一方面,无溶剂可以保证多孔膜填充致密;另一方面,聚电解质原位聚合交联可以保证聚电解质不流失。更重要的是,综合通过制备工艺的改善和交联度控制,可以将复合膜厚度控制在10μm以下,且具有超高的机械强度、较低的氢气渗透率,以及优异的燃料电池性能。
本发明的目的是这样实现的:一种超薄复合阴离子交换膜的制备方法,其具体方法步骤包括:
(1)、高分子多孔薄膜的处理
将市售高分子多孔薄膜裁剪成适当大小的面积,室温条件下,先在甲醇溶液里浸泡1小时,然后用甲醇洗涤3次,除去多孔薄膜残留的杂质,再在50℃真空条件下干燥4h,降至室温后备用;
(2)、引发剂处理
以氯仿为溶剂,配置质量百分浓度为30wt%的过氧化二苯甲酰(BPO)溶液,然后将BPO溶液滴加在甲醇溶液里,降温至0℃进行重结晶,然后过滤并用0℃的甲醇溶液洗涤3次,过滤产物在30℃下真空干燥12h,获得纯化后的BPO引发剂;
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:0.075~0.2:0.008~0.04,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在10℃~30℃条件下搅拌5~20min后,再将称量好的BPO加入其中,并在10℃~30℃条件下继续搅拌10~30min后停止搅拌,获得反应物溶液;将步骤(1)处理好的高分子多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.01~0.04g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置30~60min后,升温至60~80℃并保持12~48h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于40~60℃真空环境中干燥12h,获得超薄复合膜;
(4)、季铵化超薄复合膜的制备
在40℃条件下,将步骤(3)制备好的超薄复合膜在N-甲基哌啶质量百分含量为20wt%的四氢呋喃溶液中浸泡2天,然后用去离子水洗涤3次,再在40℃条件下的1摩尔/升KOH溶液中浸泡1天后,用去离子水洗涤3次,在40~60℃条件下真空干燥24h,得到季铵化超薄复合膜;
其中所述高分子多孔薄膜为超高分子量聚乙烯薄膜(UHMWPE,其厚度为3~10μm)或聚四氟乙烯薄膜(PTFE,其厚度为5~10μm)的其中之一。
本发明采用上述技术方案后,主要有以下优点:
(1)、超薄复合膜填充非常致密,没有出现未填满的孔道。H2气体渗透率低,可以有效保证燃料电池运行的开路电压,有效地防止气体燃料渗透。
(2)、超薄复合膜具有大于150MPa的机械强度,较低的吸水率和溶胀性,非常有利于膜电极的制备,并确保燃料电池在复杂环境下的膜机械稳定性。
(3)、超薄复合膜的厚度低于10μm,实现膜超薄,有效降低了燃料电池膜欧姆电阻,实现超过1W cm-2的燃料电池峰值功率。
本发明方法简单高效,生产成本较低,采用本发明制备的超薄复合阴离子交换膜可应用于碱性燃料电池。用本发明制造的碱性燃料电池,广泛应用于电动汽车,各种航天器,便携式移动电源等。(实用性)
四、附图说明:
图1为UHMWPE多孔薄膜,实施例1制备的超薄复合阴离子交换膜的SEM图:图a、b是UHMWPE多孔薄膜的平面和断面SEM图,c、d是实施例1复合膜的平面和断面SEM图。
图2为UHMWPE多孔薄膜,实施例1制备的超薄复合阴离子交换膜以及Nafion HP膜的机械性能图:曲线1线代表UHMWPE多孔薄膜(干),曲线2线代表UHMWPE多孔薄膜(湿),曲线3线代表实施例1制备的复合膜(干),曲线4线代表实施例1制备的复合膜(湿),曲线5线代表Nafion HP膜(干),曲线6线代表Nafion HP膜(湿)。
图3为实施例1制备的超薄复合膜与Nafion HP膜的氢气渗透率测试图。
图4为制备的超薄复合阴离子交换膜和对比实验例市售阴离子交换膜
Figure BDA0003035518280000031
W-25膜的H2/O2碱性燃料电池性能图:曲线1对应的是各实施例1复合膜的功率密度曲线,曲线2对应的是各实施例2复合膜的功率密度曲线,曲线3对应的是各实施例3复合膜的功率密度曲线,曲线4对应的是对比实施例
Figure BDA0003035518280000032
W-25膜的功率密度曲线。操作条件:电池温度65℃,以纯氢气为燃料,纯氧气为氧化剂,阴阳两极背压均为150KPa,阳极和阴极气流均为0.5升/分钟。
五、具体实施方式:
下面结合具体实施方式,进一步说明本发明。
实施例1
(1)、高分子多孔薄膜的处理
将市售UHMWPE多孔薄膜裁剪成适当大小的面积,室温条件下,先在甲醇溶液里浸泡1小时,然后用甲醇洗涤3次,除去多孔薄膜残留的杂质,再在50℃真空条件下干燥4h,降至室温后备用;
(2)、引发剂处理
以氯仿为溶剂,配置质量百分浓度为30wt%的过氧化二苯甲酰(BPO)溶液,然后将BPO溶液滴加在甲醇溶液里,降温至0℃进行重结晶,然后过滤并用0℃的甲醇溶液洗涤3次,过滤产物在30℃下真空干燥12h,获得纯化后的BPO引发剂;
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:0.1:0.02,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在20℃条件下搅拌10min后,再将称量好的BPO加入其中,并在20℃条件下继续搅拌20min后停止搅拌,获得反应物溶液;将步骤(1)处理好的UHMWPE多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.02g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置60min后,升温至80℃并保持12h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于40℃真空环境中干燥12h,获得超薄复合膜;
(4)、季铵化超薄复合膜的制备
在40℃条件下,将步骤(3)制备好的超薄复合膜在N-甲基哌啶质量百分含量为20wt%的四氢呋喃溶液中浸泡2天,然后用去离子水洗涤3次,再在40℃条件下的1摩尔/升KOH溶液中浸泡1天后,用去离子水洗涤3次,在40~60℃条件下真空干燥24h,得到季铵化超薄复合膜;
(5)、超薄复合膜性能测试
超薄复合膜形貌的表征:分别裁剪1cm×3cm的超薄复合阴离子交换膜样品和UHMWPE多孔薄膜样品各一份,在液氮中放置30min,脆断,真空镀膜仪喷金20s,然后通过Nova Nano SEM 450型号扫描电子显微镜(SEM)仪器在5kV电压下进行观察其断面与表面,结果如图1所示;
超薄复合膜机械性能测试:分别裁剪1cm×3cm的超薄复合阴离子交换膜样品和UHMWPE多孔薄膜样品各两个;一个置于去离子水中24h后快速擦干表面水份后测试,另一个于40℃真空干燥24h后测试;测试采用MTS tensile tester(E44.104)型号的万能材料试验机,在25℃、5mm/min的拉伸速率条件下进行测试,得到如图2所示曲线;
超薄复合膜氢气渗透率测试:裁剪5cm×5cm的超薄复合阴离子交换膜和NafionHP膜各一份,在60℃、150kPa背压,测试气体为氢气,相对湿度为0%RH和100%RH,通过Agilent 7890B型号的气相色谱仪进行检测,得到的测试结果如图3所示;
(6)、燃料电池性能测试
首先,分别称取0.75g的市售60wt%的Pt/C和PtRu/C催化剂加入塑料样品管,随后加入0.8mL的异丙醇溶液,之后在该样品管中加入37.5μL的市售
Figure BDA0003035518280000051
离聚物(5wt%的DMSO溶液),将样品管水浴超声1h形成催化剂油墨备用;取出步骤(4)制备好的一张5cm×5cm的超薄复合阴离子交换膜,将超声制备好的60wt%的Pt/C和PtRu/C催化剂油墨分别喷涂于膜的两面,形成阴极催化层和阳极催化层,其催化剂载量都为0.4mg/cm2,制备的结构即为燃料电池芯片(catalyst-coated membrane,CCM);最后,将制备的CCM夹在两张2.5cm×2.5cm的市售碳纸中间,形成三明治结构,置于燃料电池测试夹具中,采用燃料电池测试系统(850e Multi Range,Scribner Associates Co)进行电池性能测试。测试条件为:电池温度65℃,以纯氢气为燃料,纯氧气为氧化剂,阴阳两极背压均为150KPa,阳极和阴极气流均为0.5升/分钟。进行单电池功率测试,测试结果如图4实例1曲线所示。
实施例2
(1)、高分子多孔薄膜的处理
将市售UHMWPE多孔薄膜裁剪成适当大小的面积,室温条件下,先在甲醇溶液里浸泡1小时,然后用甲醇洗涤3次,除去多孔薄膜残留的杂质,再在50℃真空条件下干燥4h,降至室温后备用;
(2)、引发剂处理
以氯仿为溶剂,配置质量百分浓度为30wt%的过氧化二苯甲酰(BPO)溶液,然后将BPO溶液滴加在甲醇溶液里,降温至0℃进行重结晶,然后过滤并用0℃的甲醇溶液洗涤3次,过滤产物在30℃下真空干燥12h,获得纯化后的BPO引发剂;
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:0.075:0.03,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在25℃条件下搅拌15min后,再将称量好的BPO加入其中,并在25℃条件下继续搅拌10min后停止搅拌,获得反应物溶液;将步骤(1)处理好的UHMWPE多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.03g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置60min后,升温至70℃并保持12h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于50℃真空环境中干燥12h,获得超薄复合膜;
(4)、季铵化超薄复合膜的制备
在40℃条件下,将步骤(3)制备好的超薄复合膜在N-甲基哌啶质量百分含量为20wt%的四氢呋喃溶液中浸泡2天,然后用去离子水洗涤3次,再在40℃条件下的1摩尔/升KOH溶液中浸泡1天后,用去离子水洗涤3次,在40~60℃条件下真空干燥24h,得到季铵化超薄复合膜;
(5)、燃料电池性能测试
首先,分别称取0.75g的市售60wt%的Pt/C和PtRu/C催化剂加入塑料样品管,随后加入0.8mL的异丙醇溶液,之后在该样品管中加入37.5μL的市售
Figure BDA0003035518280000061
离聚物(5wt%的DMSO溶液),将样品管水浴超声1h形成催化剂油墨备用;取出步骤(4)制备好的一张5cm×5cm的超薄复合阴离子交换膜,将超声制备好的60wt%的Pt/C和PtRu/C催化剂油墨分别喷涂于膜的两面,形成阴极催化层和阳极催化层,其催化剂载量都为0.4mg/cm2,制备的结构即为燃料电池芯片(catalyst-coated membrane,CCM);最后,将制备的CCM夹在两张2.5cm×2.5cm的市售碳纸中间,形成三明治结构,置于燃料电池测试夹具中,采用燃料电池测试系统(850e Multi Range,Scribner Associates Co)进行电池性能测试。测试条件为:电池温度65℃,以纯氢气为燃料,纯氧气为氧化剂,阴阳两极背压均为150KPa,阳极和阴极气流均为0.5升/分钟。进行单电池功率测试,测试结果如图4实例2曲线所示。
实施例3
(1)、高分之多孔薄膜的处理
将市售UHMWPE多孔薄膜裁剪成适当大小的面积,室温条件下,先在甲醇溶液里浸泡1小时,然后用甲醇洗涤3次,除去多孔薄膜残留的杂质,再在50℃真空条件下干燥4h,降至室温后备用;
(2)、引发剂处理
以氯仿为溶剂,配置质量百分浓度为30wt%的过氧化二苯甲酰(BPO)溶液,然后将BPO溶液滴加在甲醇溶液里,降温至0℃进行重结晶,然后过滤并用0℃的甲醇溶液洗涤3次,过滤产物在30℃下真空干燥12h,获得纯化后的BPO引发剂;
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:~0.15:0.04,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在15℃条件下搅拌10min后,再将称量好的BPO加入其中,并在15℃条件下继续搅拌15min后停止搅拌,获得反应物溶液;将步骤(1)处理好的UHMWPE多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.01g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置40min后,升温至60℃并保持24h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于40℃真空环境中干燥12h,获得超薄复合膜;
(4)、季铵化超薄复合膜的制备
在40℃条件下,将步骤(3)制备好的超薄复合膜在N-甲基哌啶质量百分含量为20wt%的四氢呋喃溶液中浸泡2天,然后用去离子水洗涤3次,再在40℃条件下的1摩尔/升KOH溶液中浸泡1天后,用去离子水洗涤3次,在40~60℃条件下真空干燥24h,得到季铵化超薄复合膜;
(5)、燃料电池性能测试
首先,分别称取0.75g的市售60wt%的Pt/C和PtRu/C催化剂加入塑料样品管,随后加入0.8mL的异丙醇溶液,之后在该样品管中加入37.5μL的市售
Figure BDA0003035518280000071
离聚物(5wt%的DMSO溶液),将样品管水浴超声1h形成催化剂油墨备用;取出步骤(4)制备好的一张5cm×5cm的超薄复合阴离子交换膜,将超声制备好的60wt%的Pt/C和PtRu/C催化剂油墨分别喷涂于膜的两面,形成阴极催化层和阳极催化层,其催化剂载量都为0.4mg/cm2,制备的结构即为燃料电池芯片(catalyst-coated membrane,CCM);最后,将制备的CCM夹在两张2.5cm×2.5cm的市售碳纸中间,形成三明治结构,置于燃料电池测试夹具中,采用燃料电池测试系统(850e Multi Range,Scribner Associates Co)进行电池性能测试。测试条件为:电池温度65℃,以纯氢气为燃料,纯氧气为氧化剂,阴阳两极背压均为150KPa,阳极和阴极气流均为0.5升/分钟。进行单电池功率测试,测试结果如图4实例3曲线所示。
对比实验例
使用市售
Figure BDA0003035518280000081
W-25膜(厚度:25±2μm;离子交换容量:2.50±0.05;离子电导率:140±10mS/cm@80℃;抗拉强度:33±3MPa),作为对比实验例进行燃料电池性能测试;首先,裁剪5cm×5cm的
Figure BDA0003035518280000082
W-25膜,去除外层塑料保护膜,取出中间层阴离子交换膜,在60℃、1M KOH溶液里浸泡12h后,用去离子水洗涤3次,于真空烘箱干燥12h备用;之后,分别称取0.75g的市售60wt%的Pt/C和PtRu/C催化剂加入塑料样品管,随后加入0.8mL的水溶液,之后在该样品管中加入37.5μL的市售
Figure BDA0003035518280000083
离聚物(5wt%的DMSO溶液),将样品管水浴超声1h形成催化剂油墨备用;取出干燥后的
Figure BDA0003035518280000084
W-25型阴离子交换膜,将超声制备好的60wt%的Pt/C和PtRu/C催化剂油墨分别喷涂于膜的两面,形成阴极催化层和阳极催化层,其催化剂载量都为0.4mg/cm2,制备的结构即为燃料电池芯片(catalyst-coatedmembrane,CCM);最后,将制备的CCM夹在两张2.5cm×2.5cm的市售碳纸中间,形成三明治结构,置于燃料电池测试夹具中,采用燃料电池测试系统(850e Multi Range,ScribnerAssociates Co)进行电池性能测试。测试条件为:电池温度65℃,以纯氢气为燃料,纯氧气为氧化剂,阴阳两极背压均为150KPa,阳极和阴极气流均为0.5升/分钟。进行单电池功率测试,测试结果如图4对比例曲线所示。
本发明的试验结果:
从图1可以看出,制备的复合膜的厚度为4μm,实现了超薄的目的;图2可以看出,制备的复合膜无论是干膜,还是湿膜,其机械强度都能超过150MPa,断裂伸长率在50%~70%区间,具有极高的机械稳定性;图3可以看出,制备的复合膜比商业Nafion HP膜具有更低的氢气渗透率,能有效防止燃料渗透。图4可以看出,制备的复合膜在65℃燃料电池运行过程中,实现了超过1W cm-2的功率密度,具有良好的燃料电池性能。

Claims (5)

1.一种超薄复合阴离子交换膜制备方法
(1)、高分子多孔薄膜的处理
将市售高分子多孔薄膜裁剪成适当大小的面积,室温条件下,先在甲醇溶液里浸泡1小时,然后用甲醇洗涤3次,除去多孔薄膜残留的杂质,再在50℃真空条件下干燥4h,降至室温后备用;
(2)、引发剂处理
以氯仿为溶剂,配置质量百分浓度为30wt%的过氧化二苯甲酰(BPO)溶液,然后将BPO溶液滴加在甲醇溶液里,降温至0℃进行重结晶,然后过滤并用0℃的甲醇溶液洗涤3次,过滤产物在30℃下真空干燥12h,获得纯化后的BPO引发剂;
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:0.075~0.2:0.008~0.04,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在10℃~30℃条件下搅拌5~20min后,再将称量好的BPO加入其中,并在10℃~30℃条件下继续搅拌10~30min后停止搅拌,获得反应物溶液;将步骤(1)处理好的高分子多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.01~0.04g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置30~60min后,升温至60~80℃并保持12~48h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于40~60℃真空环境中干燥12h,获得超薄复合膜;
(4)、季铵化超薄复合膜的制备
在40℃条件下,将步骤(3)制备好的超薄复合膜在N-甲基哌啶质量百分含量为20wt%的四氢呋喃溶液中浸泡2天,然后用去离子水洗涤3次,再在40℃条件下的1摩尔/升KOH溶液中浸泡1天后,用去离子水洗涤3次,在40~60℃条件下真空干燥24h,得到季铵化超薄复合膜。
2.按照权利要求1所述的一种超薄复合阴离子交换膜制备方法,其特征在于所述的高分子多孔薄膜为超高分子量聚乙烯薄膜(UHMWPE,其厚度为3~10μm)或聚四氟乙烯薄膜(PTFE,其厚度为5~10μm)的其中之一。
3.按照权利要求1所述的一种超薄复合阴离子交换膜制备方法,其特征在于具体制备方法的步骤(3):
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:0.1:0.02,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在20℃条件下搅拌10min后,再将称量好的BPO加入其中,并在20℃条件下继续搅拌20min后停止搅拌,获得反应物溶液;将步骤(1)处理好的UHMWPE多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.02g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置60min后,升温至80℃并保持12h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于40℃真空环境中干燥12h,获得超薄复合膜。
4.按照权利要求1所述的一种超薄复合阴离子交换膜制备方法,其特征在于具体制备方法的步骤(3):
(3)、超薄复合膜的制备
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:0.075:0.03,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在25℃条件下搅拌15min后,再将称量好的BPO加入其中,并在25℃条件下继续搅拌10min后停止搅拌,获得反应物溶液;将步骤(1)处理好的UHMWPE多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.03g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置60min后,升温至70℃并保持12h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于50℃真空环境中干燥12h,获得超薄复合膜。
5.按照权利要求1所述的一种超薄复合阴离子交换膜制备方法,其特征在于具体制备方法的步骤(3):
首先,将氯甲基苯乙烯(VBC)和二乙烯基苯(DVB)分别用市售的碱性氧化铝(200~300目)层析色谱柱过柱,除去单体中的阻聚剂,得到纯化后的VBC和DVB;随后,按照摩尔比为1:~0.15:0.04,分别称取纯化后的VBC、DVB和BPO,先将称量好的VBC和DVB加入单口烧瓶中,在15℃条件下搅拌10min后,再将称量好的BPO加入其中,并在15℃条件下继续搅拌15min后停止搅拌,获得反应物溶液;将步骤(1)处理好的UHMWPE多孔薄膜上平铺在玻璃板上,并放置于真空容器,在常温条件下,将反应物溶液滴加在高分子多孔薄膜上,膜表面溶液负载量为0.01g/cm2,待反应物溶液完全浸润后,再在多孔薄膜上表面放置一块玻璃板,形成夹心结构,然后向真空容器中充入氮气并排除空气,静置40min后,升温至60℃并保持24h,冷却至室温后取出并在常温下用甲醇洗涤3次,放置于40℃真空环境中干燥12h,获得超薄复合膜。
CN202110442464.8A 2021-04-23 2021-04-23 一种超薄复合阴离子交换膜的制备方法 Pending CN113583278A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110442464.8A CN113583278A (zh) 2021-04-23 2021-04-23 一种超薄复合阴离子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110442464.8A CN113583278A (zh) 2021-04-23 2021-04-23 一种超薄复合阴离子交换膜的制备方法

Publications (1)

Publication Number Publication Date
CN113583278A true CN113583278A (zh) 2021-11-02

Family

ID=78243074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110442464.8A Pending CN113583278A (zh) 2021-04-23 2021-04-23 一种超薄复合阴离子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN113583278A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255351A (ja) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan 製塩用陰イオン交換膜及びその製造方法
JP2009144041A (ja) * 2007-12-13 2009-07-02 Solt Industry Center Of Japan 陰イオン交換膜およびその製造方法
JP2009173786A (ja) * 2008-01-25 2009-08-06 Solt Industry Center Of Japan 陰イオン交換膜及びその製造方法
JP2009215500A (ja) * 2008-03-12 2009-09-24 Solt Industry Center Of Japan 陰イオン交換膜及びその製造方法
CN102104156A (zh) * 2009-12-18 2011-06-22 中国科学院大连化学物理研究所 一种燃料电池用复合阴离子交换膜及其制备方法
JP2012201693A (ja) * 2011-03-23 2012-10-22 Solt Industry Center Of Japan 一価陰イオン選択透過性製塩用陰イオン交換膜及びその製造方法
CN103387690A (zh) * 2012-05-09 2013-11-13 中国科学院大连化学物理研究所 一种交联型复合阴离子交换膜的制备方法
KR20150010089A (ko) * 2013-07-18 2015-01-28 (주) 시온텍 바이폴라 이온교환시트 및 이의 제조방법
CN104703697A (zh) * 2012-10-04 2015-06-10 伊沃夸水处理技术有限责任公司 高性能的阴离子交换膜及其制造方法
CN104837542A (zh) * 2012-10-11 2015-08-12 伊沃夸水处理技术有限责任公司 涂覆的离子交换膜
CN106422802A (zh) * 2016-11-12 2017-02-22 杭州科百特过滤器材有限公司 一种均相离子交换膜的制备方法
US20170240439A1 (en) * 2012-10-11 2017-08-24 Evoqua Water Technologies Llc Ion Exchange Membranes And Methods Of Making The Same
CN109942871A (zh) * 2019-03-23 2019-06-28 浙江迪萧环保科技有限公司 一种阴离子交换膜及制备方法
CN111244512A (zh) * 2018-11-28 2020-06-05 中国科学院大连化学物理研究所 超薄交联复合增强型聚合物阴离子交换膜及其制备方法与应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255351A (ja) * 2007-03-14 2008-10-23 Solt Industry Center Of Japan 製塩用陰イオン交換膜及びその製造方法
JP2009144041A (ja) * 2007-12-13 2009-07-02 Solt Industry Center Of Japan 陰イオン交換膜およびその製造方法
JP2009173786A (ja) * 2008-01-25 2009-08-06 Solt Industry Center Of Japan 陰イオン交換膜及びその製造方法
JP2009215500A (ja) * 2008-03-12 2009-09-24 Solt Industry Center Of Japan 陰イオン交換膜及びその製造方法
CN102104156A (zh) * 2009-12-18 2011-06-22 中国科学院大连化学物理研究所 一种燃料电池用复合阴离子交换膜及其制备方法
JP2012201693A (ja) * 2011-03-23 2012-10-22 Solt Industry Center Of Japan 一価陰イオン選択透過性製塩用陰イオン交換膜及びその製造方法
CN103387690A (zh) * 2012-05-09 2013-11-13 中国科学院大连化学物理研究所 一种交联型复合阴离子交换膜的制备方法
CN104703697A (zh) * 2012-10-04 2015-06-10 伊沃夸水处理技术有限责任公司 高性能的阴离子交换膜及其制造方法
CN104837542A (zh) * 2012-10-11 2015-08-12 伊沃夸水处理技术有限责任公司 涂覆的离子交换膜
US20170240439A1 (en) * 2012-10-11 2017-08-24 Evoqua Water Technologies Llc Ion Exchange Membranes And Methods Of Making The Same
KR20150010089A (ko) * 2013-07-18 2015-01-28 (주) 시온텍 바이폴라 이온교환시트 및 이의 제조방법
CN106422802A (zh) * 2016-11-12 2017-02-22 杭州科百特过滤器材有限公司 一种均相离子交换膜的制备方法
CN111244512A (zh) * 2018-11-28 2020-06-05 中国科学院大连化学物理研究所 超薄交联复合增强型聚合物阴离子交换膜及其制备方法与应用
CN109942871A (zh) * 2019-03-23 2019-06-28 浙江迪萧环保科技有限公司 一种阴离子交换膜及制备方法

Similar Documents

Publication Publication Date Title
CA2697891C (en) Proton conducting polymer electrolyte membrane useful in polymer electrolyte fuel cells
Yang Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC
Fu et al. Alkali doped poly (vinyl alcohol) for potential fuel cell applications
Lin et al. Nafion/poly (vinyl alcohol) nano-fiber composite and Nafion/poly (vinyl alcohol) blend membranes for direct methanol fuel cells
Wang et al. Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells
Hou et al. Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell
Xiong et al. Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells
Li et al. Ultrathin composite membrane of alkaline polymer electrolyte for fuel cell applications
CN107437628A (zh) 一种燃料电池膜电极组件的制备方法
Li et al. A poly (vinyl alcohol)-based composite membrane with immobilized phosphotungstic acid molecules for direct methanol fuel cells
KR20070086373A (ko) 전해질막의 제조 방법, 전해질막 및 그의 전해질막을이용한 고체 고분자형 연료 전지
Bauer et al. Comparison between nafion® and a nafion® zirconium phosphate nano‐composite in fuel cell applications
Zugic et al. Enhanced performance of the solid alkaline fuel cell using PVA-KOH membrane
Son et al. Preparation of Pt/zeolite–Nafion composite membranes for self-humidifying polymer electrolyte fuel cells
CN106750442A (zh) 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法
CN113851683A (zh) 一种咔唑类聚芳烃哌啶阴离子交换膜的制备方法
CN106549171A (zh) 一种具有高抗氧化性能高电导率的交联型聚苯并咪唑高温质子交换膜及其制备方法
Zhou et al. Fabricating hydroxyl anion conducting membranes based on poly (vinyl alcohol) and bis (2-chloroethyl) ether-1, 3-bis [3-(dimethylamino) propyl] urea copolymer with linear anion-exchange sites for polymer electrolyte membrane fuel cell
Zhang et al. Preparation of phosphotungstic acid hybrid proton exchange membranes by constructing proton transport channels for direct methanol fuel cells
Ma et al. The research status of Nafion ternary composite membrane
Fang et al. Modification of Nafion membranes with ternary composite materials for direct methanol fuel cells
Gupta et al. A study on synthesis of chemical crosslinked polyvinyl alcohol-based alkaline membrane for the use in low-temperature alkaline direct ethanol fuel cell
CN113583278A (zh) 一种超薄复合阴离子交换膜的制备方法
Li et al. Surface-Densified Non-Fluorinated Proton Exchange Membrane Used for Direct Methanol Fuel Cell
CN115521500A (zh) 一种基于双轴拉伸超高分子量聚乙烯的超薄高强复合质子交换膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211102